STERILE NEUTRINO DARK MATTER IN THE SUPER-WEAK EXTENSION OF THE STANDARD MODEL

Károly Seller Department for Theoretical Physics

ELTE Eötvös Loránd University

TABLE OF CONTENTS

1. Introduction to the super-weak model

2. Dark matter production mechanisms

- 2.1. Freeze-out scenario
- 2.2. Freeze-in scenario
- 3. Conclusions

Talk based on the paper [arXiv:2104.11248] by K. Seller, S. Iwamoto, and Z. Trócsányi.

INTRODUCTION TO THE SUPER-WEAK MODEL

SHORTCOMINGS OF THE STANDARD MODEL

	PARTICLE PHYSICS	Cosmology
-	Neutrino masses & oscillation Muon $g - 2$ Electroweak vacuum stability	Dark energy <u>Dark matter</u> Big Bang
	Hierarchy problem	Inflation
	Quantum gravity	Lithium problem

The highlighted items were investigated in the super-weak model.

- Model introduction Z. Trócsányi [arXiv:1812.11189]
- Inflation and vacuum stability Z. Péli et al. [arXiv:1911.07082]
- Dark matter K. Seller et al. [arXiv:2104.11248] (this talk)
- Neutrino phenomenology T. Kärkkäinen et al. [arXiv:2104.14571]

EXTENDING THE STANDARD MODEL

A possible way to solve the issues is to extend the Standard Model gauge group:

$$\begin{array}{lll} \text{Super-weak gauge group:} & \mathsf{G}_{\mathsf{SW}} = \underbrace{\mathsf{SU}(3)_{\mathsf{c}}\otimes\mathsf{SU}(2)_{\mathsf{L}}\otimes\mathsf{U}(1)_{y}}_{\mathsf{G}_{\mathsf{SM}}} \otimes \underbrace{\mathsf{U}(1)_{z}}_{\mathsf{G}_{\mathsf{SM}}} \end{array}$$

Why an extra U(1)?

- Phenomenologically the simplest choice
- Experiments do not point towards complicated extensions
- Avoid having many new parameters and particles
- Mixing in the $U(1)_y \otimes U(1)_z$ sector gives rise to exciting phenomenology

We do not assume any already existing global symmetry behind $U(1)_z$.

SUPER-WEAK MODEL SPECTRUM AND CHARGES

We extend the spectrum of the Standard Model with

- $N_i \rightarrow 3$ right-handed sterile neutrinos,
- $Z' \rightarrow$ the gauge boson of $U(1)_z$,
- $\chi \rightarrow$ complex scalar SU(2)_L singlet.

The lightest sterile neutrino N_1 is the dark matter candidate.

• $N_{2,3}$ are considered to be heavy and near-degenerate, with masses around the EW scale.

Charge assignment for $U(1)_z$ has to be anomaly-free.

- This can be done in infinitely many ways.
- The $U(1)_z$ charges have to be linear combinations of the hypercharges and B L numbers.

7

SUPER-WEAK MODEL SYMMETRY-BREAKING PATTERN

The SU(2)_L \otimes U(1)_y \otimes U(1)_z gauge symmetry is broken by the non-zero vacuum expectation value of the scalars,

Spontaneous symmetry breaking: $SU(2)_L \otimes U(1)_v \otimes U(1)_z \rightarrow U(1)_{em}$.

As usual the gauge bosons obtain masses through the Higgs mechanism,

ightarrow 2 physical angles of rotation: $heta_W, \, heta_Z$.

(θ_W is the Weinberg angle, defined the same way as in the Standard Model.)

SUPER-WEAK MODEL INTERACTIONS

In the super-weak model only the neutral currents are modified.

• Covariant derivative:

$$ightarrow \mathcal{D}_{\mu}^{neut.} \supset -i(\mathcal{Q}_{A}A_{\mu}+\mathcal{Q}_{Z}Z_{\mu}+\mathcal{Q}_{Z'}Z'_{\mu})$$

• Effective couplings:

The Z–Z' mixing is small, and the weak neutral current is only modified at order $\mathcal{O}(g_z^2/g_{Z^0}^2)$.

SUPER-WEAK MODEL PARAMETERS

- 1. Gauge coupling, g_z
 - In order to avoid various constraints, $|O(g_z/g_{Z^0}) \ll 1|$ where $g_{Z^0} = g_L/\cos\theta_W$.
- 2. Vacuum expectation value of χ singlet, w
 - We will use the mass of Z' instead. It is assumed that $M_{Z'} \ll M_Z$.
- 3. Z-Z' mixing angle, θ_Z

Given the above assumptions,
$$\tan(2\theta_Z) = \frac{4\zeta_{\phi}g_z}{g_{Z^0}} + \mathcal{O}\left(\frac{g_z^3}{g_{Z^0}^3}\right) \ll 1.$$

- 4. $U(1)_y \otimes U(1)_z$ gauge mixing parameter, η
 - Its value can be determined from RGE, at relevant scales $0 \le \eta < 1$, but we use $\eta = 0$ for simplicity (no qualitative difference).
- 5. Neutrino masses, N_i
 - We assume N_1 to be light (keV-MeV scale), while $M_{2,3} = \mathcal{O}(M_{Z^0})$.

DARK MATTER PRODUCTION

PORTALS TO THE DARK SECTOR

Portal: a weak interaction connecting the Standard Model and the sterile particles.

- There are three well-known portals in the literature:
 - 1. Vector boson portal

ightarrow Popular option with gauge group extensions of the SM, e.g., kinetic mixing.

2. Higgs portal

 \rightarrow The Higgs field can couple to SM singlets with dimensionless coupling.

- \rightarrow See e.g., [arXiv:hep-ph/0605188]
- 3. Neutrino portal

 \rightarrow If dark matter is fermion, it can couple to the dimension 5/2 HL operator.

 \rightarrow See e.g., [arXiv:0908.1790]

SUPER-WEAK DARK MATTER PRODUCTION

In the super-weak model the lightest sterile neutrino is the dark matter candidate.

Relevant particles: electrons, SM neutrinos, Z' bosons, and N_1 sterile neutrinos.

Vertex:
$$\Gamma^{\mu}_{Z'ff} = -ig_z \gamma^{\mu} \left[q_f \cos^2 \theta_{\mathsf{W}}(2-\eta) + (z_f - 2y_f) + \mathcal{O}(g_z^2/g_{Z^0}^2) \right]$$

•
$$\Gamma^{\mu}_{Z'\nu_i\nu_i} \simeq \Gamma^{\mu}_{Z'N_1N_1} \simeq -i\frac{g_z}{2}\gamma^{\mu}$$

• $\Gamma^{\mu}_{Z'ee} \simeq -ig_z\gamma^{\mu}\left[(\eta-2)\cos^2\theta_W + \frac{1}{2}\right]$

 N_1 production channels:

- 1. Scattering from electrons via Z' exchange \longrightarrow FREEZE-OUT
- 2. Decays of Z' bosons \longrightarrow FREEZE-IN

BOLTZMANN EQUATION

Describes the evolution of a particle abundance in presence of interactions.

It is convenient to define the comoving number density $\mathcal Y$ which factors out the expansion of the Universe.

$$\frac{d\mathcal{Y}}{dz} \propto \sum_{\text{particles}} \left[\text{(rate of creation processes)} - \text{(rate of annihilation processes)} \right]$$

How do we get the process rates?

 $Rate = \underbrace{(Cross \ section/Decay \ rate)}_{Depends \ on \ the \ model} \times (Available \ phase \ space)$

Important: everything depends on the temperature!

THERMALLY AVERAGED RATES

DECAY RATE

CROSS SECTION

Decaying particle mass: MIncoming/Outgoing particle mass: $m_{in/out}$ z = M/T $\mu = \max(m_{in}, m_{out})$

$$\langle \Gamma
angle = \Gamma \; rac{K_1(z)}{K_2(z)} \qquad \langle \sigma v_{\mathsf{M} \not \mathsf{sl}}
angle \propto \int_{4\mu^2}^{\infty} \mathsf{d} s \; \sigma(s) (s - 4m_{\mathsf{in}}^2) \sqrt{s} \mathcal{K}_1\left(rac{\sqrt{s}}{T}\right)$$

$$\begin{split} \text{Monotone increasing function of } z. \\ \max(\langle \Gamma \rangle) = \lim_{z \to \infty} \langle \Gamma \rangle = \Gamma \end{split}$$

Resonance can dominate the integral. Decoupling: $\langle \sigma v_{M
otin l} \rangle (T \ll m_{in}) \rightarrow 0.$

DARK MATTER PRODUCTION: FREEZE-OUT

FREEZE-OUT MECHANISM

Freeze-out mechanism for a particle with mass *m*:

- 1. The particle species was in equilibrium at high temperatures (T > m),
- 2. Decoupling is a result of scattering processes becoming slow compared to Hubble expansion,
- 3. Decoupling happens at temperatures comparable to the mass of the particle, $T_{dec} \simeq 0.1m$.

FREEZE-OUT IN THE SUPER-WEAK MODEL: PROCESSES

Freeze-out requires decoupling \rightarrow scattering processes are important.

We consider $M_1 = \mathcal{O}(10)$ MeV \longrightarrow decoupling happens at $T_{dec} = \mathcal{O}(1)$ MeV.

At this temperature range electrons and SM neutrinos are abundant, negligible amounts of heavier fermions.

$$N_{1}N_{1} \to f_{SM}f_{SM}: \quad \sigma_{t} \propto g_{z}^{4}\sqrt{1 - \frac{4M_{1}^{2}}{s}} \frac{s}{(s - M_{Z'}^{2})^{2} + M_{Z'}^{2}\Gamma_{Z'}^{2}}$$

RESONANT AMPLIFICATION

In the freeze-out mechanism increasing the interaction rate decreases the relic density.

- But large couplings are ruled out by experiments!
- Need another way out: increase $\langle \sigma v_{M \mu} \rangle$ by exploiting resonance $(2M_1 \lesssim M_{Z'})$

Resonance:
$$\langle \sigma v_{\mathsf{M} \not o \mathsf{I}} \rangle = (...) \int_{4M_1^2}^{\infty} \mathsf{d}s \underbrace{\frac{(...)}{(s - M_{Z'}^2)^2 + M_{Z'}^2 \Gamma_{Z'}^2}}_{\text{strongly peaked around } s = M_{Z'}^2} \times K_1\left(\frac{\sqrt{s}}{T}\right)$$

 \rightarrow Recall that $T_{\mathsf{dec}} \approx 0.1M_1$, then at the resonance $s = M_{Z'}^2$

the Bessel function is $K_1(10M_{Z'}/M_1)$ \rightarrow The Bessel function is exponentially small if its argument is large \rightarrow need $M_{Z'} \approx M_1$, i.e., resonance.

Resonant Amplification: Example

Example calculated within the super-weak model for $M_1 = 10$ MeV and $M_{Z'} = 30$ MeV.

FREEZE-OUT IN THE SUPER-WEAK MODEL

DARK MATTER PRODUCTION: FREEZE-IN

FREEZE-IN MECHANISM

Freeze-in with a particle with mass M decaying to a dark matter candidate with mass m.

- 1. The mother particle does not have to be in equilibrium at high (T > M) temperatures.
- 2. Freeze-in happens due to the Boltzmann-suppression of the mother particles.
- 3. Final relic abundance of dark matter particles is $\mathcal{Y}_{\infty} \simeq max(\mathcal{Y}_{mother}) \times Br(mother \rightarrow DM)$

FREEZE-IN IN THE SUPER-WEAK MODEL: PROCESSES

Main processes to consider are decays.

• Only Z' has a vertex with N_1 , thus $Z' \rightarrow N_1 N_1$ is the only process creating DM

We have no reason to assume anything special about the initial abundance of Z':

Simplest choice: $\mathcal{Y}_{Z'}(T_0) = \mathcal{Y}_1(T_0) = 0$, where $T_0 \gg M$.

We have to solve for both Z' and N_1 abundances as both will be out of equilibrium.

FREEZE-IN IN THE SUPER-WEAK MODEL: PARAMETERS

Many parameters \rightarrow choose ones that are relevant

 $\mathbf{Parameters} = \begin{cases} T_0 & \text{Initial condition: temperature} \\ \mathcal{Y}(T_0) & \text{Initial condition: abundance} \\ M_{Z'} & Z' \text{ boson mass} \\ M_1 & N_1 \text{ lightest sterile neutrino mass} \\ g_z & U(1)_z \text{ gauge coupling} \\ \eta & U(1)_y \otimes U(1)_z \text{ gauge mixing} \end{cases}$

Initial conditions are irrelevant as long as

 $\mathcal{Y}(\mathcal{T}_0) \ll \mathcal{Y}_{\infty}$ and $\mathcal{T}_0 \gtrsim 10 M$.

Not using these assumptions leads to fine tuning problems.

FREEZE-IN IN THE SUPER-WEAK MODEL

CONCLUSIONS

CONCLUSIONS

- The super-weak extension can provide a valid dark matter candidate, the lightest sterile neutrino
- Current experiments allow for both freeze-in and freeze-out scenarios
- Future experiments will probe the parameter space of the freeze-out case
- Freeze-in is difficult to completely rule out due to the many parameters and feeble couplings

• THANK YOU FOR YOUR ATTENTION! •