Muon g - 2 and Lepton Flavour Violation in the MRSSM

Dominik Stöckinger, TU Dresden

Collaborators: Wojciech Kotlarski, Hyejung Stöckinger-Kim

Matter to the Deepest Conference, Katowice, September 2019

Motivation: low-energy lepton observable g - 2

 $(g-2)_{\mu}$: $a_{\mu}^{\text{Exp.}} - a_{\mu}^{\text{SM}} = (28.1 \pm 6.3^{\text{Exp.}} \pm 3.6^{\text{Th}(\text{KNT18})}) \times 10^{-10}$ New experiment at Fermilab(E969): ~ 0.16 ppm

Question in preparation of new experiment:

- Which models predict what?
- Outcome: interesting scenarios, other experimental tests?

 $[{\rm DS~'06}] \\ \rightarrow {\rm Dark~Matter,~LHC~constraints,~} M_h$

 $\begin{array}{l} \text{Heaviest SUSY} \\ (\tan\beta \rightarrow \infty) \\ \text{[Bach,Park,DS,Stöckinger-Kim '15]} \end{array}$

 \rightarrow Higgs couplings, flavour, vacuum

stability

max. a_µ) x 10¹⁰

⁰ 20 40 60 80 100 M_A [GeV]</sub>

[Cherchiglia,DS,Stöckinger-Kim '17] $\rightarrow \tau$ -physics, LHC-Higgs/Yukawa = = = \sim \sim

 $M_H = M_{H^\pm} = 250 \text{ GeV}$

Motivation: more low-energy lepton observables

 $(g-2)_{\mu}$: $a_{\mu}^{\text{Exp.}} - a_{\mu}^{\text{SM}} = (28.1 \pm 6.3^{\text{Exp.}} \pm 3.6^{\text{Th(KNT18)}}) \times 10^{-10}$ New experiment at Fermilab(E969): ~ 0.16 ppm

[Kersten, Park, DS, Velasco-Sevilla '14]

$$\mu \rightarrow e\gamma$$
: $B_{\mu^+ \rightarrow e^+\gamma} = \frac{\Gamma(\mu \rightarrow e\gamma)}{\Gamma(\mu \rightarrow e\nu_{\mu}\bar{\nu}_{e})} < 4.2 \times 10^{-13}$ (MEG 2016)
Future MEG-II: expect to improve sensitivity $\sim 5 \times 10^{-14}$

 $\mu \rightarrow e: B_{\mu Au \rightarrow eAu} < 7 \times 10^{-13}$ (SINDRUM 2006) Future COMET and Mu2E: expected 7.2 × 10⁻¹⁵

Question:

• (Non-)correlations? Sensitivity to which models?

Motivation: Supersymmetry with R-symmetry

- Supersymmetry is one of the most attractive ideas for BSM
- It becomes even more attractive with R-symmetry [Kribs, Poppitz, Weiner]
- MRSSM is realization of SUSY distinct from MSSM
- Surprisingly rich and successful phenomenology [Diessner, Kalinowski, Kotlarski, DS'14.'19]

Question:

- What are the possible MRSSM contributions to a_{μ} ?
- (Non-)correlations with LFV?

First answer/preview

Next questions/remainder of the talk:

- Why? Detailed influence of MRSSM parameters?
- Lepton flavour violation LFV study!

3

< 口 > < 同 >

< E

・ 同 ト ・ ヨ ト ・ ヨ ト

- MRSSM: beautiful alternative realization of SUSY
- R-symmetry: conserved U(1) R-charge (in superspace: $\theta \rightarrow e^{i\alpha}\theta$)
- no sfermion L/R mixing
- Dirac gauginos/Higgsinos, hence Dirac partner fields $\hat{R}_{u,d}$, \hat{S} , \hat{T} , \hat{O}

Minimal: fewer parameters than MSSM (though more EW par.)

 $W_{\text{MRSSM}} = \ldots + \mu \hat{H}_u \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u + \Lambda_u \hat{H}_u \hat{T} \hat{R}_u + y_u \hat{Q} \hat{H}_u \hat{U}$

Phenomenological successes:

- natural protection from FCNC [Kribs, Poppitz, Weiner]
- smaller LHC cross section, lower masses possible [Diessner, Kalinowski, Kotlarski, DS '19]
- new Λ , λ -par. increase M_h but don't mess up EWPO precision [DKKS 14]
- dark matter possible, and light extra Higgs/sparticles [DKKS 15]

・ロト ・同ト ・ヨト ・ヨト

g - 2: compare standard/R-symmetric SUSY

new Yukawa-like terms for Dirac partners $\hat{R}_{u,d}$, \hat{T} , \hat{S} $W_{\text{MRSSM}} = \ldots + \mu \hat{H}_u \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u + \Lambda_u \hat{H}_u \hat{T} \hat{R}_u + y_u \hat{Q} \hat{H}_u \hat{U}$

• Perturbativity and EWPO constrain Λ_i, λ_i

g - 2: compare standard/R-symmetric SUSY

new Yukawa-like terms for Dirac partners $\hat{R}_{u,d}$, \hat{T} , \hat{S} $W_{\text{MRSSM}} = \ldots + \mu \hat{H}_u \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u + \Lambda_u \hat{H}_u \hat{T} \hat{R}_u + y_u \hat{Q} \hat{H}_u \hat{U}$

• Perturbativity and EWPO constrain Λ_i, λ_i

g - 2: compare standard/R-symmetric SUSY

A (1) > A (2) > A (2)

$$a_{\mu}^{\text{MSSM,WHL}} \approx \frac{g_2^2 \tan \beta}{16\pi^2} \frac{5}{12} \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}, \qquad a_{\mu}^{\text{MI}(WHL/cn)} \approx \frac{g_2 \Lambda_d}{16\pi^2} \frac{5}{12} \frac{m_{\mu}^2}{M_{\text{SUSY}}^2}$$
(1)
similar for BHL, BHR,... (2)

Results for a_{μ} in the MRSSM: WHL and BHR

-

Results for a_{μ} in the MRSSM: general

Reason and details:

- no tan β enhancement, only enhancement by Λ_d, λ_d
- Large a_{μ} at most if several SUSY particles below 200 GeV and $\Lambda_i \ll g_2$

a_{μ} vs LFV observables

> < E > < E >

a_{μ} vs LFV observables

Expect:

- **()** a_{μ} and $\mu \rightarrow e\gamma$ always correlated
- **2** correlation with $\mu \rightarrow e$ conversion if dipole A_2 dominates (large a_{μ})
- \bigcirc this is usually not the case \rightsquigarrow interesting non-correlation

伺 ト く ヨ ト く ヨ ト

a_{μ} vs LFV observables

LFV in MRSSM: flavour-transitions in slepton sector $\mathcal{L} = \ldots - (m_{\tilde{i}}^2)_{12} \tilde{l_1} \tilde{l_2}$

- LFV \propto dimensionless parameters $\delta_{12}^L \equiv \frac{(m_{\tilde{l}}^2)_{12}}{m_{\tilde{l},11}m_{\tilde{l},22}}$, $\delta_{12}^R \equiv \frac{(m_{\tilde{e}}^2)_{12}}{m_{\tilde{e},11}m_{\tilde{e},22}}$
 - otherwise $(g-2)_{\mu}$ and $\mu
 ightarrow e\gamma$ depend on same parameters
 - $\mu \rightarrow e$ in addition: Z-couplings to Higgsinos and sleptons; squarks

Results for $\mu \to e \gamma$ in the MRSSM $_{\rm [Kotlarski,DS,Stöckinger-Kim]}$

$$a_{\mu} \propto A_2^{ar{\mu}\mu L} + A_2^{ar{\mu}\mu R} \qquad B_{\mu o e\gamma} \propto |A_{2
m red}^{ar{e}\mu L}|^2 imes |\delta_{12}^L|^2 + |A_{2
m red}^{ar{e}\mu R}|^2 imes |\delta_{12}^R|^2$$

Expected: a_{μ} and $\mu \rightarrow e\gamma$ correlated Result: True \rightsquigarrow distinctive patterns Apply: max. δ 's assuming exptl. limits \rightsquigarrow tight!

Results for $\mu \rightarrow e$: details (sample scenario BHR)

$$R(N)\equiv rac{B_{\mu N
ightarrow eN}}{B_{\mu
ightarrow e\gamma}} \propto rac{|A_2,A_1,A_Z,A_{
m box}|^2}{|A_2|^2}$$

 $R^{\text{only }A_2}(AI) = 0.0026$

(dependence on the δ 's essentially drops out)

Especially for A_2 dominance: perfect correlation [Kitano, Koike, Okada, 2002]

(日) (同) (三) (三)

3

Results for $\mu \rightarrow e$: details (sample scenario BHR)

Expected: correlation if dipole A_2 dominates • $\mu \rightarrow e\gamma$ MEG limit determines the max. possible $\mu \rightarrow e$ rate Result: often impact of form factors A_1 , A_Z , $A_{box} \rightarrow$ non-correlation • Large $\lambda_{\mu} \rightarrow A_Z$ dominance (Z-Higgsino coupling $\sim v_{\mu}\lambda_{\mu}$) Results for correlation $\frac{\mu \rightarrow e}{\mu \rightarrow e\gamma}$ in the MRSSM

Conclusions

- R-symmetric SUSY challenges usual views on SUSY!
 - very different from standard SUSY, no MSSM limit
 - phenomenologically rich, viable for smaller M_{SUSY}
 - Interplay $a_\mu \ / \ \mu
 ightarrow e \gamma \ / \ \mu
 ightarrow e$
- MSSM: a_{μ} large and LFV correlation pattern
- MRSSM: a_{μ} small, not $\propto \tan \beta$
- Suppose a_{μ} large and MEG-limit $(\mu
 ightarrow e \gamma)$ met
 - need very small/compressed M_{SUSY} , $\Lambda_i \gg g_i$
 - LFV-parameters δ_{12} very small \rightsquigarrow non-generic!
 - Upper limit on $\mu \rightarrow e \rightsquigarrow$ No COMET signal possible!
- If a_{μ} small
 - Larger/non-compressed masses possible
 - COMET signal possible! Enhancements $\propto \Lambda_u \dots$

• a_{μ} is hint for BSM — MSSM and MRSSM are viable and motivated

• New a_{μ} and LFV measurements could distinguish!

