UNITARITY IN MULTI HIGGS PRODUCTION USING SCHWINGER-DYSON EQUATIONS

Gábor Cynolter MTA-ELTE Theoretical Research Group

ELTE Eötvös Loránd University

TABLE OF CONTENTS

- 1. INTRODUCTION, SM
- 2. Multi Higgs production
- 3. TRANSITION RATE FROM SCHWINGER-DYSON EQUATIONS
- 4. CONCLUSIONS

Talk based on the paper [arXiv:1911.04784] by Á. Curkó, and G. Cynolter.

Perturbative Standard Model

What is the scale of new physics, BSM?

- $M_H \simeq 125$ GeV, SM is weakly coupled up to M_{Pl}
- Asymptotic freedom, except $U_Y(1)$ and λ_H , Landau pole $\sim exp(1/\lambda)$ beyond M_{PI}
- Metastability scale of EW vacuum 10^{10-12} GeV
- Problems with perturbative self-interacting scalars at high energies
 - Near kinematic threshold production of 'slow' multi scalars
 - Amplitude $h^* \rightarrow n \times h$ grows exponentially
 - \rightarrow Unlimited $\sigma(s)$ violates the Froissart bound $(c \times \ln^2(s))$ and unitarity
- Classics 92-94, Brown, Son, Voloshin, Rubakov, Troitski
- Revival, V.V Khoze et al 1411.2925 and 2017-18-

Scalar theory part of the SM

Single, real scalar $\varphi(x)$, $\mathcal{L} = \frac{1}{2} \partial^{\mu} \varphi(x) \partial_{\mu} \varphi(x) - \frac{\lambda}{4} \left(\varphi(x)^2 - \mathbf{v}^2 \right)^2$. After SSB

 $h(x) = \varphi(x) - v$, massive, prototype of the SM Higgs in unitary gauge

$$\mathcal{L} = \frac{1}{2} \partial^{\mu} h(\mathbf{x}) \partial_{\mu} h(\mathbf{x}) - \frac{m^2}{2} h^2(\mathbf{x}) - \frac{\kappa}{3} h^3(\mathbf{x}) - \frac{\lambda}{4} h^4(\mathbf{x}), \tag{1}$$

where $m = \sqrt{2\lambda}v$, $\kappa = 3\lambda v$ and $\langle h \rangle = 0$ perturbative.

- Strange behaviour, decay large number(n) of scalars
- tree-level at kinematic threshold, factorial growth of graphs
- $\langle n|h(x)|0\rangle \sim n!\lambda^{n/2}$
- breakdown of pert. theory at $n \gtrsim 1/\sqrt{\lambda}$, at $E \gtrsim 1/\sqrt{\lambda}m$

TRANSITION RATE, $1^* \rightarrow n$

We are interested in the decay of excited, energetic $h^* \rightarrow nh$ process. Characterized by the Transition rate

$$R_n(p^2) = \int d\Pi_n |\mathcal{M}(1 \to n)|^2, \qquad (2)$$

 $\lambda n \gg 1$ limit, steepest descent method, semiclassical approach, pioneered by D.T.Son '96

$$R_n(p^2) \propto \exp\left[n\left(\log\left(\frac{\lambda n}{4}\right) - 1 + \frac{3}{2}\left(\log\left(\frac{\varepsilon}{3\pi}\right) + 1\right) - \frac{25}{12}\varepsilon + 0.85\sqrt{\lambda n}\right)\right], \quad (3)$$

Terms are in order, tree-level, $\varepsilon = \frac{E - m \cdot n}{m \cdot n} \varepsilon \neq 0$ tree correction, thin-wall (bubble) q-corr'n ε average kinetic energy of the final-state Higgses. Valid at

- $\frac{1}{\lambda} \to \infty, \ n \to \infty$ $\lambda n = \text{const.} \gg 1$
- $\varepsilon = \text{const} \ll 1$

Still exponential \leftrightarrow Unitarity ?

TRANSITION RATE, $1^* \rightarrow n$

$$R_n(p^2) \propto \exp\left[n\left(\log\left(\frac{\lambda n}{4}\right) - 1 + \frac{3}{2}\left(\log\left(\frac{\varepsilon}{3\pi}\right) + 1\right) - \frac{25}{12}\varepsilon + 0.85\sqrt{\lambda n}
ight)
ight],$$

Applied to SM $\lambda_{\text{SM}} \simeq 0.125$, $\sqrt{p^2} = (100 - 200) \cdot m_H$, changing $n \gg 1$ $\lambda n \gg 1$, ε small, but not fixed $\rightarrow R_n(p^2) \sim \exp(a\sqrt{p^2})$ with a > 0. Origin of the problem

- limit in saddle point method invalid
- Missing terms

tree-level ε not small quantum corrections for $\varepsilon \neq 0$

Use a not perturbative method Summed up, self-consistent equation - expect unitarity

Calculate $R_n(p^2)$ from Schwinger-Dyson equations

Schwinger-Dyson equations in SSB ϕ^4 model

SD system of coupled equations derived from the identity, ϕ^4 V.Sauli(2005)

$$\int \mathcal{D}\varphi \frac{\delta \theta[\varphi]}{\delta \varphi(x)} = 0, \text{ where } \theta[\varphi] = \exp\left\{i \int d^4 x \left[\mathcal{L}(\varphi(x)) + J(x)\varphi(x)\right]\right\},$$

$$\begin{split} \Pi(p^2) &= \kappa \int \frac{d^4 k_1}{(2\pi)^4} G_2^c(-k_1) G_2^c(k_1+p) \Gamma_3(k_1,p) + \\ &+ \lambda \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} G_2^c(k_1) G_2^c(-k_1-k_2) G_2^c(k_2+p) \Gamma_4(-k_1,k_1+k_2,p) + \\ &+ 3\lambda \int \frac{d^4 k_1}{(2\pi)^4} \int \frac{d^4 k_2}{(2\pi)^4} G_2^c(-k_1) G_2^c(-k_2) G_2^c(k_1+k_2+p) \Gamma_3(k_1+p,k_2) G_2^c(k_1+p) \Gamma_3(k_1,p), \end{split}$$

 $\Pi(p^2)$ is the self-energy $G_2^c(k)$ is the connected two-point function $\Gamma_n(k_1, k_2, \dots, k_{n-1})$ is the n-point vertex function $m = \sqrt{2\lambda}v$, $\kappa = 3\lambda v$

SCHWINGER-DYSON EQUATIONS GRAPHICALY

 $\Pi(p^2)$ self-energy $G_2^c(k)$ connected two-point function

 $\Gamma_n(k_1, k_2, \dots, k_{n-1})$ n-point vertex fn Complete SD system of eq'n, extra eq'ns for vertex function, small λ, κ tree level can be used

SCHWINGER-DYSON EQUATIONS SIMPLIFIED

Small λ, κ vertex functions

$$\Gamma_3(k_1,k_2) = -i2\kappa + \dots,$$
 Arrive at $\Gamma_4(k_1,k_2,k_3) = -i6\lambda + \dots$

$$\begin{split} \Pi(p^2) &= -i2\kappa^2 \int \frac{d^4k_1}{(2\pi)^4} G_2^c(-k_1) G_2^c(k_1+p) - \\ &- i6\lambda^2 \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_2}{(2\pi)^4} G_2^c(k_1) G_2^c(-k_1-k_2) G_2^c(k_2+p) - \\ &- 12\lambda\kappa^2 \int \frac{d^4k_1}{(2\pi)^4} \int \frac{d^4k_2}{(2\pi)^4} G_2^c(-k_1) G_2^c(-k_2) G_2^c(k_1+k_2+p) G_2^c(k_1+p), \end{split}$$

Bubble+setting sun +... Solve with spectral decomposition method $\kappa=3\lambda v$ has mass dimension

SPECTRAL DECOMPOSITION

Generic decomposition of a scalar two-point function

$$G(p^2) = \underbrace{\frac{iZ}{p^2 - m^2 + i\epsilon}}_{\text{pole}} + \underbrace{\int_{\omega_{th}}^{\infty} d\omega \frac{i\sigma(\omega)}{p^2 - \omega + i\epsilon}}_{\text{continuum}} \qquad \omega_{th} = 4m^2, \quad \omega \sim s$$

Z is the wave-function renormalization, $\sigma(\omega)$ spectral function for the propagator Divergence structure

bubble $\sim log\Lambda$ logarithmic 1 subtraction setting sun $\sim \Lambda^2$ quadratic need 2 subtractions

 $\Pi_{R}(p^{2}) = \Pi(p^{2}) - \Pi(m^{2}) - \frac{d\Pi(p^{2})}{dp^{2}}|_{p^{2}=m^{2}}(p^{2}-m^{2}) \text{ Renormalized self energy}$ $\Pi_{R}(p^{2}=m^{2}) = 0, \quad \Pi_{R}'(p^{2}=m^{2}) = Z - 1 \text{ Renormalization cond., (Nonmin mom. subtr.)}$

SD Equation with Spectral decomposition $\sigma(\omega)$, $\rho(\omega)$

Double subtracted Renormalized self energy

$$\Pi_{\mathcal{R}}(\boldsymbol{p}^2) = \int_{\omega_{th}}^{\infty} d\omega \frac{\rho(\omega)}{\boldsymbol{p}^2 - \omega + i\epsilon} \left(\frac{\boldsymbol{p}^2 - \boldsymbol{m}^2}{\omega - \boldsymbol{m}^2}\right)^2 = \int_{\omega_{th}}^{\infty} d\omega \frac{\tilde{\rho}(\omega, \boldsymbol{p}^2; \boldsymbol{m}^2)}{\boldsymbol{p}^2 - \omega + i\epsilon}$$

Defines $\rho(\omega) = -\text{Im}\Pi_R(p^2)/\pi$ spectral func. of the self energy and double subtracted $\tilde{\rho}(\omega, p^2; m^2)$.

$$\begin{split} \rho(\omega) &= \frac{2\kappa^2}{(4\pi)^2} \left[Z^2 X(m^2, m^2, \omega) + 2Z \int_{\omega_{th}}^{\infty} d\alpha_1 X(\alpha_1, m^2, \omega) \sigma(\alpha_1) + \right. \\ &+ \int_{\omega_{th}}^{\infty} d\alpha_1 \int_{\omega_{th}}^{\infty} d\alpha_2 X(\alpha_1, \alpha_2, \omega) \sigma(\alpha_1) \sigma(\alpha_2) \right] + \\ &+ \frac{6\lambda^2}{(4\pi)^4} \left[Z^3 Y(m^2, m^2, m^2, \omega) + 3Z^2 \int_{\omega_{th}}^{\infty} d\alpha_1 Y(\alpha_1, m^2, m^2, \omega) \sigma(\alpha_1) + \ldots \right] \end{split}$$

BUBBLE+ SETTING SUN SDE WITH SPECTRAL DECOMP'N* $X(\alpha_1, \alpha_2, \omega) = \frac{\sqrt{\lambda(\alpha_1, \alpha_2, \omega)}}{\omega} \Theta(\omega - (\sqrt{\alpha_1} + \sqrt{\alpha_2})^2), \ \lambda^{Kallen}(x, y, z) = x^2 - 2xy + y^2 - \dots$

$$\begin{split} \rho(\omega) &= \frac{2\kappa^2}{(4\pi)^2} \left[Z^2 X(m^2, m^2, \omega) + 2Z \int_{\omega_{th}}^{\infty} d\alpha_1 X(\alpha_1, m^2, \omega) \sigma(\alpha_1) + \right. \\ &+ \int_{\omega_{th}}^{\infty} d\alpha_1 \int_{\omega_{th}}^{\infty} d\alpha_2 X(\alpha_1, \alpha_2, \omega) \sigma(\alpha_1) \sigma(\alpha_2) \right] + \\ &+ \frac{6\lambda^2}{(4\pi)^4} \left[Z^3 Y(m^2, m^2, m^2, \omega) + 3Z^2 \int_{\omega_{th}}^{\infty} d\alpha_1 Y(\alpha_1, m^2, m^2, \omega) \sigma(\alpha_1) + \right. \\ &+ 3Z \int_{\omega_{th}}^{\infty} d\alpha_1 \int_{\omega_{th}}^{\infty} d\alpha_2 Y(\alpha_1, \alpha_2, m^2, \omega) \sigma(\alpha_1) \sigma(\alpha_2) + \\ &+ \int_{\omega_{th}}^{\infty} d\alpha_1 \int_{\omega_{th}}^{\infty} d\alpha_2 \int_{\omega_{th}}^{\infty} d\alpha_3 Y(\alpha_1, \alpha_2, \alpha_3, \omega) \sigma(\alpha_1) \sigma(\alpha_2) \sigma(\alpha_3) \right], \end{split}$$

SCWINGER-DYSON+ EXTRA RELATION

Third diagram negligible, the prefactor $\frac{12\lambda\kappa^2}{(4\pi)^4} \ll \frac{2\kappa^2}{(4\pi)^2}|_{\text{bubble}}$ by 3 order. Relation from $1 = G(p^2)G^{-1}(p^2) = \underbrace{G(p^2)}_{\sigma(w)}(p^2 - m^2 - \underbrace{\Pi_R(p^2))}_{\rho(w)}$

$$\sigma(p^2) = \frac{Z\rho(p^2)}{(p^2 - m^2)^2} + \frac{1}{p^2 - m^2}\mathsf{P} \cdot \int_{\omega_{th}}^{\infty} d\omega \frac{\sigma(p^2)\tilde{\rho}(\omega, p^2; m^2) + \rho(p^2)\sigma(\omega)}{p^2 - \omega}$$

Sum rule can be derived, "particle conservation" pole+ cont.

$$Z + \int_{\omega_{th}}^{\infty} d\omega \sigma(\omega) = 1$$
, actually $\sigma(\omega)$ small $\rightarrow Z \simeq 1$

TRANSITION RATE, $\sum_{n} R_n(p^2) = ?$

Use LSZ reduction formula for 2-point functions

$$-Z\Pi(p^2) = \mathcal{M}(p \to p)$$

optical theorem

 $2 \text{Im} \mathcal{M}(p o p) = \sum_n R_n(p^2)$ sum over all inner states through a cut

From the renormalized self-energy get the transition rate ($ho(\omega)=-{
m Im}\Pi_R({m p}^2)/\pi$)

$$\sum_{\mathbf{n}} R_{\mathbf{n}}(\mathbf{p}^2) = 2\pi Z \rho(\mathbf{p}^2)$$

Asymptotics, Dominant setting sun, Cutoff

SD eq'ns determine the asymptotic behaviour of the renormalized self energy

$$\rho(\omega) = m^2 \lambda f_{\sf bubble}(\omega, m^2) + \lambda^2 f_{\sf setting \ \sf sun}(\omega, m^2) + m^2 \lambda^2 f_3(\omega, m^2)$$

Dimensional analysis, $[\rho] = M^2$, only $f_{\text{settingsun}}(\omega, m^2)$ has mass dimension, for $\omega \gg m^2$ $f_{\text{setting sun}}(\omega, m^2) \to \omega$ setting sun is the dominant at high energy.

• ϕ^4 theory is trivial and to satisfy the sum rule $Z+\int d\omega\sigma(\omega)=1$

 $\sim \log(\omega)$ div.

• Introduce cutoff $\Lambda \gg E_{\text{Higgspersion}} \sim 100 m_{H}$. (weird, rapid Higgs decay starts here) Choose $\Lambda = (800m)^2$, corresponding to $E_{max} = 100$ TeV.

NUMERICAL ITERATIVE SOLUTION, SDE+ $GG^{-1} = I$, $\sigma(p^2)$

$$Z_{0} = 1(\sigma(\omega) = 0) \rightarrow \rho_{0} \rightarrow \sigma_{1}(\omega) \propto \rho_{0} \xrightarrow{sumrule} Z_{1} = 1 - \int_{th}^{\Lambda} \sigma_{1}(\omega) d\omega \xrightarrow{go}_{back}$$

Convergence tested by the sum rule (with Z) or $\int_{th}^{\Lambda} d\omega \sigma(\omega) \sim O(10^{-5})$ for $\lambda = 0.12$, also $\lambda = 10$

NUMERICAL SOLUTION, TRANSITION RATE

Numerics show $\rho(p^2) \sim p^2$ at $E \gg m$ and dimensional analysis was fine $\sum_n R_n(p^2) = 2\pi Z \rho(p^2) \sim E^2$ for $E \gg m$, grows with E^2 up to Λ

Exponentially growing $R_n(p^2)$ violates unitarity, here $R_n(p^2) \sim p^2$. Is it safe?

UNITARITY, THE HIGGS PROPAGATOR

The propagator is the geometric series of the 1PI self energy $\Pi({\it p}^2)$

$$G(p^2) = \frac{i}{p^2 - m^2} \sum_{n=0}^{\infty} \left(-i \Pi(p^2) \frac{i}{p^2 - m^2} \right)^n = \frac{i}{p^2 - m^2 - \Pi(p^2)}.$$

- Can only summed up if the series converges
- Solution of Khoze et al. $\Pi \sim \exp(\sqrt{p^2})$ diverges, it cannot be resummed. [Belyaev]
- SDE solution $\Pi \sim \rho(p^2) \sim p^2$ and G decays with p^2 Also showed by $\sigma(\omega)$ asymptotically decaying fig.
- SDE provides a well behaving spectral density
- Multi-Higgs production, growth of the σ is cured via 'Higgspersion' mechanism

THE HIGGSPERSION, HIGGS PRODUCTION

Via the optical theorem $Im\Pi = \Gamma(s) = \sum_{n=1}^{\infty} \Gamma_n(s) \propto \sum_{n=1}^{n} R_n(s)$ tames the G propagator, upper bound Example h^* production and decay in gg fusion,summed up! self energy

$$\begin{split} \sigma_{gg \to n \times h} &\propto |\mathcal{M}_{gg \to h^*}|^2 \times \frac{1}{\left(p^2 - m^2 - \operatorname{Re}\Pi(p^2)\right)^2 + \left(\operatorname{Im}\Pi(p^2)\right)^2} \times R_n(p^2) \\ &\simeq \log^4\left(\frac{m_t}{\sqrt{p^2}}\right) 4Z^2 \frac{R_n(p^2)}{\left(p^2 + \sum_n R_n(p^2)\right)^2} < \log^4\left(\frac{m_t}{\sqrt{p^2}}\right) 4Z^2 \frac{1}{\sum_n R_n(p^2)} \xrightarrow{p^2 \to \infty} 0 \end{split}$$

As long as $\sum_n R_n(s) \propto s$ grows faster than $\log^4\left(\frac{m_t}{s}\right)$

- No violation of unitarity
- Multi-Higgs production, growth of the decay rate is cured via 'Higgspersion' mechanism, even faster growing scalar decay width.

CONCLUSIONS

- We have investigated the debated transition rate $h^*
 ightarrow nh$ in the ϕ^4 theory, SSB 3+1
- Successfully solved by iteration the Schwinger-Dyson equations, calculated the contribution of the dominant setting sun diagram (for $\lambda = 0.125, 10$)
- The self energy of the SDE solution can be bubble-resummed, the propagator also well behaved
- No unitarity violation within this approach.
- The transition rate growing with p^2 tamed by the resummed propagator $\sim p^{-2}$ in real physical processes. See no new scale in the SM.

BACKUP

TRANSITION RATE, $1^* \rightarrow n$, exponential grow

$$R_n(p^2) \propto \exp\left[n\left(\log\left(\frac{\lambda n}{4}\right) - 1 + \frac{3}{2}\left(\log\left(\frac{\varepsilon}{3\pi}\right) + 1\right) - \frac{25}{12}\varepsilon + 0.85\sqrt{\lambda n}\right)
ight],$$

PERTURBATIVE LIMIT, SIMPLIFIED EQUATION

Keeping only the leading terms in SD and constraint -PERTUBATIVE SOLUTION, dotted line

$$\rho'(\omega) = \frac{9\lambda m^2}{16\pi^2} Z^2 X(m^2, m^2, \omega) \quad \sigma'(\omega) = \frac{Z\rho'(\omega)}{(\omega - m^2)^2}$$

(b) $\lambda = 10$

