

BARYOGENESIS AND NEUTRON-ANTI-NEUTRON OSCILLATION

R. N. Mohapatra

MTTD 2021 Katowice, Poland, 09/21 Standard model cannot explain one of the major puzzles of cosmology: the asymmetry between matter and antimatter content of the universe.

New BSM scenarios must be explored!

One of the key ingredients in understanding the origin of matter (N_B) in the universe is to have baryon number (B) violation: Sakharov'67

This + the advent of grand unified theories has inspired intense experimental searches as well as theoretical discussion of B-violation!

TWO MAJOR CLASSES OF BUNDER SCRUTINY ARE:

• Proton decay : $\Delta B = 1$ (p \rightarrow e⁺ π^0 ,...)

(probes high scale physics(~ 10¹⁵ GeV) and if discovered will strengthen the case for grand unification of forces and matter)(Pati, Salam; Georgi, Glashow)

• <u>Neutron-anti-neutron oscillation: $\Delta B = 2$ </u>

(Probes physics in the 1-100 TeV scale

Range; it is motivated by belief that neutrinos are Majorana fermions; underlying physics testable in colliders unlike p-decay)

(Kuzmin'70; Glashow'79; Mohapatra, Marshak'80)

• No evidence yet;Here we focus on N-N oscillation

Two ways to search for NN-bar osc.

Direct search for oscillation:

ESS set up; similar to the first NNbar search@ILL in 90s

Search in proton decay experiments for bound N Osc., where $N \rightarrow N$ inside the nucleus (suppressed by nuclear potential) IMB, SK, SNO; future DUNE, Hyper-K;

Both methods probe the same range of strengths

CURRENT BOUNDS FOR NN-BAR OSCILLATION

• Direct search: $\tau > 8.7 \times 10^7$ sec.(ILL)

Sound N search: $\rightarrow \tau > 3.5 \times 10^8$ sec. (Super-K)

ESS possible improvement by ~30 (very important)

BSM PHYSICS PROBED BY NN-BAR

OSCILLATION

$$\mathcal{O}_{B=2} = \frac{1}{\Lambda^5} u^c d^c d^c u^c d^c d^c$$

Arises from exchange of TeV mass color sextets (Δ) in seesaw Scalar SU(2)_LxSU(2)_RxSU(4)_C model (RNM, Marshak'80)

• Implies $\Lambda \sim M_{\Delta} \sim 10 \ to \ 100 \ TeV$: single scale th: relates Majorana nu to $\Delta B = 2 \ via < \Delta_{\nu\nu} >$

Closer Connection to neutrino mass

- Type II seesaw connects f's to neutrino mass in the theory $m_{\nu} = fv_{L}$
- For TeV sextets, FCNC allows only inverted neutrino mass hierarchy consistent with baryogenesis!

(II) SO(10) GUT 2 SCALE MODEL

SO(10) GUT with one diquark Higgs at GUT and one at TeV scale. Unification works.

Coupling unification in 2 scale theory (with help from color singlet Higgs fields at TeV)

NOW TO BARYOGENESIS (N_B) WITH NN-BAR

P-DECAY VS N-N-BAR OSC. FOR NB CANONICAL PROTON DECAY MODES IN GUTS, $p \rightarrow e^+ \pi^0$, $K^+ \nu$ etc ARE NOT **CONNECTED TO BARYOGENESIS** SINCE GENERATED N_R CONSERVE B-L AND GET ERASED BY SPHALERONS! **NN-BAR OSCILLATION HOWEVER HAS NO SUCH ISSUE: CAN BE DIRECTLY**

CONNECTED TO ORIGIN OF MATTER!

BARYOGENESIS WITH NN-BAR: WHY BOTHER?

- Expts will search for the process. Q: Is an observable B or L violating process compatible with observed B-asymmetry?
- There are many scenarios for baryogenesis. 2. It is impossible to prove any of them but it may be possible to rule them out by certain observations: e.g. $M_{WR} < 10$ TeV will rule out leptogenesis; M_{stop} < 20 GeV already rules out MSSM EW. Can one do the same for NNbar? Provides motivation to search.

BARYOGENESIS WITH NN: How? (I) POST-SPHALERON BARYOGENESIS IN PURE SCALAR THEORY (Babu, Mohapatra, Nasri'2006) Baryogenesis happens after sphaleron decoupling

Conditions for successful PSB in a single scale SU(2)xSU(2)xSU(4) framework

- (i) Basic mechanism: S goes out of eq. when relativistic i.e. $T_* > M_s$; drifts and decays at GeV $< T_D <$ 100 GeV (hence PSB) to produce asymmetry; (ii) M_s cannot be too large (~TeV) to avoid strong dilution(d~ T_D/M_s)
- (iii) This restricts M_{Δ} (T_{*} ~ TeV) to less than 10 TeV; (iv) Model works only for inverted nu mass hierarchy

Model works for a narrow range of parameters :

AN AN UPPER LIMIT ON τ_{NN}

- SU(2)xSU(2)xSU(4) model of PSB relates diquark couplings for NN-bar to nu mass via type II seesaw (Babu, Dev, Fortes, RNM'13)
- Model with IH nu mass pattern. \rightarrow upper limit

(II) AFFLECK-DINE BARYOGENESIS FOR NN-BAR

- (RNM, Okada'2021, PRD (to appear))
- Basic idea: (Affleck, Dine) complex Baryonnumber carrying field Φ evolves with the universe and if has initial value with large difference between real and imaginary parts, it will evolve to give a net baryon number: $n_B = \operatorname{Im}(\dot{\Phi}^{\dagger}\Phi)$

Inflation and AD baryogenesis

- Typically, two scalar fields are chosen to implement AD baryogenesis: inflaton, χ and AD field Φ;
- Choose Φ to have a flat directions so that it has a large value in the early universe before its real and imaginary parts start curling following

$$\ddot{\Phi} + 3H\dot{\Phi} + V'(\Phi) = 0$$

 $\dot{n}_B + 3Hn_B + 2Q_{\Phi}Im[V'(\Phi)\Phi] = 0$

Our set up

- Use setup by A. Lloyd-Stubbs and J. McDonald (2020)

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[-\frac{1}{2} M_P^2 f R + \partial_\mu \Phi^\dagger \partial^\mu \Phi - V(\Phi) \right]$$

$$V(\Phi) = m_{\Phi}^2 \Phi^{\dagger} \Phi - A(\Phi^2 + \Phi^{\dagger 2}) + \lambda (\Phi^{\dagger} \Phi)^2.$$

A= εm_{Φ}^2 (violates B) $\varepsilon << 1$ Φ has B=2 via $\Phi u^c d^c d^c u^c d^c d^c$

Four stages to early universe evolution

Stage (i) :Inflation occurs from non-minimal coupling to gravity for $\Phi > M_P / \sqrt{\xi}$ (ξ^{\sim} 1600)

- Fits all CMB data including r=Tensor/Scalar ratio and spectral index n_s (Okada, Rehman, Shafi)
- As Φ becomes smaller as it rolls down the potential, inflation ends and second stage begins:
- **Stage (ii):** Φ^4 term in the potential dominates and then Φ radiation dominate the universe and $\Phi \propto a^{-1}$. Eventually, quadratic term dominates at $\Phi *$; real and Im parts of $\Phi *$ take different random values (Violates CP)

Φ evolution: Stage (iii)

$$\ddot{\phi_1} + 3H\dot{\phi_1} = -m_1^2\phi_1 - \lambda(\phi_1^2 + \phi_2^2)\phi_1$$

$$\ddot{\phi}_2 + 3H\dot{\phi}_2 = -m_2^2\phi_2 - \lambda(\phi_1^2 + \phi_2^2)\phi_2$$

Easy to solve without the last term

$$\phi_i(t) \simeq \phi_{i,*} \left(\frac{a_*}{a}\right)^{3/2} \cos(m_i(t-t_*)) + \text{small terms}$$

Final form of the baryon asymmetry Stage (iv) Decay and reheat T_R:

$$\cdot \frac{n_B}{s} \simeq \frac{3}{8} \sqrt{\frac{\pi^2}{90}} g_* \frac{Q_B}{\epsilon} \frac{T_R^3}{m_\Phi^2 M_P} \sin(2\theta)$$

 Q_B is the baryonic charge of the AD-field.

Constraints: $\epsilon \ll 1$; $\epsilon m_{\Phi}/\Gamma_{\Phi} >> 1$

Sin 2 θ random; T_R, determined by dynamics

$$T_R = \sqrt{\Gamma_\Phi M_P}$$

REQUIREMENTS ON MODEL

- (i) $\epsilon \ll 1$; (ii) $\epsilon m_{\phi} / \Gamma_{\phi} >> 1$ (iii) For T < v_{ϕ}, B-violating interactions switch on and can wash out the Bgenerated unless their decoupling temp. T^{*} > T_R. We require theory to satisfy this.
- (iv) NN-bar observable in current or planned expts
- Viable model to be interesting must satisfy all these constraints.

Apply to N-N oscillation

- Endow Φ with B=2 and couple it to some typical operators: 3 classes of models; Given mass of Φ, Λ; T_R is determined; Given < Φ>, can determine the B-violation decoupling T*;
- We must have $T^* > T_{R}$, to prevent washout.

•
$$\mathcal{O}_1 = u^c d^c d^c u^c d^c d^c$$
 for `A~100` TeV or `GU1`

Tev

 $\Delta_{ud} \to u^c d^c$

• Split scale SO(10) type model

$$\mathcal{O}_2 = \Delta_{ud} \Delta_{ud} d^c d^c$$

• $e.g.\Delta_{dd}$ GUT scale

O₂ fits a broader parameter range

It is embeddable in SO(10) and hence interesting:

$$\mathcal{O}_2 = \Delta_{ud} \Delta_{ud} d^c d^c \qquad \Delta_{ud} \to u^c d^c$$

 Δ_{dd} in GUT scale and Δ_{ud} TeV scale; No

• Δ_{ud} at TeV scale + observable NN-bar will support this version of AD baryogenesis.

O₁ as a single scale-(multi TeV) theory : an alternative realization of AD

- Restricted and predictive; part of the parameter space testable@ESS
- .0001< ε < 0.1
- m_{ϕ} ~ Λ

- Neutron-anti-neutron oscillation is an important process to search for to understand the origin of matter in the universe.
- PSB and AD baryogenesis provide two mechanisms for implementing baryogenesis with NN-bar in different parameter ranges.
- AD prefers a two scale SO(10) type theory which requires color sextet scalars in the TeV range that colliders can look for. However it also works in a narrow parameter range for a single TeV scale theory.

Thank you for your attention !!

What else can we learn from NN-DISCOVERY: STRONG HINT FOR $v = \overline{v}$

Standard model has sphaleron solutions

 p-decay+nn-bar →Neutrino Majorana (RNM, 2014 ESS at CERN; Babu, RNM'14) regardless of what double beta decay shows!

Other mechanisms: (ii) Majorana fermions: (Dev,RNM'15; similar models by Gu and Sarkar'11)

All particles at TeV scale; Baryogenesis

