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Motivation

precision calculations:

need hints where exactly the SM is failing

one of the points of interest: the Higgs sector → necessarily includes
calculation with various scales (at the very least mt , mH and Mandelstam
variables)

example: highly-boosted Higgs production. interesting in order to rule out an
effective point-like ggH-coupling. first calculations at NLO (two loops) only
last year (numerical or using expansions in the IBPs)

[Jonas, Kerner, Luisoni ’18, Lindert et al. ’18]

⇒ to obtain independent NLO result for this and similar processes: develop
formalism for asymptotic expansions within new regularization technique
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Motivation

Loop-tree duality:

Loop-tree duality (LTD) is still a new method, need to explore possible
applications

formalism allows to conveniently identify and interpret divergences in the
integrand

integrands are functions of Euclidean and not Minkowski momenta → allows
to determine hierarchies between the scales and scalar products and thus
opens the possibility for well-defined asympotic expansions
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Loop-tree duality theorem (LTD)

use Cauchy residue theorem:
∫
`0
→
∑

residues

LTD theorem [Catani et al. ’08]∫
`

N(`)
∏
i

GF (qi ) = −
∑
i

∫
`

N(`)
∼
δ(qi )

∏
j 6=i

GD(qi ; qj),

∼
δ(qi ) = 2πi θ(qi,0) δ(q2

i −m2
i )

dual propagator:

GD(qi ; qj) =

1

q2
j −m2

j − i0η · (qj − qi︸ ︷︷ ︸
kji

)

η may be any future-like vector, typically choose η = (1, 0)
with the energy-component integrated out, the remaining loop
three-momentum is Euclidean:∼
δ(qi )q

2
j =

∼
δ(qi )

(
k2
ji + 2kji,0q

(+)
i,0 − 2kji · qi + m2

i

)
, where q

(+)
i,0 =

√
m2

i + qi2

Judith Plenter (IFIC-UV/CSIC) Expansions through LTD 3rd September 2019 4 / 19



Four-dimensional unsubtraction

[Sborlini, Driencourt-Mangin, Hernández-Pinto, Rodrigo ’16]

NLO corrections:

σ(1) =

∫
m

dσ
(1,R)
virtual +

∫
m+1

dσ
(1)
real

σ
(1,R)
virtual: LTD expresses loop integral through phase-space integral

introduce suitable mapping between loop and external momenta

⇒ cancellation of soft and collinear divergences at integrand level

can be performed entirely in four dimensions

succesful LTD applications to:

physical cross-section for γ∗ → qq̄(g) [Sborlini et al. ’16]

extended to massive particles [Sborlini, Driencourt-Mangin, Rodrigo ’16]

amplitude for gg → H and H → γγ [Driencourt-Mangin, Rodrigo, Sborlini ’18]

H → γγ at two loops [Driencourt-Mangin et al. ’19]
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Expansions through LTD: plan

apply loop-tree duality theorem to amplitude

expand dual integrand

integrate
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Objective for expansion

expansion shall be:

well-defined, this we understand to mean that
I expansion does not fundamentally change the analytic behaviour of the

amplitude
I convergence at integrand-level in all of the integration space, except for

possibly in a limited region around the divergences

simplify either the calculation or the result

will have to hold up in comparison with Expansion by Regions
[Beneke, Smirnov ’98]
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toy amplitude

whole range of problems in a physically sensible amplitude: many scales, ≥ 2
loops, multiple legs (angular dependence of the integrand), above threshold

⇒ study benchmark toy amplitudes

A(1)
n =

∫
`

(GF (`;m))n GF (`− p;M)

n=2 finite amplitude

n=1 singular in the UV

`

`− p

renormalization trough local UV
counter-term:

A(1,R)
1 = A(1)

1 −A
(1,cnt)
1,UV ,

A(1,cnt)
1,UV =

∫
`

(GF (`;µ))2

various limits to be studied:
I one large mass: M2 � m2, p2

I large external momentum:
p2 � M2,m2

I threshold:
β = 1− p2

(m+M)2 → 0
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identifiying divergences

most important property of amplitudes are their divergences

LTD amplitude allows to easily identify divergences and their meaning:

−
∑
i

∫
`

N(`)
∼
δ(qi )

∏
j 6=i

GD(qi ; qj)

consider the on-shell dual propagator:

∼
δ(qi )GD(qi ; qj) ∼

θ(qi,0) δ(q2
i −m2

i )(
qj,0 − q

(+)
j,0

)(
qj,0 + q

(+)
j,0

)
− i0η · kji

, kji = qj − qi

=
δ
(
qi,0 − q

(+)
i,0

)
2q

(+)
i,0 λ

+−
ij λ++

ij

, λ±±ij = ±q(+)
i,0 ± q

(+)
j,0 + kji,0

causal unitarity threshold represented by λ++
ij → 0

unphysical thresholds appear at λ+−
ij → 0 in two cuts at once and cancel

conditions for these limits to occur are easily derived using this notation
[Aguilera-Verdugo, Driencourt-Mangin, JP, Raḿırez-Uribe, Rodrigo, Sborlini, Torres Bobadilla, Tracz

arXiv:1904.08389 ]
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the dual propagator and general expansion

first identify divergences in propagator (unphysical ones may be eliminated by
a different choice of loop momentum)

dual propagator may be written as

GD(qi ; qj) =
1

2qi · kji + Γji + ∆ji − i0η · kji
, Γji + ∆ji = m2

i −m2
j + k2

ji

choose parameters s.t.: |2qi · kji + Γji | > |∆ji |

=
∞∑
n=0

(−∆ji )
n

(2qi · kji + Γji − i0η · kji )n+1

additional condition on parameters: want that there are Q2
i and rij s.t.

2qi · kji + Γji =
Q2

i

x
(rij + xi ) (rijxi + 1) , xi =

|`|+
√

`2 + m2
i

mi
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the dual propagator and general expansion

if this parametrization is possible the toy amplitudes introduced simplify:

A(1,R)
1 =

1

16π2

[
2− M2 −m2

2p2
log

(
M2

m2

)
− log

(
M ·m
µ2
UV

)

− m2

Q2
1

∞∑
n=0

(
c(n)
r12

log(r12) + c
(n)
1

)
− M2

Q2
2

∞∑
n=0

(
c(n)
r21

log(r21) + c
(n)
1

)]

the remaining integrals are of the type

∞∫
1

dx

(r + x)(rx + 1)± i0
=

log(r ± i0)

r2 − 1
, ∀ |r | < 1

so the coefficients are proportional to (r2 − 1)−1
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the dual propagator and general expansion

if this parametrization is possible the toy amplitudes introduced simplify:

A(1,R)
1 =

1

16π2

[
2− M2 −m2

2p2
log

(
M2

m2

)
− log

(
M ·m
µ2
UV

)

− m2

Q2
1

∞∑
n=0

(
c(n)
r12

log(r12) + c
(n)
1

)
− M2

Q2
2

∞∑
n=0

(
c(n)
r21

log(r21) + c
(n)
1

)]

local renormalization required only for the first two terms of the expansion

further orders only modify the sums of coefficients (i.e. higher-order terms
can be calculated numerically in 4 dimensions)

solution is general without need to specify a limit

divergences in a propagator correspond to rij < 0

Judith Plenter (IFIC-UV/CSIC) Expansions through LTD 3rd September 2019 11 / 19



expansions for scale hierarchies

if the chosen process and limit contains a hierarchy between scales a set of
simple rules can be followed to determine the parameters

1 with Q2
i = ±Q2 and Q the large scale

Γji = Q2
i

(
1 + rij

2
)
, ∆ji = m2

i −m2
j + k2

ji − Γji , rij =
mikji,0
Q2

i

2 fix the sign of Q2
i : it directly determines the sign of rij (always reproduce the

analytic structure of the original amplitude)

no integrations necessary, just insert the determined parameters rij ,Qi in the
solution
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one mass large

consider explicitly the large mass limit for the toy amplitude A(1)
1/2:

M2 � m2, p2
`

`− p

the two appearing dual propagators are:

GD(`; q1) =
1

−2` · p + p2 + m2 −M2

=
∞∑
n=0

(
−m2 − p2 −M2r2

1

)n
(−2` · p −M2 (1 + r2

1 ))
n+1

GD(q1; `) =
1

2q1 · p + p2 −m2 + M2

=
∞∑
n=0

(
m2
)n

(2q1 · p + M2 (1 + r2
2 ))

n+1

r1 =
m2p2

M4

1 2
| l

|

10-3

10-4

10-5

rel. error

n=0

n=1

n=2 r2 =
p2

M2

no need to integrate, just use the formula provided before

relative error of result for A(1,R)
1 at order n = 1, 2 : 2.7%, 0.03%
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alternative: one mass large through Taylor expansions

loop energy in the LTD integrand is fixed, remaining loop three-momentum is
Euclidean

⇒ no cancellations within scalar products
any Taylor expansion still makes implicit assumptions about the size of the
loop three-momentum

⇒ combine various sections, s.t. the expansion converges at integrand-level for
any value of loop three-momentum |`|

A(1)
n =

∫ ∞
0

d|`| A(1)
n (|`|)

=

∫ λ

0

d|`| TA(1)
n (|`|, 0) +

∫ ∞
λ

d|`| TA(1)
n (|`|,∞)

m M
λ

full result

1st order

2nd order

3rd order

4th order

full integrand

1st order

2nd order

3rd order

m p0 λ M
l


determine the switch point λ
through extrema in the result
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large external momentum

in the limit of large external momentum the amplitude is considered above
threshold

p2 � M2,m2

following the set of rules the pole is reproduced in the expanded amplitude
but not its position

| l

|

GD(l,q1), Cut1

full

n=0

n=1

n=2

obtain result from general formula again, no need for integration

relative error of result for A(1,R)
1 at order n = 1, 2, 3 : 0.24%, 0.06%, 0.02%
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threshold expansion

there are other types of limits that do not consist of having a large difference
between the sizes of scales

→ one such limit is the threshold expansion

β = 1− p2

(m + M)2
→ O

actually two distinct limits: approaching the threshold from below or from
above

small parameter of expansion is essentially

|−∆ji |
|2qi · kji + Γji − i0η · kji |

→ minimize this? → leads to |r1| = 1. coefficients of expansion diverge

⇒ more important to consider behaviour of the physical threshold!
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threshold expansion

x
(±)
div =

M + m

2m
√

1− β

[
2m

m + M
− β ±

√
−β
(

4mM

(m + M)2
− β

)]

for β → 0 the pole in the integrand
moves towards x = 1
(integration goes from 1 to ∞)

also in the case below threshold
(β → 0+) the pole is the most
important property of the
amplitude ⇒ complex r1

expanding xdiv gives

r1 = −1 +

√
M

m

√
−β +O (β)

β→0−

β→0+

Re x

Im x
x (+)

div

x (−)

div

relative error for A(1,R)
1 : M/m = 3

β n = 1 n = 2 n = 3
−0.1 0.06% 4 · 10−6 5 · 10−8

+0.1 0.2% 2 · 10−5 2 · 10−7
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x
(±)
div =

M + m

2m
√
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√
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scalar three-point function

consider amplitudes with more external legs

three-point function A(1)
3 =

∫
`
GF (q1, q12, q3) (p1 = −p2, equal masses M)

A(1)

3 = −
∫
`

{
δ̃ (q1; M)

(−2q1 · p1)(2q1 · p2)
+

δ̃ (`; M)

(−2` · p2)(−2` · p12 + s12 + ı0)
+

δ̃ (`; M)

(2` · p1)(2` · p12 + s12)

}

angular dependence not in the propagators to be expanded

example: large mass expansion

A(1)

3 =

∫
`

δ̃ (`; M)

(2` · p12)(` · p1)

∑
n=1

(
s12

2` · p12

)
2n

=
1

16π2

1

4M2

(
1 +

r

12
+

r 2

90

)
+O(r 3), r =

s12

M2

additional strategies will be necessary for more legs, different internal masses,
more loops, etc.
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Conclusion

development of a formalism for well-defined asymptotic expansions of
amplitude integrands

loop-tree duality allows to rewrite loop integrals in terms of a sum of
phase-space integrals over the cut amplitude

⇒ the resulting expression can be expanded more straight-forwardly

general result obtained for toy amplitude, applicable for different types of
limits

first steps towards more realistic amplitudes show promising results

Outlook:

consider amplitudes with more legs

toy amplitude at two loops: sunrise diagram

reproduce LO result for q̄q → Hg using LTD + direct expansions

repeat for the other two LO contributions to large-pT Higgs production:
gg → Hg and qg → qH

The project that gave rise to these results received the support of a fellowship from ”la Caixa” Foundation (ID
100010434). The fellowship code is LCF/BQ/IN17/11620037.
This project has received funding from the European Union’s 2020 research and innovation programme under
the Marie Sk lodowska-Curie grant agreement No. 713673.
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backup slides
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difficulty of multi-loop or multi-leg calculations

amplitudes that contain up to one mass scale:
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highly-boosted Higgs boson production

effective point-like ggH-coupling not ruled out [Grojean et al. ’14]

mt

v
t̄tH → −κg

αs

12πv
G a
µνG

µν,aH + κt
mt

v
t̄tH

need to consider Higgs + jet production at pT sufficiently high for resolving
the top loop in order to disentangle possible BSM effects

LO result known for decades

[Ellis et al. ’87]

[Baur, Glover ’89]

NLO I fix Higgs-top mass ratio, numerical integration [Jones, Kerner, Luisoni ’18]

I integration-by-parts identities + expansion in
m2

H
4m2

t
,

m2
t
s

[Lindert et al. ’18]

goal: obtain independent NLO result using new regularization technique:
loop-tree duality (LTD) [Catani et al. ’08]

Judith Plenter (IFIC-UV/CSIC) Expansions through LTD 3rd September 2019 3 / 6



qq̄ → Hg amplitude

LO amplitude: MLO ∼

ε∗µ(p3) v̄(p2)γνu(p1) F12

(
gµν − pµ12p

ν
3

p3 · p12

)
straight-forward with dim. reg.: solutions for master integrals available

F12 =

∫
`

N
(
` · p3, ` · p12, `

2, s, m2
H

)
[`2 −m2

t + i0][(`+ p3)2 −m2
t + i0][(`+ p123)2 −m2

t + i0]

while at LO only one kinematic variable s,
NLO amplitude depends on: s, t

MNLO ∼ F
(1)
12

(
gµν − pµ12p

ν
3

p3 · p12

)
+ F̄

(1)
12

(
gµν − p̄µ12p

ν
3

p3 · p̄12

)
⇒ four scales + two loops: simplification through

asymptotic expansion necessary
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expansion by regions of qq̄ → Hg

expansion by regions

Divide space of loop momentum into various regions and expand the
integrand into a Taylor series w.r.t. the parameters considered small there.

Integrate expanded integrand over the whole integration domain of the loop
momenta.

Set to zero any scaleless integral. [Beneke, Smirnov ’98]

’region’: ` ∼ m instead of 0 ≤ ` ≤ Λ.

let’s try for one of the integrals needed for q̄q → Hg at LO:∫
`

1

(`2 −m2
t + i0) (`2 + 2` · p12 + 2` · p3 + m2

H −m2
t + i0)

How many regions? At least ` ∼ m (soft) and ` ∼ pT (hard)
I How about ` ∼ m

pT
(ultrasoft)? Or `0 ∼ m

pT
, |`| ∼ m (potential)?

I How to treat the scalar products?
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application of LTD on qq̄ → Hg

test applicability: need to extend usage of LTD to further processes

asymptotic expansions (needed in the NLO calculation) expected to be easier
in a phase-space integral

F12
LTD
= −

∫
`

[ ∼
δ (q0)N (q0)

(2p3 · q0 − i0) (2p123 · q0 + m2
H + i0)

+

∼
δ (q3)N (q3 − p3)

(−2p3 · q3 + i0) (2p12 · q3 + s + i0)

+

∼
δ (q123)N (−p123 + q123)

(−2p12 · q123 + s − i0) (−2p123 · q123 + m2
H − i0)

] note: integrand now only
depends on loop
three-momenta
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