Introduction to Mathematica and FORM

Thomas Hohn

Max-Planck-Institut für Physik München

- Commercial systems: Mathematica, Maple, Matlab/MuPAD, MathCad, Reduce, Derive...
- Free systems: FORM, GiNaC, Maxima, Axiom, Cadabra, Fermat, GAP, Singular, MAGMA...
- Generic systems: Mathematica, Maple, Matlab/MuPAD, Maxima, MathCad, Reduce, Axiom, MAGMA, GiNaC...
- Specialized sustems: Cadabra, Singular, Magma, CoCoA, GAP...
- Many more...

Mathematica

- Much built-in knowledge,
- Big and slow (especially on large problems),
- Very general,
- GUI, add-on packages...

FORM

- Limited mathematical knowledge,
- Small and fast (also on large problems),
- Optimized for certain classes of problems,
- Batch program (edit-run cycle).

Mathematica

In technical terms, Mathematica is an Expert System. Knowledge is added in form of Transformation Rules. An expression is transformed until no more rules apply.

Example:

myAbs[x_] := x /; NonNegative[x]
myAbs[x_] := -x /; Negative[x]

We get:

```
myAbs [3] was 3
myAbs[-5] res 5
myAbs[2 + 3 I] res myAbs[2 + 3 I]
```

- no rule for complex arguments so far
myAbs [x] res myAbs [x]
- no match either

Transformations can either be

- added "permanently" in form of Definitions,
norm[vec_] := Sqrt[vec . vec]
- applied once using Rules:

$$
a+b+c / a \rightarrow 2 c+3+
$$

Transformations can be Immediate or Delayed. Consider:

$$
\left.\begin{array}{l}
\{r, r\} / . r \rightarrow \text { Random }[] \\
\{r, r\} / . r:>\text { Random }[]
\end{array}\right]
$$

Mathematica is one of those programs, like TEX, where you wish youd gotten a US keyboard for all those braces and brackets.

All Mathematica objects are either Atomic, e.g.

Head[133] res Integer
 Head [a] res Symbol

or (generalized) Lists with a Head and Elements:

```
expr = a + b
FullForm[expr] 呧 Plus[a, b]
Head[expr] nes Plus
expr[[0]] usq Plus - same as Head[expr]
expr[[1]] n&s a
expr[[2]] resb b
```

Using Mathematica's list-oriented commands is almost always of advantage in both speed and elegance.

Consider:

```
array = Table[Random[], {10^7}];
    test1 := Block[ {sum = 0},
    Do[ sum += array[[i]], {i, Length[array]} ];
    sum ]
test2 := Apply[Plus, array]
```


Here are the timings:

```
Timing[test1][[1]] res 31.63 Second
Timing[test2][[1]] re9 3.04 Second
```

Map applies a function to all elements of a list:

Apply exchanges the head of a list:

```
Apply[Plus, {a, b, c}] a + b + c
Plus @@ {a, b, c} re9 a + b + c -short form
```

Pure Functions are a concept from formal logic. A pure function is defined 'on the fly':

$$
(\#+1) \& / @\{4,8\}
$$

The \# (same as \#1) represents the first argument, and the \& defines everything to its left as the pure function.

Flatten removes all sub-lists:

Flatten[f[x, $f[y], f[f[z]]]$ 畹 $f[x, y, z]$

Sort and Union sort a list. Union also removes duplicates:

```
Sort[{3, 10, 1, 8}] Ne9 {1, 3, 8, 10}
Union[{c, c, a, b, a}] 彽 {a, b, c}
```

Prepend and Append add elements at the front or back:

$$
\begin{aligned}
& \text { Prepend }[r[a, b], c] r[c, a, b] \\
& \text { Append }[r[a, b], c]
\end{aligned}
$$

Insert and Delete insert and delete elements:
Insert [h[a, b, c], x, \{2\}] h[a, x, b, c] Delete[h[a, b, c], \{2\}] h[a, c]

One of the most useful features is Pattern Matching:

- matches one object
- matches one or more objects
- matches zero or more objects
- named pattern (for use on the r.h.s.)
- pattern with head h
- default value

X_?NumberQ - conditional pattern
$\mathrm{X}_{-} /$; $\mathrm{X}>0$ - conditional pattern
Patterns take function overloading to the limit, i.e. functions behave differently depending on details of their arguments:

```
Attributes[Pair] = {Orderless}
Pair[p_Plus, j_] := Pair[#, j]& /@ p
Pair[n_?NumberQ i_, j_] := n Pair[i, j]
```

Attributes characterize a function's behaviour before and while it is subjected to pattern matching. For example,

$$
\begin{aligned}
& \text { Attributes [f] = \{Listable\} } \\
& \text { f[l_List] := g[l] }
\end{aligned}
$$

$$
f[\{1,2\}] \text { Ler }\{f[1], f[2]\} \quad-\text { definition is never seen }
$$

Important attributes: Flat, Orderless, Listable, HoldAll, HoldFirst, HoldRest.
The Hold. . . attributes are needed to pass variables by reference:

$$
\begin{aligned}
& \text { Attributes [listadd] }=\text { \{HoldFirst }\} \\
& \text { listadd [x_ }, \text { other_- }]:=\mathrm{x}=\text { Flatten [\{x, other }\}]
\end{aligned}
$$

This would not work if x were expanded before invoking listadd, i.e. passed by value.

For longer computations, it may be desirable to 'remember' values once computed. For example:

$$
\begin{aligned}
& \text { fib[1] = fib[2] = } 1 \\
& \text { fib[i_] := fib[i] = fib[i - 2] + fib[i - 1] } \\
& \text { fib[4] เฺร } 3 \\
& \text { ?fib Global'fib } \\
& \text { fib[1] = } 1 \\
& \text { fib[2] = } 1 \\
& \text { fib[3] = } 2 \\
& \text { fib[4] = } 3 \\
& \text { fib[i_] := fib[i] = fib[i - 2] + fib[i - 1] }
\end{aligned}
$$

Note that Mathematica places more specific definitions before more generic ones.

Mathematica's If Statement has three entries: for True, for False, but also for Undecidable. For example:

```
If[8> 9, yes, no] res no
If[a>b, yes, no] If[a > b, yes, no]
If [a>b, yes, no, dunno] des dunno
```

Property-testing Functions end in Q: EvenQ, PrimeQ, NumberQ, MatchQ, OrderedQ, ... These functions have no undecided state: in case of doubt they return False.
Conditional Patterns are usually faster:

$$
\begin{gathered}
\operatorname{good}\left[a_{-}, b_{-}\right]:=\operatorname{If}[\operatorname{TrueQ}[\mathrm{a}>\mathrm{b}], 1,2] \\
- \text { TrueQ removes ambiguity }
\end{gathered}
$$

better $\left[\mathrm{a}_{-}, \mathrm{b}_{-}\right]:=1 / ; \mathrm{a}>\mathrm{b}$ better $\left[\mathrm{a}_{-}, \mathrm{b}_{-}\right]=2$

Just as with decisions, there are several types of equality, decidable and undecidable:
$a==b$ ness $a==b$
a === b nes False
$a==a$ nesue
$a===a$ nes True
The full name of '===' is SameQ and works as the Q indicates: in case of doubt, it gives False. It tests for Structural Equality.

Of course, equations to be solved are stated with ' $==$ ':

$$
\text { Solve }\left[x^{\wedge} 2=1, x\right]\{\{x \rightarrow-1\},\{x \rightarrow 1\}\}
$$

Needless to add, ' $=$ ' is \mathbf{a} definition and quite different:

$$
x=3 \quad-\operatorname{assign} 3 \text { to } x
$$

Select selects elements fulfilling a criterium:

Select $[\{1,2,3,4,5\}, \#>3 \&]$ 上e $\{4,5\}$
Cases selects elements matching a pattern:
Cases[\{1, a, $f[x]\}$, _Symbol]
Using Levels is generally a very fast way to extract parts:

```
list = {f[x], 4, {g[y], h}}
Depth[list] nes 4 - list is 4 levels deep (0, 1, 2, 3)
Level[list, {1}] reg {f[x], 4, {g[y], h}}
Level[list, {2}] res {x, g[y], h}
Level[list, {3}] ves {y}
Level[list, {-1}] res {x, 4, y, h}
Cases[expr, _Symbol, {-1}]//Union
```

- find all variables in expr

Mathematica is equipped with a large set of mathematical functions, both for symbolic and numeric operations.
 Some examples:

Integrate $\left[x^{\wedge} 2,\{x, 3,5\}\right]$
D[f[x], x]
Sum $[\mathrm{i},\{\mathrm{i}, 50\}]$
Series [Sin $[\mathrm{x}],\{\mathrm{x}, 1,5\}]$
Simplify $\left[\left(x^{\wedge} 2-x y\right) / x\right]$
Together[1/x + $1 / \mathrm{y}]$
Inverse [mat]
Eigenvalues [mat]
PolyLog [2, 1/3]
LegendreP[11, x]
Gamma [.567]

- integral
- derivative
- sum
- series expansion
- simplify
- put on common denominator
- matrix inverse
- eigenvalues
- polylogarithm
- Legendre polynomial
- Gamma function

Mathematica has formidable graphics capabilities:

Output can be saved to a file with Export:

$$
\begin{aligned}
& \text { plot = Plot[Abs[Zeta[1/2 + x I]], \{x, 0, 50\}] } \\
& \text { Export["zeta.eps", plot, "EPS"] }
\end{aligned}
$$

[?] Hint: To get a high-quality plot with proper LTEX labels, don't waste your time fiddling with the Plot options. Use the psfrag LTEX package.

Mathematica can express Exact Numbers, e.g.

It can also do Arbitrary-precision Arithmetic, e.g.

```
N[Erf[28/33], 25] 0.7698368826185349656257148
```

But: Exact or arbitrary-precision arithmetic is fairly slow! Mathematica uses Machine-precision Reals for fast arithmetic.

```
N[Erf[28/33]] 0.769836882618535
```

Arrays of machine-precision reals are internally stored as Packed Arrays (this is invisible to the user) and in this form attain speeds close to compiled languages on certain operations, e.g. eigenvalues of a large matrix.

Mathematica can 'compile' certain functions for efficiency. This is not compilation into assembler language, but rather a strong typing of an expression such that intermediate data types do not have to be determined dynamically.

```
fun[x_] := Exp[-((x - 3)^2/5)]
cfun = Compile[{x}, Exp[-((x - 3)^2/5)]]
time[f_] := Timing[Table[f[1.2], {10^5}]][[1]]
time[fun] 2.4 Second
time[cfun] res 0.43 Second
```

Compile is implicit in many numerical functions, e.g. in Plot. In a similar manner, Dispatch hashes long lists of rules beforehand, to make the actual substitution faster.

Block implements Dynamical Scoping

A local variable is known everywhere, but only for as long as the block executes ("temporal localization").

Module implements Lexical Scoping

A local variable is known only in the block it is defined in ("spatial localization"). This is how scoping works in most high-level languages.

```
printa := Print[a]
a = 7
btest := Block[{a = 5}, printa]
mtest := Module[{a = 5}, printa]
btest res 5
mtest 哆 7
```

Definitions are usually assigned to the symbol being defined: this is called DownValue.

For seldomly used definitions, it is better to assign the definition to the next lower level: this is an UpValue.

$$
\begin{aligned}
& \mathrm{x} /: \operatorname{Plus}[\mathrm{x}, \mathrm{y}]=\mathrm{z} \\
& ? \mathrm{x} \text { Global } \mathrm{x}
\end{aligned}
$$

This is better than assigning to Plus directly, because Plus is a very common operation.
In other words, Mathematica "looks" one level inside each object when working off transformations.

Mathematica knows some functions to be Output Forms.

 These are used to format output, but don't "stick" to the result:$\{\{1,2\},\{3,4\}\} / /$ MatrixForm $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

Head [\%] res List - not MatrixForm

Some important output forms:

InputForm, FullForm, Shallow, MatrixForm, TableForm, TeXForm, CForm, FortranForm.

```
TeXForm[alpha/(4 Pi)] n{} \frac{\alpha}{4\pi}
CForm[alpha/(4 Pi)] alpha/(4.*Pi)
FullForm[alpha/(4 Pi)]
Tmy Times[Rational[1, 4], alpha, Power[Pi, -1]]
```


The MathLink API connects Mathematica with external C/C++ programs (and vice versa). J/Link does the same for Java.

```
:Begin:
:Function: copysign
:Pattern: CopySign[x_?NumberQ, S_?NumberQ]
:Arguments: {N[x],N[s]}
:ArgumentTypes: {Real, Real}
:ReturnType: Real
: End:
#include "mathlink.h"
double copysign(double x, double s) {
    return (s < 0) ? -fabs(x) : fabs(x);
}
int main(int argc, char **argv) {
    return MLMain(argc, argv);
}
```


For more details see arXiv:1107.4379.

Efficient batch processing with Mathematica:

Put everything into a script, using sh's Here documents:

```
#! /bin/sh
math << \_EOF_
    << FeynArts`
    << FormCalc'
    top = CreateTopologies[...];
_EOF_
```

end Here document

Everything between "<< \tag" and "tag" goes to Mathematica as if it were typed from the keyboard.

Note the "\" before tag, it makes the shell pass everything literally to Mathematica, without shell substitutions.

- Everything contained in one compact shell script, even if it involves several Mathematica sessions.
- Can combine with arbitrary shell programming, e.g. can use command-line arguments efficiently:

```
#! /bin/sh
math -run "arg1=$1" -run "arg2=$2" ... << \END
```

END

- Can easily be run in the background, or combined with utilities such as make.

Debugging hint: -x flag makes shell echo every statement, \#! /bin/sh -x

- Mathematica makes it wonderfully easy, even for fairly unskilled users, to manipulate expressions.
- Most functions you will ever need are already built in. Many third-party packages are available at MathSource, http://Iibrary.wolfram.com/infocenter/MathSource.
- When using its capabilities (in particular list-oriented programming and pattern matching) right, Mathematica can be very efficient.
Wrong: FullSimplify [veryLongExpression].
- Mathematica is a general-purpose system, i.e. convenient to use, but not ideal for everything.
For example, in numerical functions, Mathematica usually selects the algorithm automatically, which may or may not be a good thing.

FORM

- A FORM program is divided into Modules. Simplification happens only at the end of a module.
- FORM is strongly typed all variables have to be declared: Symbols, Vectors, Indices, (N)Tensors, (C)Functions.
- FORM works on one term at a time: Can do "Expand [($\mathrm{a}+\mathrm{b})^{\wedge} 2$ "" (local operation) but not "Factor [a^2 + 2 a b + b^2]" (global operation).
- FORM is mainly strong on polynomial expressions.
- FORM program + documentation + course available from http://nikhef.nl/~form.

Symbols a, b, c, d;

```
Local expr = (a + b)^2;
```

id b = c - d;
print;
.end

Running this program gives:

```
FORM by J.Vermaseren,version 4.0(Mar 1 2013) Run at: Tue May 8 10:14:12 2013
    Symbols a, b, c, d;
    Local expr = (a + b)^2;
    id b = c - d;
    print;
    .end
```

Time $=\quad 0.00 \mathrm{sec} \quad$ Generated terms $=\quad 6$
expr Terms in output $=$ 6
Bytes used $=104$
expr =
$\mathrm{d}^{\wedge} 2-2 * \mathrm{c} * \mathrm{~d}+\mathrm{c}^{\wedge} 2-2 * \mathrm{a} * \mathrm{~d}+2 * \mathrm{a} * \mathrm{c}+\mathrm{a}^{\wedge} 2 ;$
0.00 sec out of 0.00 sec

A FORM program consists of Modules. A Module is terminated by a"dot" statement (. sort, . store, . end, ...)

- Generation Phase ("normal" statements) During the execution of "normal" statement terms are only generated. This is a purely local operation - only one term at a time needs to be looked at.
- Sorting Phase ("dot" statements): At the end of the module all terms are inspected and similar terms collected. This is the only 'global' operation which requires FORM to look at all terms 'simultaneously.'

The central statement in FORM is the id-Statement:

$$
\begin{aligned}
& a^{\wedge} 3 * b^{\wedge} 2 * c \\
& \text { id } \mathrm{a} * \mathrm{~b}=\mathrm{d} \text {; res } \mathrm{a} * \mathrm{c} * \mathrm{~d}^{\wedge} 2 \text { - multiple match } \\
& \text { once } a * b=d \text {; res } a^{\wedge} 2 * b * c * d \quad-\text { single match } \\
& \text { only } \mathrm{a} * \mathrm{~b}=\mathrm{d} \text {; us } \mathrm{a}^{\wedge} 3 * \mathrm{~b}^{\wedge} 2 * \mathrm{c} \text { - no exact match possible }
\end{aligned}
$$

id does not, by default, match negative powers:

$$
\begin{aligned}
& x+1 / x \\
& \text { id } x=y ; \text { 吗 } x^{\wedge}-1+y \\
& \text { id } x^{\wedge} n ?=y^{\wedge} n ; \text { nş } y^{\wedge}-1+y \quad \text { - wildcard exponent }
\end{aligned}
$$

Patterns are possible (but not as powerful as in Mathematica):

$$
\begin{aligned}
& f(a, b, c)+f(1,2,3) \\
& \text { id } f(a, b, c)=1 \text {; ref } 1+f(1,2,3) \\
& \text { - explicit match } \\
& \text { id } f(a \text { ? , b?, c?) = 1; ref } 2 \\
& \text { - wildcard match } \\
& \text { id } f(? a)=g(? a) \text {; } \\
& \text { - group-wildcard match } \\
& \text { id } f(a \text { ? int_, ?a) }=a \text {; ref } 1+f(a, b, c) \\
& \text { - constrained wildcard }
\end{aligned}
$$

$$
\begin{aligned}
\text { id } f & (a ?\{a, b\}, ? a)=a ; \\
& - \text { alternatives }
\end{aligned}
$$

bracket puts specified items outside the bracket. antibracket puts specified items inside the bracket. collect moves the bracket contents to a function.

```
Symbols a, b, c, d;
Local expr = (a + b)*(c + d);
print;
.sort
    expr = a*c + a*d + b*c + b*d;
bracket a, b;
print;
.sort
```

```
expr = + a * (c + d )
```

expr = + a * (c + d)
+ b * (c + d);

```
    + b * ( c + d );
```

```
CFunction f;
```

CFunction f;
collect f;
collect f;
bracket f;
bracket f;
print;
print;
.end
.end
expr = +f(c + d)*(a + b);

```
    expr = +f(c + d)*(a + b );
```

FORM has a Preprocessor which operates before the compiler.
Many constructs are familiar from C, but the FORM preprocessor can do more:

- \#define, \#undefine, \#redefine,
- \#if $\{$, def, ndef $\} \ldots$...\#else ... \#endif,
- \#switch ...\#endswitch,
- \#procedure ... \#endprocedure, \#call,
- \#do ... \#enddo,
- \#write, \#message, \#system.

The preprocessor works across modules, e.g. a do-loop can contain a .sort statement.

- Gamma matrices:
- Fermion traces: trade4, tracen, chisholm.
- Levi-Civita tensors: e_, contract.
- Index properties: $\{$, anti, cycle\}symmetrize.
- Dummy indices: sum, replaceloop. (e.g. $\left.\sum_{i} a_{i} b_{i}+\sum_{j} a_{j} b_{j}=2 \sum_{i} a_{i} b_{i}\right)$
- FORM is a freely available Computer Algebra System with (some) specialization on High Energy Physics.
- Programming in FORM takes more 'getting used to' than in Mathematica. Also, FORM has no GUI or other programming aids.
- FORM programs are module oriented with global (= costly) operations occurring only at the end of module. A strategical choice of these points optimizes performance.
- FORM is much faster than Mathematica on polynomial expressions and can handle in particular huge (GB) expressions.

