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The strong coupling from e+e− annihilation
35 9. Quantum Chromodynamics
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Figure 9.4: Summary of determinations of –s(M2
Z) from the seven sub-fields discussed in the text.

The yellow (light shaded) bands and dotted lines indicate the pre-average values of each sub-field.
The dashed line and blue (dark shaded) band represent the final world average value of –s(M2

Z).
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[P. A. Zyla et al. (Particle Data Group), Prog. Theor.

Exp. Phys. 2020, 083C01 (2020) and 2021 update]

Why αs in e+e−?

• αs(MZ ) is known with ∼ 0.8% precision
(lattice)

• The e+e− jets & shapes sub-field alone
gives ∼ 2.6% uncertainty: large spread
between measurements

• Can ∼ 1% precision be achieved?

What are the differences?

• Hadronization modeling: Monte Carlo
or analytic

• Perturbative order: fixed order NNLO
to N3LO + resummation NLL to N3LL

• Type of observable used: event shapes
or jet rates

How best to improve?
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Overview: issues and this work

The present situation raises some issues:

• No new data foreseen in the near future, so would including more perturbative
orders (fixed order and/or resummation) improve precision without any new data?

• If not, what are the limiting factors for precision in future QCD studies?

• What should be done to eliminate those factors?

⇓

To address these questions we perform a state-of-the-art perturbative QCD (pQCD)
analysis with

• estimations of unknown higher order pQCD corrections from data: focus on event
shape averages (small number of perturbative coefficients to fit)

• hadronization corrections obtained using both modern Monte Carlo tools as well as
analytic models extended to higher perturbative orders
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Event shape moments: theoretical description

The n-th moment of an event shape O is defined by

〈On〉 =
1

σtot

∫ Omax

Omin

On dσ(O)

dO
dO

Fixed-order predictions up to and including α4
s terms read

〈On〉 =
αs(Q)

2π
A〈O

n〉 +

(
αs(Q)

2π

)2

B〈O
n〉 +

(
αs(Q)

2π

)3

C 〈O
n〉 +

(
αs(Q)

2π

)4

D〈O
n〉 +O(α5

s)

• First three coefficients (A〈O
n〉, B〈O

n〉 and C 〈O
n〉) known for some time

[Gehrmann-De Ridder et al., JHEP 05 (2009) 106 (GGGH), Weinzierl, Phys. Rev. D 80 (2009) 094018] (SW)

• Recomputed for this study using CoLoRFulNNLO ⇒ very good numerical precision
[Del Duca et al., Phys. Rev. D 94 (2016) no.7, 074019]

• b-mass corrections from Zbb4: note only NLO
[Nason, Oleari, Phys. Lett. B 407, 57 (1997)]

A〈O
n〉 = (1− rb(Q))A

〈On〉
mb=0 + rb(Q)A

〈On〉
mb 6=0

B〈O
n〉 = (1− rb(Q))B

〈On〉
mb=0 + rb(Q)B

〈On〉
mb 6=0

where rb is the fraction of b-quark events

rb(Q) =
σmb 6=0(e+e− → bb̄)

σmb 6=0(e+e− → hadrons) 3



Event shape averages: predictions at NNLO and beyond

We focus on averages of the C -parameter 〈C1〉 and one minus thrust 〈(1− T )1〉

• abundance of available measurements (see below)

• avoid correlations between various moments (not reported by most measurements)

Fixed-order predictions at scale Q = mZ for the perturbative coefficients [normalized to
the leading order cross section σ0(e+e− → hadrons)]

Coefficient This work Analytic GGGH SW

A
〈(1−T )1〉
0 2.1034(1) 2.10347 2.1035 2.10344(3)

B
〈(1−T )1〉
0 44.995(1) 44.999(2) 44.999(5)

C
〈(1−T )1〉
0 979.6(6) 867(21) 1100(30)

A
〈C1〉
0 8.6332(5) 8.63789 8.6379 8.6378(1)

B
〈C1〉
0 172.834(5) 172.859 172.778(7) 172.8(3)

C
〈C1〉
0 3525(3) 3212(89) 4200(100)

[Gehrmann-De Ridder et al., JHEP 05 (2009) 106 (GGGH), Weinzierl, Phys. Rev. D 80 (2009) 094018] (SW)

We extract D〈(1−T )1〉 and D〈C
1〉 from data together with αs(MZ ) in the analysis.
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Event shape averages: predictions at NNLO and beyond

Importantly, the main point of extracting the N3LO coefficients D〈(1−T )1〉 and D〈C
1〉

from data is not to get an accurate determination of these quantities.

Rather, it is to model them as best as possible in order to be able to assess the impact
of including terms beyond NNLO in the extraction of the strong coupling in the absence
of an actual calculation of those terms.
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Modeling non-perturbative corrections

The modeling of non-perturbative corrections is essential to perform a meaningful
comparison of predictions with data.

To basic approaches

1. Monte Carlo (MC) hadronization: extract hadronization corrections from Monte
Carlo simulations.

Issue: the parton level of an MC simulation is not equivalent to a fixed-order
calculation.

2. Analytic hadronization: use analytic models to describe the effects of hadronization
on observables.

Issue: systematics are difficult to control.

⇓

Apply both approaches and examine the impact of the choice on the extracted value of
the strong coupling.
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Monte Carlo hadronization

Hadronization corrections obtained using state-of-the-art MC event generators:
e+e− → Z/γ → 2, 3, 4, 5 parton processes generated using MadGraph5 and OpenLoops,
2-parton final state at NLO.

To study hadronization systematics, we employ different setups:

• Default setup “HL”: Herwig7.2.0 with Lund fragmentation model

• Setup for systematics “HC”: Herwig7.2.0 with cluster fragmentation model

• Setup for cross-checks “SC”: Sherpa2.2.8 with cluster fragmentation model

Hadronization corrections are ratios of observables calculated from MC generated events
at hadron and parton levels.

To account for the presence of a shower cut-off scale Q0 ≈ O(1 GeV) in MC generators,
predictions were computed with several values of Q0 and extrapolated to Q0 → 0 GeV.

〈On〉corrected = 〈On〉theory ×
〈On〉MC hadrons, Q0=0 GeV

〈On〉MC partons, Q0=0 GeV
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Monte Carlo hadronization

Data and predictions by MC event generators extrapolated to Q0 → 0 GeV.
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• Hadron and parton level MC
predictions provide reasonable
descriptions of data and NNLO
theory for wide range of energy

• Non-physical behaviour of MC
parton level results for small

√
s:

〈On〉 increases with energy
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Monte Carlo hadronization

Data and predictions by MC event generators extrapolated to Q0 → 0 GeV.
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• Hadron and parton level MC
predictions provide reasonable
descriptions of data and NNLO
theory for wide range of energy

• Non-physical behaviour of MC
parton level results for small

√
s:

〈On〉 increases with energy

⇓

• Exclude measurements with√
s < 29 GeV

• Weaker criterion than requiring
that MC matches data well, but
retains as much data as possible
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Analytic hadronization

Dispersive model of analytic hadronization corrections for event shapes: hadronization
corrections simply shift the perturbative event shape averages

〈O1〉hadrons = 〈O1〉partons + aOP

• the aO are observable-specific constants, e.g., a1−T = 2 and aC = 3π

• the power correction P is universal

We must compute P at O(α4
s) accuracy. Ingredients of the computation are

• The running of the strong coupling in the MS scheme

• The relation between the effective soft coupling in the Catani–Marchesini–Webber
(CMW) scheme αCMW

s and the strong coupling defined in the MS scheme αs

αCMW
S = αS

[
1 +

αS

2π
K +

(αS

2π

)2
L +

(αS

2π

)3
M +O(α4

S )

]

• K is simply the one-loop cusp anomalous dimension

• L and M can be computed once the effective soft coupling is explicitly defined ⇒
several proposals in the literature beyond NLL, so L and M are “scheme-dependent”
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The power correction

The power correction at O(α4
s) accuracy reads

P(αS ,Q, α0) =
4CF

π2
M×

µI

Q
×
{
α0(µI )−

[
αS (µR) +

(
K + β0

(
1 + ln

µR

µI

))
α2
S (µR)

2π

+

(
2L + (4β0 (β0 + K) + β1)

(
1 + ln

µR

µI

)
+ 2β2

0 ln2 µR

µI

)
α3
S (µR)

8π2

+

(
4M +

(
2β0 (12β0(β0 + K) + 5β1) + β2 + 4β1K + 12β0L

)(
1 + ln

µR

µI

)
+ β0(12β0(β0 + K) + 5β1) ln2 µR

µI
+4β3

0 ln3 µR

µI

)
α4
S (µR)

32π3

]}

• M is the so-called Milan factor with estimated value Mest. ± δMest. = 1.49± 0.30.

• µI is the scale where the perturbative and non-perturbative couplings are matched.
Following the usual choice, we set µI = 2 GeV.

• α0(µI ) corresponds to the first moment of the effective soft coupling below the scale
µI and is a non-perturbative parameter of the model

α0(µI ) =
1

µI

∫ µI

0
dµαCMW

s (µ)
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Hadronization correction factors

Ratios of hadron-level to parton-level predictions
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• Analytic hadronization “schemes”:
the L and M coefficients entering
the power correction P depend on
the precise definition of αCMW

s

beyond NLL ⇒ different
“schemes”: A0, AT and Acusp
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Hadronization correction factors

Ratios of hadron-level to parton-level predictions
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• Analytic hadronization “schemes”:
the L and M coefficients entering
the power correction P depend on
the precise definition of αCMW

s

beyond NLL ⇒ different
“schemes”: A0, AT and Acusp

• Recall measurements with
√
s < 29

GeV are excluded.

• Weaker criterion than requiring
that sub-leading power corrections
are small.

• Serves to highlight the
discrepancies between MC and
analytic models where
hadronization effects are most
pronounced (low energies).
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Data

Combined analysis using 20+ datasets and a wide range of energies:
√
s = 29–206 GeV

Measured Used
Points, Points,

Source Observables
√
s range Observables

√
s range

( GeV) ( GeV)

ALEPH 〈(1− T )1〉 1,[133] 〈(1− T )1〉 1,[133]

ALEPH 〈(1− T )1〉 1,[91] 〈(1− T )1〉 1,[91]

ALEPH 〈(1− T )1〉 9,[91, 206] 〈(1− T )1〉 9,[91, 206]

AMY 〈(1− T )1〉 1,[55] 〈(1− T )1〉 1,[55]

DELPHI 〈(1− T )1,2,3〉 15,[91, 183] 〈(1− T )1〉 5,[91, 183]

DELPHI 〈(1− T )1〉 15,[45, 202] 〈(1− T )1〉 11,[45, 202]

HRS 〈(1− T )1〉 1,[29] 〈(1− T )1〉 1,[29]

JADE 〈(1− T )1,2,3,4,5〉 30,[14, 43] 〈(1− T )1〉 4,[34, 43]

L3 〈(1− T )1〉 1,[91] 〈(1− T )1〉 1,[91]

L3 〈(1− T )1,2〉 30,[41, 206] 〈(1− T )1〉 15,[41, 206]

MARK 〈(1− T )1〉 1,[89] 〈(1− T )1〉 1,[89]

MARK 〈(1− T )1〉 1,[29] 〈(1− T )1〉 1,[29]

MARKII 〈(1− T )1〉 1,[89] 〈(1− T )1〉 1,[89]

OPAL 〈(1− T )1,2,3,4,5〉 60,[91, 206] 〈(1− T )1〉 12,[91, 206]

TASSO 〈(1− T )1〉 4,[14, 44] 〈(1− T )1〉 2,[35, 44]

ALEPH 〈C1〉 1,[91] 〈C1〉 1,[91]

DELPHI 〈C1〉 15,[45, 202] 〈C1〉 11,[45, 202]

DELPHI 〈C1,2,3〉 12,[133, 183] 〈C1〉 4,[133, 183]

JADE 〈C1,2,3,4,5〉 30,[14, 43] 〈C1〉 4,[34, 43]

L3 〈C1〉 1,[91] 〈C1〉 1,[91]

L3 〈C1,2〉 18,[130, 206] 〈C1〉 9,[130, 206]

OPAL 〈C1,2,3,4,5〉 60,[91, 206] 〈C1〉 12,[91, 206]
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Fit procedure

Values of αs determined using optimization procedures in MINUIT2

χ2(αS ) =
all data sets∑

i

χ2
i (αS )

where χ2
i (αS ) for data set i is

χ2
i (αS ) = (~D − ~P(αS ))V−1(~D − ~P(αS ))T

• ~D: vector of data points

• ~P(αS ): vector of calculated predictions

• V : the covariance matrix of ~D (diagonal, stat. and syst. uncertainties added in
quadrature for every measurement)
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Fit results

Results of the fits at N3LO vs. data. In addition to αs(MZ ), we fit also

• the O(α4
s) perturbative coefficient

D〈O
n〉 (in N3LO fits)

• the non-perturbative parameter
α0(2 GeV) (when using the analytic
hadronization model)

• the Milan factor M, in order to
include the uncertainty on its
theoretical value consistently
(constrained fit)

• note the dependence on analytic
hadronization scheme is mild so
only the result for the A0 scheme is
shown
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Results: αs(MZ )

The extractions of αs(MZ ) from 〈(1− T )1〉 and 〈C1〉 data

0.1 0.12 0.14 0.16

N3LO Ac

N3LO AT

N3LO A0

N3LO HL

NNLO Ac

NNLO AT

NNLO A0

NNLO HL

αs(MZ )

〈(1− T )1〉
〈C1〉

• Good agreement between fits to
〈(1− T )1〉 and 〈C1〉 data both at
NNLO and N3LO ⇒ internal
consistency of extraction procedure

• Analytic hadronization
“scheme-dependence” is mild.

• Large discrepancy between
results obtained with MC and
analytic hadronization models
both at NNLO and N3LO ⇒
suggests that the discrepancy has a
fundamental origin and would hold
even with exact N3LO predictions.

• Better understanding of
hadronization is key.
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Results: D〈O
n〉

The extractions of the O(α4
s) perturbative coefficients D〈(1−T )1〉 and D〈C

1〉 from data

−1.5 −1 −0.5 0

N3LO Ac

N3LO AT

N3LO A0

N3LO HL

D〈(1−T )1〉/105

〈(1− T )1〉

−6 −4 −2 0

N3LO Ac

N3LO AT

N3LO A0

N3LO HL

D〈C
1〉/105

〈C1〉

• Extracted values of the
perturbative coefficients show
reasonable agreement for both
observables between fits using MC
and analytic hadronization models
⇒ demonstrates the viability of
extracting higher-order coefficients
from data

• The amount and consistency of
current data is an issue, would
need large amounts of consistent
data, e.g., from FCC-ee or CEPC.

• Precise high-energy data would be
especially valuable.
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Results: α0(2 GeV)

The extractions of the non-perturbative parameter α0(2 GeV) from 〈(1− T )1〉 and 〈C1〉
data

0 0.5 1 1.5

N3LO Ac

N3LO AT

N3LO A0

NNLO Ac

NNLO AT

NNLO A0

α0(2 GeV)

〈(1− T )1〉
〈C1〉

• Recall this parameter is
“scheme-dependent”, so its values
in different schemes should not be
directly compared. Nevertheless,
the choice of scheme has only a
small numerical impact.

• Values extracted from 〈(1− T )1〉
and 〈C1〉 data agree well with each
other both at NNLO and N3LO

• Rather large uncertainties at N3LO
primarily due to insufficient
amount and quality of data as well
as the extraction method itself.
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Discussion

The aim of the analysis was to assess the factors that will determine the precision of QCD
analyses of e+e− data once theoretical predictions at O(α4

s) accuracy become available.

To do this, we have performed an extraction of αs(MZ ) from the averages of event
shapes 〈(1− T )1〉 and 〈C1〉.

• Using NNLO theory and analytic hadronization models, the obtained results are
consistent with the last world average αs(MZ )PDG2020 = 0.1179± 0.0010.

• We considered a method of extracting αs(MZ ) at N3LO by estimating the missing
O(α4

s) perturbative coefficient from data. The values of αs(MZ ) obtained in this way
are compatible with the last world average, within somewhat large uncertainties, e.g.,

αs(MZ )N
3LO+A0

= 0.12911± 0.00177(exp.)± 0.0123(scale)

• Both MC and analytic hadronization models were used, the latter being extended to
O(α4

s) for the first time.

• The comparison of results obtained with MC and analytic hadronization suggests
that future extractions of αs(MZ ) will be strongly affected by the modeling of
hadronization effects.
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Discussion

Improving the perturbative predictions is clearly important

• beyond NNLO/NLL accuracy for event shapes

• mass corrections (finite mb) beyond NLO

• mixed EW×QCD corrections

But the elephant in the room: hadronization modeling

• naively going to higher energies helps: hadr. corr. ∼ 1/Q, however. . .

• the energy of foreseen machines (FCC-ee, CEPC) is not orders of magnitude larger
than LEP

• moreover, going up in energy there is non-trivial interplay between smaller
hadronization corrections but larger background and much smaller luminosity
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Discussion

Bottom line: need better MC’s + hadronization models/calibration in e+e−

In a perfect world

• Parton showers with NNLL logarithmic accuracy matched to NNLO

• Hadronization models calibrated from scratch with many different observables, since
current models were tuned using MC’s with lower accuracy

Alternatively

• Need a (much) more refined analytical understanding of non-perturbative
corrections, for recent advances see e.g.,

[Luisoni, Monni, Salam, Eur. Phys. J. C 81 (2021) 2, 158, Caola et al., arXiv:2108.08897 [hep-ph]]

• Look for better observables with smaller hadronization corrections, e.g., groomed
event shapes

[Baron, Marzani, Theeuwes, JHEP 08 (2018) 105, Kardos, Larkoski, Trócsányi, Phys. Lett. B 809 (2020) 135704]
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Conclusions

So where do we stand?

• No new data foreseen in the near future, so would including more perturbative
orders (fixed order and/or resummation) improve precision without any new data?

Not by itself. More perturbative orders alone are not likely to dramatically improve
the precision of strong coupling extractions from existing data.

• If not, what are the limiting factors for precision in future QCD studies?

Main limiting factors are: systematics related to the estimation of hadronization
corrections as well as the quality and consistency of current data.

• What should be done to eliminate those factors?

In addition to advancing the perturbative predictions, we must seriously refine our
understanding/modeling of non-perturbative effects. This would be aided greatly
by dedicated low-energy (below the Z -peak) measurements at future e+e− facilities.
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Thank you for your attention!
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Backup slides
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The dispersive model: issues

The dispersive model of analytic hadronization corrections for event shapes gives

dσhadrons(O)

dO
=

dσpartons(O − aOP)

dO

We then obtain 〈O1〉hadrons = 〈O1〉partons + aOP under the assumptions:

• the aO are observable-specific constants

Issue: aO have been computed in the two-jet limit, but they actually depend on the
value of O

[Luisoni, Monni, Salam, Eur. Phys. J. C 81 (2021) 2, 158, Caola et al., arXiv:2108.08897 [hep-ph]]

• the power correction P is universal

P(αs,Q, α0) =
4CF

π2
M×

µI

Q
×
{
α0(µI )− αS +O(α2

s)

}
Issue: non-inclusive corrections, e.g., those parametrized by the Milan factor M may
not be universal beyond NLO

The validity of these model assumptions should be investigated.
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Effective soft coupling schemes

The Catani–Marchesini–Webber soft coupling at NLL (αs is the strong coupling in the
MS scheme, Cq = CF , Cg = CA)

ACMW
i (αs) = Ci

αCMW
s

π
= Ci

αCMW
s

π

(
1 +

αs

2π
K
)

Proposals for definitions beyond NLL

AT ,i (αs) =
1

2
µ2
∫ ∞

0
dm2

Tdk
2
T δ(µ2 − k2

T )wi (k)

A0,i (αs) =
1

2
µ2
∫ ∞

0
dm2

Tdk
2
T δ(µ2 −m2

T )wi (k)

where wi (k) is called the web function, it gives the “probability” of correlated emission
(including the corresponding virtual corrections) of an arbitrary number of soft partons
with total momentum k.

[Catani, De Florian and Grazzini, Eur. Phys. J. C 79, 685 (2019), Banfi, El-Menoufi and P.F. Monni JHEP 01, 083 (2019)]
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Effective soft coupling schemes

Given these definitions, the expansion of αCMW
s in terms of αs, and hence L and M, can in

principle be computed (note in each scheme K is the one-loop cusp anomalous dimension)

(αCMW
s )scheme = αs

[
1 +

αs

2π
K +

(αs

2π

)2
Lscheme +

(αs

2π

)3
Mscheme +O(α4

s)

]

• A0 scheme: L and M computed from A0,i

• AT scheme: L computed from AT ,i , but the complete expression for M is missing in
this scheme, hence we set MT = M0

• Acusp scheme: L and M are simply the two- and three-loop cusp anomalous
dimensions
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Correlations: αs(MZ ) vs. α0(2 GeV)

Correlations between αs(MZ ) and α0(2 GeV)

• contours correspond to 1-, 2- and 3
standard deviations obtained in the
fit

• systematic uncertainties not
included
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