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Focus on the lepton sector

Masses, and neutrino mixing among flavors
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Suppose we would interchange electron and muon,

would then the Lagrangian change?

Yes, because they have different mass

In general Ll is not invariant after altering any of the 

flavor vectors.

But in some situations Ll remains invariant!

If so, we have found a flavor symmetry.
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row vector vector

sum of three 3x3 matrices

=

one 3x3 matrix

Still the sum of 27 terms.

is a vector

Alltogether we have three vectors.



Question:

Can we alter the three vectors without changing L?

That is:

Can we impose a symmetry on (a part of) L?
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Each A is an operator in a 3D flavor space.

Lagrangian will in general change.

UNLESS:

- A is unitary

- A is a group action

- hl
i is well chosen (three 3x3 matrices)
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Mass matrix



Mass matrix

VEV of Higgs i







The mass matrices define the masses, and mixing



The mass matrices define the masses, and mixing



The mass matrices define the masses, and mixing



is constant?



is constant?

3x3 matrix member of 

group G

vector of lenght 27



is constant?

3x3 matrix member of 

group G

vector of lenght 27



is constant?

3x3 matrix member of 

group G

vector of lenght 27

For which groups G do we find a solution?
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There are about 50,000,000,000 groups of order < 1032
There are 49,487,365,422 groups of order = 1024

939 groups meet the criteria

6,012,859 vectors hl (27D) were found, using

GAP and Mathematica (same for h)

2130 of them are linearly independent

They imply masses of the leptons, and

the neutrino mixing matrix

Consistent with experimental data?



Mixing angle example:

group S4 (order 24), assuming  are Dirac particles.

Implied mixing angles are functions of the vi

(since the mass matrices are):
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Mixing angle example:

group S4 (order 24), assuming  are Dirac particles

not consistent

Angles of PMNS matrix



For a group and choice of 3D irreps we can calculate:

-Implied mass ratios of charged leptons

-Implied mass ratios of neutrinos

-Implied mixing angles

We check neutrinos Dirac or Majorana



We find groups providing one or more of:

A: Consistent mass ratios of charged leptons

B: Consistent mass ratios of neutrinos

C: Consistent neutrino mixing angles

for neutrinos being either Dirac or Majorana.





Group [12,3]:   nothing
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Group [12,3]:   nothing

Group [21,1]:   Dirac mass ratios OK

Group [24,12]: Dirac mixing 2 = 21.1
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Conclusions for the 3HDM

(96) is the smallest group defining a flavor symmetry of 

neutrinos (masses and mixing angles)

There are no groups of order < 1032 that can predict

all masses and mixing angles of charged leptons and 

neutrinos simultaneously, for the present criteria of the 

invariant eigenvectors



Issues / improvements

Reconsider criteria, such as faithfulness, uniqueness of h, 

irreducibility

Some issues of non-unitary representations

Reliance on numerical methods

Computational efficiency



Thank you


