Polarization effects in neutrino-nucleon interactions

Beata Kowal

University of Wroclaw

・ロト・日本・ヨト・ヨー シュル

Outline

Motivation

- ② Single Pion Production formalism
- Polarization of final particles
- Olarized target asymmery
- Summary

Results come from:

- Polarization transfer in weak pion production off the nucleon Krzysztof M. Graczyk and Beata E. Kowal Phys. Rev. D 97, 013001
- Spin asymmetry in single pion production induced by weak interactions of neutrinos with polarized nucleons
 Krzysztof M. Graczyk and Beata E. Kowal
 Phys. Rev. D 99, 053002

Neutrino oscillation

Measurement of oscillation parameters:

- squared mass differences Δm_{ii}^2 (periodicity)
- neutrino mixing angles θ_{12} , θ_{23} , θ_{13} of PMNS matrix
- leptonic CP violation δ_{CP} (asymmetry matter/anti-matter)

$$a_{CP} = P(\nu_l
ightarrow
u_{l'}) - P(\overline{
u}_l
ightarrow \overline{
u}_{l'})$$

Neutrino flavor state - a mixture of mass eigenstates.

$$P(\alpha \to \beta) = \left| \sum_{k} U_{\alpha k}^{*} U_{\beta k} e^{j \frac{m_{k}^{2} L}{2E}} \right|^{2}$$

Mass hierarchy (Letter of intent for KM3NeT 2.0,

Journal of Physics G) 43(8)

Neutrino interaction

Accelerator experiments, $E \sim 1 \text{GeV}$

Quasi-elastic scattering

Resonant pion production

$$\sigma^{\nu N} = \sigma(QE) + \sigma(1\pi(RES)) + \sigma(DIS) + \dots$$

10

Deep inelastic scattering

4

E,, (GeV) P. Lipari et al, Phys.Rev. Lett.74(1995) 4384

1.25

1.00

0.75

0.50 σ_{CC}/E_{ν}

0.25

0.00

(10⁻³⁸ cm²/deV)

Oscillation analysis base on the detection of the QE scattering ł

ddFRR [15]

o BNL 7-feet [16]

ANL 12-feet [17] ANL 12-feet [18]

Total CC

σ(ael)

 $a(1\pi)$

Neutrino oscillation

$$P(\alpha \rightarrow \beta) = \left| \sum_{k} U_{\alpha k}^{*} U_{\beta k} e^{j \frac{m_{k}^{2} L}{2E}} \right|^{2}$$

L-fixed distance

T2K neutrino oscillation results using 2017 data, C. Bronner

Lepton flavor appearance

 $\nu_{\mu} \rightarrow \nu_{\mu}$

or disappearance

$$\nu_{\mu} \rightarrow \nu_{e}$$

Energy distribution, nonmonoenergetic neutrino beam

Event displays from T2K beam interactions in

Super-Kamiokande > < = > < = >

Э

DQC

Energy reconstruction

Experiments base on the detection of the QE scattering

 $\nu_l + n \rightarrow l^- + p$

Energy from I^- parameters.

Fake QE-like events 0π : SPP, 2p2h, DIS

True QE event and background in *ν*-nucleus scattering (*Neutrinos on nuclei*, U.Mosel, Cern Courier, 09.2017)

Dashed - distributions of zero pion events vs true energy, solid - distribution vs reconstructed energies. Phys. Rev. C 86, 054606

Single Pion Production

Charged current process

$$u_l(k) + \mathcal{N}(\mathcal{p})
ightarrow l(k') + \mathcal{N}'(\mathcal{p}') + \pi(k_\pi)$$

- the SPP background of the QE events
- we need to test and develop models of SPP

(Neutrinos on nuclei, U.Mosel,

Cern Courier, 09.2017)

 ν_l - neutrino, *l* - charged lepton *N* - initial nucleon, *N'* -final nucleon π - pion

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < ○ </p>

Single Pion Production

Two mechanisms in the pion production:

 resonant (RES) - the nucleon is excited to the resonance state

 $N \to N^*$

which decays

$$N^* \rightarrow \pi N$$

• nonresonant - no $N \rightarrow N^*$ transition

Different models of SPP

 to test models we should distinguish RES and NB (nonresonant background)

- Different models of SPP
- to test models we should distinguish RES and NB (nonresonant background)

Similar shape - different components

SPP Cross-section in two different models. Solid line - cross-section in two models of SPP. Red line - interference between RES and NB, dotted - RES, dashed-dotted - NB Some new observables are needed to study RES and NB, relative phase between amplitudes

$$|A_{RES} + e^{i\psi}A_{NB}|^2$$

イロト (四) (モート (日) (日) (の) ()

- It's difficult to distinguish RES and NB the spin averaged cross-section has been measured
- We propose polarization observables

 Some new observables are needed to study RES and NB, relative phase between amplitudes

$$|A_{RES} + e^{i\psi}A_{NB}|^2$$

- It's difficult to distinguish RES and NB the spin averaged cross-section has been measured
- We propose polarization observables

 Some new observables are needed to study RES and NB, relative phase between amplitudes

$$|A_{RES} + e^{i\psi}A_{NB}|^2$$

・ロト・西ト・ヨト・ヨト・ 日・ うへの・

- It's difficult to distinguish RES and NB the spin averaged cross-section has been measured
- We propose polarization observables

- Polarization observables in QE:
 - analyzing T-violation and second class currents (e.g. A. Fatima et al. Eur. Phys. J. A (2018))
 - strange particles production in $\bar{\nu}_{\mu}$ -nucleon (C.H. Llewellyn Smith, Phys.Rept. 3 (1972))
 - τ polarization in $\bar{\nu}_{\tau}\text{-nucleus}$ (K. Graczyk, Nucl.Phys. A748 (2005))
- Polarization observables in SPP: (oversimplified model, RES contribution, polarization of final lepton)
 K. Hagiwara et al., Nucl.Phys. B668 (2003),
 V. A. Naumov et al., Phys. of Particles and Nuclei 35(7) (2004)

● We present new results in SPP

- Polarization observables in QE:
 - analyzing T-violation and second class currents (e.g. A. Fatima et al. Eur. Phys. J. A (2018))
 - strange particles production in $\bar{\nu}_{\mu}$ -nucleon (C.H. Llewellyn Smith, Phys.Rept. 3 (1972))
 - τ polarization in $\bar{\nu}_{\tau}$ -nucleus (K. Graczyk, Nucl.Phys. A748 (2005))
- Polarization observables in SPP: (oversimplified model, RES contribution, polarization of final lepton)
 K. Hagiwara et al., Nucl.Phys. B668 (2003),
 V. A. Naumov et al., Phys. of Particles and Nuclei 35(7) (2004)

● We present new results in SPP

- Polarization observables in QE:
 - analyzing T-violation and second class currents (e.g. A. Fatima et al. Eur. Phys. J. A (2018))
 - strange particles production in $\bar{\nu}_{\mu}$ -nucleon (C.H. Llewellyn Smith, Phys.Rept. 3 (1972))
 - τ polarization in $\bar{\nu}_{\tau}$ -nucleus (K. Graczyk, Nucl.Phys. A748 (2005))
- Polarization observables in SPP: (oversimplified model, RES contribution, polarization of final lepton)
 K. Hagiwara et al., Nucl.Phys. B668 (2003),
 V. A. Naumov et al., Phys. of Particles and Nuclei 35(7) (2004)

We present new results in SPP এলাক বিটি কিল্প ইটা বিটাল ই তাওকে

SPP formalism - leptonic and hadronic plane

 $q^{\mu} = k^{\mu} - k'^{\mu}$ 4-momentum transfer SPP in charged current N_{ν}

$$\begin{array}{ll} \nu_{\mu} + \pmb{p} \to \mu^{-} + \pmb{p} + \pi^{+} & \bar{\nu}_{\mu} + \pmb{p} \to \mu^{+} + \pmb{p} + \pi^{-} \\ \nu_{\mu} + \pmb{n} \to \mu^{-} + \pmb{p} + \pi^{0} & \bar{\nu}_{\mu} + \pmb{p} \to \mu^{+} + \pmb{n} + \pi^{0} \\ \nu_{\mu} + \pmb{n} \to \mu^{-} + \pmb{n} + \pi^{+} & \bar{\nu}_{\mu} + \pmb{n} \to \mu^{+} + \pmb{n} + \pi^{-} \end{array}$$

(中) (四) (로) (로) (로) (로) (3)

SPP formalism

Nonresonant background

Two models considered:

HNV: Hernandez, Nieves, Valverde, PRD76 033005 (2007) FN: Fogli, Nardulli, Nucl.Phys. B 160 (1979)

different formulas of currents, form-factors and couplings

(Amplitudes calculated using FORM language, compared with Fayncalc)

Figure: Background diagrams

Sac

SPP formalism

 $\Delta(1232)$ resonance

HNV: Hernandez, Nieves, Valverde, PRD76 033005 (2007) FN: Fogli, Nardulli, Nucl.Phys. B 160 (1979)

Sac

15

Figure: Resonance contributing to the SPP

 Δ -propagator $P_{\alpha\beta}(\rho_{\Delta})$:

$$P_{\alpha\beta}(p) = -\frac{(\not\!p + M_{\Delta})}{p^2 - M_{\Delta}^2 + iM_{\Delta}\Gamma_{\Delta}(p)} \left(g_{\alpha\beta} - \frac{\gamma_{\alpha}\gamma_{\beta}}{3} - \frac{2p_{\alpha}p_{\beta}}{3M_{\Delta}^2} + \frac{p_{\alpha}\gamma_{\beta} - \gamma_{\alpha}p_{\beta}}{3M_{\Delta}}\right)$$

different resonance width Γ_Δ and 6 form-factors of Δ

(Amplitudes calculated using FORM language, compared with FaynCalc)

Polarization of the final particles in SPP

Polarization of the final particles

Angular distribution of the particles, in the laboratory frame ζ and ξ - spin components of the lepton and the nucleon respectively.

Three directions: L (longitiudinal), T (transverse), N (normal)

Polarization of the final particles

 ζ and ξ - spin components of the lepton and the nucleon respectively.

 \mathcal{P}^{μ} - polarization

 s^{μ} - spin of a particle

$$\mathrm{d}\sigma\sim rac{1}{2}|\mathcal{M}_{\mathrm{ff}}|^2\left(1+\mathcal{P}^{\mu}\mathrm{s}_{\mu}
ight)$$
 (1)

Three components of \mathcal{P}^{μ} : \mathcal{P}_{L} (longitudinal), \mathcal{P}_{T} (transverse), \mathcal{P}_{N} (normal)

Polarization of lepton

$$\mathcal{P}^{\mu} = \mathcal{P}_{L}\zeta_{L}^{\mu} + \mathcal{P}_{T}\zeta_{T}^{\mu} + \mathcal{P}_{N}\zeta_{N}^{\mu}$$
(2)

Polarization of nucleon

$$\mathcal{P}^{\mu} = \mathcal{P}_L \xi^{\mu}_L + \mathcal{P}_T \xi^{\mu}_T + \mathcal{P}_N \xi^{\mu}_N$$
(3)

Degree of polarization

$$\mathcal{P} = \sqrt{\mathcal{P}_L^2 + \mathcal{P}_N^2 + \mathcal{P}_{\mathcal{T}_Q \otimes \mathbb{C}}^2}$$
18

<ロト <回ト < 三ト < 三ト 、 三 の Q () 20

 μ - a light particle - almost polarized. Partially polarized at low scattering angle.

Dependence of the polarization $\mathcal{P}(d^2\sigma/(d\theta dE'))$ on the scattering angle θ , $\omega =$ 0.2GeV, E = 1GeV

P_N is given by the RES-NB interference

Non-diagonal elements - interference of diagrams

Contribution from different diagrams for polarization $\mathcal{P}_N(d^2\sigma/(d\Omega dE'))$, $\omega = 0.2 GeV$, E = 1.GeV.

э

Sac

イロト イポト イヨト イヨト 500 æ 24

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ─ 臣 = ∽) � @ 25

Interference RES-NB in the P_N - distortion of sinusoidal character: $\mathcal{P}_N \sim a_1 \sin(\phi_\pi)$ (main part) + $a_2 \sin(2\phi_\pi) + a_3 \sin^2(\phi_\pi)$

Polarized target asymmetry in SPP

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三三 - の々で

Polarized target asymmetry

Angular distribution of the particles, in the laboratory frame χ_L , $\chi_T(\phi)$ - spin components of the nucleon.

 χ_L - spin along the ν flux $\chi_T(\phi)$ - spin perpendicularly to the ν flux, ϕ - angle between spin and normal to scattering plane

DQC

Polarized target asymmetry

 $\chi_L, \chi_T(\phi)$ - spin components of the nucleon. \mathcal{A}^{μ} - asymmetry

$$\mathcal{A}^{\mu} = \mathcal{A}_{T}(\phi)\chi^{\mu}_{T}(\phi) + \mathcal{A}_{L}\chi^{\mu}_{L} \quad (5)$$

 s^{μ} - spin of a particle

$$\mathrm{d}\sigma\sim rac{1}{2}|\mathcal{M}_{\mathrm{ff}}|^2\left(1+\mathcal{A}^{\mu}\mathrm{s}_{\mu}
ight)$$
 (6)

Two direction of target polarization:

Target polarized longitudinally to the beam

$$\mathcal{A}_{L} = \frac{\mathrm{d}\sigma(\chi_{L}^{\mu}) - \mathrm{d}\sigma(-\chi_{L}^{\mu})}{\mathrm{d}\sigma(\chi_{L}^{\mu}) + \mathrm{d}\sigma(-\chi_{L}^{\mu})}$$
(7)

Target polarized perpendicularly to the beam

$$\mathcal{A}_{T} = \frac{\mathrm{d}\sigma(\chi_{T}^{\mu}) - \mathrm{d}\sigma(-\chi_{T}^{\mu})}{\mathrm{d}\sigma(\chi_{T}^{\mu}) + \mathrm{d}\sigma(-\chi_{T}^{\mu})} \tag{8}$$

Longitudinally polarized target

Figure: Dependence of $A_L(\sigma)$ on the energy of neutrino

Sac

Longitudinally polarized target

For some channels A_L is quite model dependent and *NB* contribution modifies significantly.

Figure: Dependence of $\mathcal{A}_{L}(\sigma)$ on the energy of neutrino

31

э

Perpendicularly polarized target

Contributions from different diagrams to $A_T(d\sigma/d\phi)$, $\phi = 0$, only RES-NB interference contributes

Diagonal elements - square of amplitudes of diagrams Non-diagonal elements - interference of diagrams

32

3

Sac

Perpendicularly polarized target

Contributions from different diagrams to $A_T(d\sigma/d\phi)$, $\phi = 90^o$, contribution from all diagrams

Diagonal elements - square of amplitudes of diagrams Non-diagonal elements - interference of diagrams

33

3

Sac

• \mathcal{A}_T has a form

$$\mathcal{A}_{T}(\phi) = a_{1} \cos(\phi) + a_{2} \sin(\phi)$$

- *A_T*(φ) is dominated by the sinusoidal part *a*₂
- for $\phi = 0$ only a_1 contributes RES interference with NB

Summary

- We presented new polarization observables for SPP
- Polarization observables are sensitive to details of the models
- The normal polarization is given by NB-RES contribution, has information about phase between them
- The asymmetry is sensitive to details of the models
- The perpendicular asymmetry is given by NB-RES contribution for $\phi = 0$
- The observables we propose can help us to construct theoretical model of SPP

The calculations have been carried out in Wroclaw Centre for Networking and Supercomputing (http://www.wcss.wroc.pl), grant No. 268.

