First Results From The Fermilab Muon g-2 Experiment

Alex Keshavarzi S@AlexKeshavarzi

Matter To The Deepest 2021 15th September 2021

The University of Manchester

Precision

The BNL E821 measurement had a 0.54 ppm (540 ppb) uncertainty

BNL-SM discrepancy: 2.4 ppm FNAL aim is 100 ppb stat. \oplus 100 ppb syst. Today's talk is on a dataset of similar size to BNL ~ 10 billion μ^+

First Muon g-2 Results

Magnetic moments

The muon has an intrinsic magnetic moment that is coupled to its spin via the gyromagnetic ratio g:

Magnetic moment (spin) interacts with external B-fields

Makes spin precess at frequency determined by *g*

 μ, e

First Muon g-2 Results

 μ, e

Muon g-2 in the SM

 $\Delta a_{\mu} = 279(76) \times 10^{-11} \rightarrow 2.39(0.65) \text{ ppm}$

Contribution	Value $\times 10^{11}$
Experiment (E821)	116 592 089(63)
HVP LO (e^+e^-)	6931(40)
HVP NLO (e^+e^-)	-98.3(7)
HVP NNLO (e^+e^-)	12.4(1)
HVP LO (lattice, udsc)	7116(184)
HLbL (phenomenology)	92(19)
HLbL NLO (phenomenology)	2(1)
HLbL (lattice, <i>uds</i>)	79(35)
HLbL (phenomenology + lattice)	90(17)
QED	116 584 718.931(104)
Electroweak	153.6(1.0)
HVP (e^+e^- , LO + NLO + NNLO)	6845(40)
HLbL (phenomenology + lattice + NLO)	92(18)
Total SM Value	116 591 810(43)
Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$	279(76)

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama, N. Asmussen, M. Benayoun, J. Bijnens, T. Blum, M. Bruno, I. Caprini, C. M. Carloni Calame, M. Cè, G. Colangelo, F. Curciarello, H. Czyż, I. Danilkin, M. Davier, C. T. H. Davies, M. Della Morte, S. I. Eldelman, A. X. El-Khadra, A. Gérardin, D. Giusti, M. Golterman, Steven Gottleb, V. Gilpers, F. Hagelstein, M. Hayakawa, G. Herdolz, D. W. Hertzog, A. Hoecker, M. Hoferichter, B.-L. Hold, R. J. Hudspihk, F. Ignarov, T. Izubucht, F. Iggerhener, L. Jin, A. Keshavarzi, T. Kinoshita, B. Kubis, A. Kupich, A. Kupić, L. Laub, C. Lehner, L. Lellouch, I. Logashenko, B. Malaescu, K. Maltman, M. K. Marinković, P. Masjuan, A. S. Meyer, H. B. Meyer, T. Nibe, K. Mura, S. E. Müller, M. Nio, D. Nomura, A. Nyffeler, V. Pasadutas, M. Pasera, E. Perez del Rio, S. Peris, A. Portelli, M. Procura, C. F. Redmer, B. L. Roberts, P. Sanchez-Puertas, S. Serednyakov, B. Shvartz, S. Simula, D. Stöckinger, H. Stöckinger-Kin, S. Stoffer, T. Teubner, R. Van de Water, M. Vanderhaeghen, G. Venanzoni, G. von Higpel, H. Wittig, Z. Hang, M. N. Achasov, A. Bashir, N. Cardoso, B. Charlaborty, E.-H. Chao, J. Charles, A. Crivellin, O. Deimeka, A. Denig, C. DeTar, C. A. Dominguez, A. E. Dorokhov, V. P. Druzhinin, G. Eichmann, M. Fael, C. S. Fischer, E. Gámiz, Z. Celzer, J. R. Green, S. Guellati-Khelfa, D. Hatton, N. Hermansson-Truedsson et al. (32 additional authors not shown)

 $\Delta a_{\mu} = 279(76) \times 10^{-11} \rightarrow 2.39(0.65) \text{ ppm}$

Muon g-2 theory initiative recommended result: $a_{\mu}^{\text{SM}} = 116\ 591\ 810(43) \times 10^{-11}\ (0.37\ \text{ppm})$

Results in 3.7σ discrepancy when compared to BNL measurement.

See Thomas Lenz's talk, tomorrow, 12.30pm: "Experimental input to the Standard Model prediction of g-2"

Muon g-2 in the SM: HVP

$$\Delta a_{\mu} = 279(76) \times 10^{-11} \rightarrow 2.39(0.65) \text{ ppm}$$

- Hadronic Vacuum Polarisation hadronic blob coupled to 2 photons.
- Two point function in principal, much easier than HLbL.
- Most precisely calculated from $e^+e^- \rightarrow$ hadrons cross section data.

Lattice (error ~ 1.6 ppm of $a_{\mu}^{\rm SM}$

 Uncertainties dominated by finite volume, discretisation and isospin breaking systematics.

Data-driven (error ~ 0.3 ppm of $a_{\mu}^{\rm SM}$)

• Cross section data consistently combined and input into dispersion integral:

$$a_{\mu}^{\rm LO\,HVP} = \frac{1}{4\pi^3} \int_{s_{th}}^{\infty} \mathrm{d}s\, K(s)\,\sigma_{\rm had}(s)$$

• Several groups have achieved this (most precisely in the UK).

Recommended Muon g-2 TI value from data-driven result:

$$a_{\mu}^{\rm HVP} = 6845(40) \times 10^{-11}$$

See Thomas Lenz's talk, tomorrow, 12.30pm: "Experimental input to the Standard Model prediction of g-2"

The Fermilab Muon g-2 Experiment

First Muon g-2 Results

Unblinded result

First Muon g-2 Results

Unblinded result

First Muon g-2 Results

Systematic Uncertainties

~ 80 effects considered significant in determining the systematic uncertainty. Dedicated runs taken for some of them e.g. at different beam momentum. Documented in 98 pages of PRDs.

Total systematic uncertainty 157 ppb. Those above 30 ppb are below

Source	Systematic Uncertainty (ppb)	Improvements undertaken
Calorimeter pileup	35	
Beam Mean Momentum & Spread	53	Increased kicker voltage: 130-161 kV
Drift of beam over measurement	75	Replaced damaged quadrupole resistors
Transient B-field (from kicker)	37	Improved magnetometer
Transient B-field (from quadrupoles)	92	More extensive measurements / damping
Total	140	

Other effects at 10-20 ppb also significantly improved by better temperature control in the experimental hall.

Measurement principle

- Inject polarised muon beam into magnetic storage ring
- Measure difference between spin precession and cyclotron frequencies

$$g=2, \, \omega_a=0$$

•
$$g \neq 2, \ \omega_a \propto a_\mu$$

Beam injection

- Monitor beam profile
 before entrance with
 scintillating X and Y fibres
- Get time profile of beam using scintillating pad
- ~125ns wide

 Cancel B-field during injection using Inflector, so muons can get into the ring

'Kick' onto correct orbit

Beam focusing

- Focus the muons vertically
- Aluminium electrodes cover ~43% of total circumference

First Muon g-2 Results

Calorimeters

24 Calorimeters

Arrays of 6 x 9 PbF₂ crystals $2.5 \times 2.5 \text{ cm}^2 \times 14 \text{ cm} (15X_0)$

Readout by SiPMs to 800 MHz WFDs

Tracking Detectors

2 Tracking stations

Each contain 8 modules

128 gas filled straws in each module

Traceback positrons to their decay point

Measuring ω_a

 e⁺ preferentially emitted in direction of muon spin

The number of high momentum positrons above a fixed energy threshold oscillates at precession frequency

Simply count the number above an energy threshold vs time

Precession in 1 hour of data

First Muon g-2 Results

Beam Measurements

- Use the tracking detectors to measure the decay positrons to infer the decay position
- Muons oscillate radially and vertically at different frequencies, according to the quadrupole strength

Fitting for ω_a

• A fourier transform of the residuals to the fit shows contributions from the movements of the beam, pileup and muon losses

• To account for these effects additional terms are included in the final 24 parameter fit function

First Muon g-2 Results

The g-2 storage ring magnet

- 7.112 m radius 'C'-shape magnet with vertically-aligned field B = 1.45 T
- Dipole field has ppm-level uniformity (14 ppm RMS across the full azimuth)
- Tiny (ppm) changes in magnet geometry, driven by temperature changes, cause the field to drift over time
- Measured using pulsed NMR a well-known technique that is routinely used in a wide range of applications to measure magnetic fields at the ppb level
- 378 'fixed' NMR probes, built for this experiment, around the ring measure the drift continuously, and provide feedback to the magnet power supply to keep the dipole (vertical) term constant
- Shimming devices minimise gradients (transverse and azimuthal field components).

Measuring the field: the NMR Trolley

 An in-vacuum trolley with 17 NMR probes drives around the ring every ~3 days, mapping out the field components

Correcting Measured R

The result

Interpretation

First Muon g-2 Results

Conclusions

- The analysis of the Run-1 data produced a result with 460 ppb precision.
- Strengthened evidence for deviation from SM in muon g-2 : 4.2σ tension with the theoretical prediction.
- There is a lot more data to analyse - expect a factor 2 improvement for Run-2/3 analysis, still statistics limited.
- Run-5 will give us a total dataset ~ x20 of the first publication and will become systematics limited.

