Lepton flavor symmetry in a three-Higgs doublet model

Joris Vergeest,* Bartosz Dziewit,[†] and Piotr Chaber Institute of Physics, University of Silesia, 75 Pułku Piechoty 1, 41-500 Chorzów, Poland

Marek Zrałek

Humanitas University in Sosnowiec, ul. Kilińskiego 43, 41-200 Sosnowiec, Poland

What is the 3HDM?

What is the 3HDM?

What is the 3HDM?

Focus on the lepton sector

Masses, and neutrino mixing among flavors

$\overline{\Psi}_L \Phi \Psi_{R_1} + \text{H.c.}$

mass term of a fermion in the Lagrangian

$\overline{\Psi}_L \Phi \Psi_R$

mass term of a fermion in the Lagrangian

 $\overline{L}_{\alpha L} \tilde{\Phi}_i l_{\beta R}$

mass term of a fermion in the Lagrangian

$$\overline{L}_{\alpha L} \tilde{\Phi}_i l_{\beta R}$$

mass term of a fermion in the Lagrangian $\alpha = 1.2.3$

 $\alpha = 1, 2, 3$ $\beta = 1, 2, 3$ i = 1, 2, 3

 $-(h_i^l)_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_i l_{\beta R}$

mass term of the three charged leptons

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons there are 3x3x3=27 terms

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons there are 3x3x3=27 terms 3 left-handed fields (3 flavors) 3 right-handed fields (3 flavors) 3 Higgs fields

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons there are 3x3x3=27 terms 3 left-handed fields (3 flavors) 3 right-handed fields (3 flavors) 3 Higgs fields h_{i}^{l} is a 3x3 matrix of coupling coefficients, called the Yukawa matrix.

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons there are 3x3x3=27 terms 3 left-handed fields (3 flavors) 3 right-handed fields (3 flavors) 3 Higgs fields h_i^l is a 3x3 matrix of coupling coefficients, called the Yukawa matrix.

$\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

$$\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta} \overline{L}_{\alpha L} \tilde{\Phi}_{i} l_{\beta R} + \text{H.c.}, \qquad (1)$$

$$\mathcal{L}^{\nu} = -(h_i^{\nu})_{\alpha\beta} \overline{L}_{\alpha L} \Phi_i \nu_{\beta R} + \text{H.c.}, \qquad (2)$$

$$\mathcal{L}^{M} = -\frac{g}{M} (h_{ij}^{M})_{\alpha\beta} (\overline{L}_{\alpha L} \Phi_{i}) (\Phi_{j}^{T} L_{\beta R}^{c}) + \text{H.c.}, \quad (3)$$

mass term of three charged leptons mass term of three neutrinos

mass term of three Majorana neutrinos

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

mass term of the three charged leptons

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

Yes, because they have different mass

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

Yes, because they have different mass

In general L^l is not invariant after altering any of the flavor vectors.

 $\mathcal{L}^{l} = -(h_{i}^{l})_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_{i}l_{\beta R} + \text{H.c.},$

Yes, because they have different mass

In general L^l is not invariant after altering any of the flavor vectors.

But in *some* situations L^l remains invariant!

If so, we have found a flavor symmetry.

 $(h_i^l)_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_i l_{\beta R}$

 $(h_i^l)_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_i l_{\beta R}$

Simplifying the notation

 $(h_i^l)_{\alpha\beta}\overline{L}_{\alpha L}\tilde{\Phi}_i l_{\beta R}$ $\overline{l}_L (\tilde{\Phi}_i h_i^l) l_{R_i}$

Simplifying the notation

 $\overline{l}_L \left(\tilde{\Phi}_i h_i^l
ight) \, l_R$

3x3 matrix (for each *i*)

sum (over *i*) of three 3x3 matrices

=

one 3x3 matrix

Still the sum of 27 terms.

Still the sum of 27 terms.

Still the sum of 27 terms.

Alltogether we have three vectors.

Question:

Can we alter the three vectors without changing *L*?

That is:

Can we impose a symmetry on (a part of) *L*?

Relevance:

Imposing a flavor symmetry restricts masses and mixing (in case of leptons: neutrino mixing angles)

Insight in whether and how the SM could be extended

Why is the mixing between quarks and between leptons so drastically different

For overview and other work:

- F. Feruglio et al (2021)
- M. Holthausen et al (2013)
- C.S. Lam (2011)
- P.O. Ludl (2010)
- G. Branco *et al* (2012)
- P. Chaber *et al* (2018)

Relevance:

Imposing a flavor symmetry restricts masses and mixing (in case of leptons: neutrino mixing angles)

Insight in whether and how the SM could be extended

Why is the mixing between quarks and between leptons so drastically different

For overview and other work:

- F. Feruglio et al (2021)
- M. Holthausen et al (2013)
- C.S. Lam (2011)
- P.O. Ludl (2010)
- G. Branco et al (2012)
- P. Chaber et al (2018) (2HDM analysis)

$\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) \, l_{R_i}$

$\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) \, l_R$

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l) A_{lR} l_R \right)$
$\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) \, l_R$

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l) A_{lR} l_R \right)$

All three vectors are being altered by some linear operator *A*

Each *A* is a linear operator in a 3D flavor space. Lagrangian will in general change.

$\overline{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l) A_{lR} l_R \right)$

Each *A* is an operator in a 3D flavor space.

Lagrangian will in general change.

UNLESS:

- *A* is unitary
- A is a group action
- h_i^l is well chosen (three 3x3 matrices)

 $\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l \right) A_{lR} l_R$

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l \right) A_{lR} l_R \quad \text{is constant?}$

Can be solved algebraically by letting A be 3D representations of some group G.

That means: the *A*'s will be 3x3 matrices

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l \right) A_{lR} l_R$ is constant?

Can be solved algebraically by letting *A* be 3D representations of some group *G*.

- That means: the *A*'s will be 3x3 matrices
- Trivial solution for G being the trivial group.

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l \right) A_{lR} l_R \quad \text{is constant?}$

Can be solved algebraically by letting *A* be 3D representations of some group *G*.

That means: the *A*'s will be 3x3 matrices

Trivial solution for G being the trivial group.

We require:

- A's are 3D irreducible representations of G
- Not all reps are unfaithful
- h_i^l is a unique solution

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l \right) A_{lR} \, l_R$

Can be solved algebraically by letting A be 3D representations of some group G.

That means: the *A*'s will be 3x3 matrices

Trivial solution for *G* being the trivial group.

We require:

- A's are 3D irreducible representations of G
- Not all reps are unfaithful
- (h_i^l) is a unique solution

$\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) \, l_R$

 $\overline{l}_L\left(ilde{\Phi}_i h_i^l\right) l_R$

 $\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) l_R$

 $\mathcal{L}^l = -\bar{l}_L M^l l_R$

 $\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) l_R$

 $\mathcal{L}^l = -\bar{l}_L M^l l_R$

after symmetry-breaking

 $\overline{l}_L\left(\tilde{\Phi}_i h_i^l\right) l_R$

 $\mathcal{L}^l = -\bar{l}_L M^l l_R$

 $M^l = -\frac{1}{\sqrt{2}} v_i^* h_i^l$

 $\overline{l}_L\left(\tilde{\Phi}_i h_i^l\right) l_R$

 $\mathcal{L}^l = -\bar{l}_L M^l l_R$

 $M^l = -\frac{1}{\sqrt{2}} v_i^* h_i^l$

Mass matrix

 $\overline{l}_L \left(\tilde{\Phi}_i h_i^l \right) l_R$

 $\mathcal{L}^l = -\bar{l}_L M^l l_R$

VEV of Higgs *i* $M^{l} = -\frac{1}{\sqrt{2}} v_{i}^{*} h_{i}^{l}$

Mass matrix

$$\mathcal{L}^{l} = -\overline{l}_{L}M^{l}l_{R} + \text{H.c.}$$
$$\mathcal{L}^{\nu} = -\overline{\nu_{L}}M^{\nu}\nu_{R} + \text{H.c.}$$
$$\mathcal{L}^{M} = -\frac{1}{2}\overline{\nu_{L}}M^{M}\nu_{L}^{c} + \text{H.c.}$$

~

$$\mathcal{L}^{l} = -\overline{l}_{L}M^{l}l_{R} + \text{H.c.}$$
$$\mathcal{L}^{\nu} = -\overline{\nu_{L}}M^{\nu}\nu_{R} + \text{H.c.}$$
$$\mathcal{L}^{M} = -\frac{1}{2}\overline{\nu_{L}}M^{M}\nu_{L}^{c} + \text{H.c.}$$

-

$$M^{l} = -\frac{1}{\sqrt{2}}v_{i}^{*}h_{i}^{l}$$
$$M^{\nu} = \frac{1}{\sqrt{2}}v_{i}h_{i}^{\nu}$$
$$M^{M} = \frac{g}{M}v_{i}v_{j}h_{ij}^{M}.$$

$$\mathcal{L}^{l} = -\bar{l}_{L}M^{l}l_{R} + \text{H.c.}$$
$$\mathcal{L}^{\nu} = -\overline{\nu_{L}}M^{\nu}\nu_{R} + \text{H.c.}$$
$$\mathcal{L}^{M} = -\frac{1}{2}\overline{\nu_{L}}M^{M}\nu_{L}^{c} + \text{H.c.}$$

~

$$M^{l} = -\frac{1}{\sqrt{2}}v_{i}^{*}h_{i}^{l}$$
$$M^{\nu} = \frac{1}{\sqrt{2}}v_{i}h_{i}^{\nu}$$
$$M^{M} = \frac{g}{M}v_{i}v_{j}h_{ij}^{M}.$$

The mass matrices define the masses, and mixing

$$\mathcal{L}^{l} = -\overline{l}_{L}M^{l}l_{R} + \text{H.c.}$$
$$\mathcal{L}^{\nu} = -\overline{\nu_{L}}M^{\nu}\nu_{R} + \text{H.c.}$$
$$\mathcal{L}^{M} = -\frac{1}{2}\overline{\nu_{L}}M^{M}\nu_{L}^{c} + \text{H.c.}$$

~

$$M^{l} = -\frac{1}{\sqrt{2}} v_{i}^{*} h_{i}^{l}$$
$$M^{\nu} = \frac{1}{\sqrt{2}} v_{i} h_{i}^{\nu}$$
$$M^{M} = \frac{g}{M} v_{i} v_{j} h_{ij}^{M}.$$

The mass matrices define the masses, and mixing

$$\mathcal{L}^{l} = -\overline{l}_{L}M^{l}l_{R} + \text{H.c.}$$
$$\mathcal{L}^{\nu} = -\overline{\nu_{L}}M^{\nu}\nu_{R} + \text{H.c.}$$
$$\mathcal{L}^{M} = -\frac{1}{2}\overline{\nu_{L}}M^{M}\nu_{L}^{c} + \text{H.c.}$$

$$M^{l} = -\frac{1}{\sqrt{2}} v_{i}^{*} h_{i}^{l}$$
$$M^{\nu} = \frac{1}{\sqrt{2}} v_{i} h_{i}^{\nu}$$
$$M^{M} = \frac{g}{M} v_{i} v_{j} h_{ij}^{M}.$$

The mass matrices define the masses, and mixing

$\bar{l}_L A_L^{\dagger} \left((A_{\Phi}^* \tilde{\Phi})_i h_i^l) A_{lR} l_R \text{ is constant} \right)$

For which groups G do we find a solution?

Scope: *G* finite, order of G < 1032

Scope: *G* finite, order of G < 1032

There are about 50,000,000,000 groups of order < 1032

There are about 50,000,000,000 groups of order < 1032 There are 49,487,365,422 groups of order = 1024

There are about 50,000,000,000 groups of order < 1032 There are 49,487,365,422 groups of order = 1024

939 groups meet the criteria

There are about 50,000,000,000 groups of order < 1032 There are 49,487,365,422 groups of order = 1024

939 groups meet the criteria

6,012,859 vectors h^l (27D) were found, using GAP and Mathematica (same for h^{ν})

2130 of them are linearly independent

They imply masses of the leptons, and the neutrino mixing matrix

There are about 50,000,000,000 groups of order < 1032 There are 49,487,365,422 groups of order = 1024

939 groups meet the criteria

6,012,859 vectors h^l (27D) were found, using GAP and Mathematica (same for h^{ν})

2130 of them are linearly independent

They imply masses of the leptons, and the neutrino mixing matrix

There are about 50,000,000,000 groups of order < 1032 There are 49,487,365,422 groups of order = 1024

939 groups meet the criteria

6,012,859 vectors h^l (27D) were found, using GAP and Mathematica (same for h^{ν})

2130 of them are linearly independent

They imply masses of the leptons, and the neutrino mixing matrix

Consistent with experimental data?

Mixing angle example: group S_4 (order 24), assuming v are Dirac particles.

Implied mixing angles are functions of the v_i (since the mass matrices are):

$$M^{l} = -\frac{1}{\sqrt{2}}v_{i}^{*}h_{i}^{l}$$
$$M^{\nu} = \frac{1}{\sqrt{2}}v_{i}h_{i}^{\nu}$$

Mixing angle example: group S_4 (order 24), assuming v are Dirac particles

Angles of PMNS matrix

Mixing angle example: group S_4 (order 24), assuming v are Dirac particles

Angles of PMNS matrix

For a group and choice of 3D irreps we can calculate:

- -Implied mass ratios of charged leptons
- -Implied mass ratios of neutrinos
- -Implied mixing angles

We check neutrinos Dirac or Majorana

We find groups providing <u>one or more</u> of:

- A: Consistent mass ratios of charged leptons
- B: Consistent mass ratios of neutrinos
- C: Consistent neutrino mixing angles

for neutrinos being either Dirac or Majorana.

GAP-ID	Structure	3D Irreps (Faithful)	Dirac Mass	Maj. Mass	Dirac Mixing χ^2	Maj. Mixing χ^2
[12, 3]	A_4	1(1)	-	-	-	-
[21, 1]	T_7	2(2)	a	-	\mathbf{d}	-
[24, 12]	S_4	2(2)	$^{\mathrm{b,c}}$	-	21.1	-
GAP-ID	Structure	3D Irreps (Faithful)	Dirac Mass	Maj. Mass	Dirac Mixing χ^2	Maj. Mixing χ^2
----------	-----------	----------------------	-------------------	-----------	-----------------------	----------------------
[12, 3]	A_4	1 (1)	-	-	-	-
[21, 1]	T_7	2(2)	a	-	\mathbf{d}	-
[24, 12]	S_4	2(2)	$^{\mathrm{b,c}}$	-	21.1	-

Group [12,3]: nothing

GAP-ID	Structure	3D Irreps (Faithful)	Dirac Mass	Maj. Mass	Dirac Mixing χ^2	Maj. Mixing χ^2
[12, 3]	A_4	1 (1)	-	-	-	-
[21, 1]	T_7	2(2)	a	-	\mathbf{d}	-
[24, 12]	S_4	2(2)	$^{\mathrm{b,c}}$	-	21.1	-

Group [12,3]: nothing Group [21,1]: Dirac mass ratios OK

GAP-ID	Structure	3D Irreps (Faithful)	Dirac Mass	Maj. Mass	Dirac Mixing χ^2	Maj. Mixing χ^2
[12, 3]	A_4	1(1)	-	-	-	-
[21, 1]	T_7	2(2)	a	-	\mathbf{d}	-
[24, 12]	S_4	2(2)	$^{\mathrm{b,c}}$	-	21.1	-

Group [12,3]: nothing Group [21,1]: Dirac mass ratios OK Group [24,12]: Dirac mixing $\chi^2 = 21.1$

GAP-ID	Structure	3D Irreps (Faithful)	Dirac Mass	Maj. Mass	Dirac Mixing χ^2	Maj. Mixing
[12, 3]	A_4	1 (1)	-	-	-	-
[21, 1]	T_7	2(2)	a	-	\mathbf{d}	-
[24, 12]	S_4	2(2)	$^{\mathrm{b,c}}$	-	21.1	-
[39, 1]	T_13	4(4)	a	-	\mathbf{d}	-
[48, 3]	$\Delta(48)$	5(4)	a	a	\mathbf{d}	-
[48, 30]	A4:C4	4 (2)	\mathbf{b}	-	\mathbf{d}	-
[48, 48]	$C2 \times S4$	4 (2)	$^{\mathrm{b,c}}$	-	21.1	-
[60, 5]	A5	2(2)	b	-	d	-
[72, 42]	$C3 \times S4$	6(4)	$^{\mathrm{b,c}}$	- /	21.1	-
[84, 11]		9 (6)	a	a	\mathbf{d}	-
[96, 64]	$\Delta(96)$	6(4)	$^{\mathrm{a,b,c}}$	a,c	\mathbf{d}	0.0
[96, 68]		10(4)	a	a	\mathbf{d}	\mathbf{d}
[96, 186]	$C4 \times A4$	8(4)	b.c	-	21.1	-
[108, 15]	$\Sigma(36 \times 3)$	8 (8)	$^{\mathrm{b,c}}$	-	-	-
[120, 35]	$C2 \times A5$	4 (2)	\mathbf{b}	-	\mathbf{d}	-
[120, 37]	$C5 \times S4$	10 (8)	$^{\mathrm{b,c}}$	-	21.1	-
[150, 5]	$\Delta(150)$	8 (8)	$^{\mathrm{a,b,c}}$	$^{\mathrm{a,b,c}}$	\mathbf{d}	0.0
[192, 182]	$\Delta(96,2)$	12(4)	$^{\mathrm{a,b,c}}$	$^{\mathrm{a,b}}$	\mathbf{d}	0.0
[192, 944]	$C2 \times \Delta(96)$	12(4)	$^{\mathrm{a,b,c}}$	$^{\mathrm{a,c}}$	\mathbf{d}	0.0
[243, 19]	Z''(3,3)	24(18)	$^{\mathrm{a,c}}$	-	600	-
[432, 239]	$\Pi(1,2)$	16 (8)	\mathbf{b}	a	\mathbf{d}	\mathbf{d}
[729, 63]	Z''(3,4)	72 (54)	a.c	-	600	-

Conclusions:

 Δ (96) is the smallest group defining a flavor symmetry of neutrinos (masses and mixing angles)

Conclusions for the 3HDM

 Δ (96) is the smallest group defining a flavor symmetry of neutrinos (masses and mixing angles)

There are no groups of order < 1032 that can predict all masses and mixing angles of charged leptons and neutrinos <u>simultaneously</u>

Conclusions for the 3HDM

 Δ (96) is the smallest group defining a flavor symmetry of neutrinos (masses and mixing angles)

There are no groups of order < 1032 that can predict all masses and mixing angles of charged leptons and neutrinos simultaneously, *for the present criteria of the invariant eigenvectors*

Issues / improvements

Reconsider criteria, such as faithfulness, uniqueness of h, irreducibility

Some issues of non-unitary representations

Reliance on numerical methods

Computational efficiency

Thank you