

PRECISION PREDICTIONS FOR HIGGS-BOSON DIFFERENTIAL CROSS SECTIONS AT THE LHC MATTER TO THE DEEPEST 2019

Xuan Chen Physik-Institut, Universität Zürich Katowice, Poland, September 3, 2019

OUTLINE

Precision measurements and predictions of the Higgs boson

- Current status from both theory and experiment (cherry pick)
- Projection of HL-LHC, is it precise enough?
- Higgs production and decay processes in NNLOJET
- Higgs transverse momentum distribution in full spectrum
 Small, medium and boosted regions

Higgs rapidity distribution at N3LO (ggF channel)

► Summary

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

SUCCESS OF LHC HIGGS EXPERIMENTS

ATLAS

Run 1 $H \rightarrow 4l$

Run 1 $H \rightarrow \gamma \gamma$

Run 2 $H \rightarrow 4l$

Run 2 $H \rightarrow \gamma \gamma$

Run 1+2 H→4l

Run 1+2 $H \rightarrow \gamma \gamma$

Run 1 Combined

Run 2 Combined

123

20

15

10

5

0

σ_{VBF} [pb]

Run 1+2 Combined

ATLAS + CMS Run 1

124

125

ATLAS Preliminary

 \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹

m_H = 125.09 GeV, |y_.| < 2.5

-68% CL

126

--- 95% CL

50

Run 1: 1/s = 7-8 TeV, 25 fb⁻¹, Run 2: 1/s = 13 TeV, 36.1 fb⁻¹

Higgs boson properties in agreement with SM

- Bosonic (Run I) and 3rd generation fermionic couplings (Run II) observed with current precision on coupling ±10-20% (EPS2019)
- Higgs mass uncertainty at $\pm 0.2\%$ level (Run I + II)
- Fiducial total cross section measured with \pm 9% accuracy (Run I + II)
- 2nd generation fermion couplings still to be established
- HH signal with 10 times SM exclusion limit
- Goal for the future: improve precision
 - Differential in production and decay channels
 - Projection to HL-LHC (estimate challenge)
 - Accelerate searches of new physics

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

1806.00242

HITOTAL Stat. only

124.51 ± 0.52 (± 0.52) GeV

126.02 ± 0.51 (± 0.43) GeV

Total

127

(Stat. only)

SUCCESS OF LHC HIGGS EXPERIMENTS

Typical differential observables for Higgs (+jet) are:

 $d\sigma$ $d\sigma$ $d\sigma$ $d\sigma$ $dp_T^H \quad d|y^H|$ dp_T^{j1} dN_{jets}

Inclusive decay observables are reconstructed from individual decay channel

Combined results with $\pm 20-40\%$ uncertainties (EPS2019) (ATLAS 1805.10197, CMS 1812.06504, EPS2019)

Breakdown in production channels through Simplified Template Cross Section (STXS)

All Higgs production and decay channels contribute

Complexity increase from Stage $\rightarrow 1.1 \rightarrow \cdots$

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

SUCCESS OF LHC HIGGS EXPERIMENTS

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

SUCCESS OF HIGGS THEORY (GLUON FUSION)

$\sigma_{PP \to H+X}$	=	16.00 pb	(+32.87%)	LO, rEFT
	+	20.84 pb	(+42.82%)	NLO, rEFT
A	+	9.56 pb	(+19.64%)	NNLO, rEFT
	+	1.62 pb	(+3.32%)	$N^{3}LO, rEFT$
	-	2.07 pb	(-4.25%)	(t,b,c) corr. to exact NLO
	+	0.34 pb	(+0.70%)	$1/m_t$ corr. to NNLO
	+	2.37 pb	(+4.87%)	EWK corr.
	=	48.67 pb.		
	-	Service States	9.	

δ (theory)	=	$+0.13pb \\ -1.20pb$	$\binom{+0.28\%}{-2.50\%}$	$\delta(\text{scale})$	
	+	$\pm 0.56 pb$	$(\pm 1.16\%)$	$\delta(\text{PDF-TH})$	
	+	$\pm 0.49 pb$	$(\pm 1.00\%)$	$\delta(\text{EWK})$	
	+	$\pm 0.41 pb$	$(\pm 0.85\%)$	$\delta({ m t,b,c})$	
1	+	$\pm 0.49 pb$	$(\pm 1.00\%)$	$\delta(1/m_t)$	
	=	$+2.08pb \\ -3.16pb$	$\begin{pmatrix} +4.28\% \\ -6.5\% \end{pmatrix}$,		
$\delta(\text{PDF})$	=	$\pm 0.89 \text{pb}$	$(\pm 1.85\%),$		
$\delta(\alpha_S)$	=	+1.25pb -1.26pb	$\binom{+2.59\%}{-2.62\%}$.		

Need to attack on many fronts to further improve '

- ► Towards N3LO PDFs (Britzger et al. 1906.05303) 30
- Top quark mass dependence
 (Davies, Gröber, Maier et al. 1906.00982)
- Bottom quark fusion at N3LO (Duhr, Dulat, Mistlberger 1904.09990)

EWK corrections (1801.10403, 1811.11211) ...
 Xuan Chen (UZH) Precision predictions for Higgs-boson differential cross sections at the LHC

- Total cross section with N3LO QCD corrections in heavy top limit (HTL) (B. Mistlberger 1802.00833)
- QCD scale variation reduced significantly
- Public in iHixs2 code (Dulat et al. 1802.00827)
- Uncertainty dominant by QCD (± 4%)
 (C. Anastasiou et al. 1602.00695)
- ► Three short boards: QCD scale, PDF, α_s

September 3, 2019

SUCCESS OF HIGGS THEORY (GLUON FUSION)

Differential predictions advance to new revolution

- ► HpT (HTL) at NNLO+N3LL accuracy (details later)
 - Robust NNLO calculation at small pT
 - Resummation in two factorisation schemes
- ➤ yH (HTL) at N3LO accuracy (details later)
 - Two methods with approximation in good agreement
 - New revolution to differential N3LO accuracy
- H+J (full SM) at NLO accuracy (boosted pT region)
- Still many aspects to improve:
 - Very time consuming at small pT (~ 7M CPU h)
 - Application with decay fiducial cuts
 - Join with parton shower beyond LO

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

SUCCESS OF HIGGS THEORY (VECTOR BOSON FUSION)

- Differential NNLO corrections to VBF-2J production and NLO corrections to VBF-3J production using structure function approach (Cruz-Martinez et al. 1802.02445)
- Uncovered error in earlier NNLO calculation stemming from VBF-3J piece (now fixed) (Cacciari, Dreyer et al. 1506.02660) (Jager, Schissler et al. 1405.6950)

DIS⊗DIS

- NNLO cross section is 4% smaller than NLO (VBF cuts)
- Scale variation now reduced to ± 3%
- Contribute significantly at boosted Higgs pT ~20%
 - Large overlap in fiducial volume with gluon fusion H+2J
- Inclusive cross section at N3LO (Dreyer et al. 1606.00840)

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

SUCCESS OF HIGGS THEORY (VH)

- Current precision with NNLO QCD corrections in both production and decay to process $pp \rightarrow W(l\nu) + H(b\bar{b})$ with narrow width approximation and massless b quark (Ferrera et al. 1705.10304), (Caola et al. 1712.06954), (Gauld, Majer et al. 1907.05836)
 - ▶ NNLO corrects NLO $H \rightarrow b\bar{b}$ decay in both below and above Higgs mass threshold regions
 - ► New interference at NNLO from $H \rightarrow gg$
 - N3LO H → bb̄ decay now available
 (Mondini, Schiavi, Williams 1904.08960)

► Future work with b mass and EXP flavour kT jet

- > NNLOPS accurate $pp \rightarrow Z(l^+l^-) + H(b\bar{b})$ (Astill, Bizoń et al. 1804.08141)
- ► Sizeable impact of loop induced $gg \rightarrow Z(l^+l^-) + H(b\bar{b})$ above top mass threshold
- > NLO corrections includes interference with qg and $q\bar{q}$ channels (need two-loop massive top for through study)

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

7

September 3, 2019

CHALLENGE FROM HL-LHC PROJECTION (20 YEARS)

Is it precise enough? Not yet according to HL-LHC Projections!

> HL-LHC expects $\pm 1.6\%$ in two decades

Current N3LO has ± 4% for QCD alone! WG2 report on HL-LHC 1902.00134

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

Differential observables (S2) HL-LHC projections: > $yH \pm 3\%$ HpT $\pm 5\%$ (more details in this talk)

Theory need consistent upgrade to reduce PDF and > $\alpha_{\rm s}$ uncertainties

NNLOJET: A multiprocess parton level event generator at O(alpha_s^3)* X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, A. Huss, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, R. Schürmann, D. Walker, J. Whitehead Higgs Decay channels LHC Higgs Production channels bb **NNLO** b-tagging 1408.5325, 1607,08817, H + J (ggF) NNLO HTL \otimes LO SM $WW^* \rightarrow 2l2\nu$ LO 1805.00736, 1805.05916 Lepton isolation H(ggF) $\tau^+\tau^-$ N3LO HTL (approx.) LO Massive final states 1807.11501 $ZZ^* \rightarrow 4l$ LO Lepton isolation H + JJ (VBF) **NNLO** 1802.02445 YY Photon isolation LO H + V (VH)NNLO 1907.05836 $Z(\rightarrow 2l)\gamma$ LO Photon + lepton iso.

- Parton level event generator with NNLO antenna subtraction method
- NNLOJET provides many cutting-edge predictions of the Higgs boson phenomenology.
- ggF and VH channels are linked with limited decay channels.
- Identification of EW and QCD final states using EXP algorithms.

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

NNLOJET: A multiprocess parton level event generator at O(alpha_s^3)* X. Chen, J. Cruz-Martinez, J. Currie, R. Gauld, A. Gehrmann-De Ridder, T. Gehrmann, E.W.N. Glover, M. Höfer, A. Huss, I. Majer, J. Mo, T. Morgan, J. Niehues, J. Pires, R. Schürmann, D. Walker, J. Whitehead Higgs Decay channels LHC Higgs Production channels bb **NNLO** b-tagging 1408.5325, 1607,08817, H + J (ggF) NNLO HTL \otimes LO SM $WW^* \rightarrow 2l2\nu$ 1805.00736, 1805.05916 LO Lepton isolation $\tau^+\tau^-$ H(ggF)N3LO HTL (approx.) 1807.11501 LO Massive final states $ZZ^* \rightarrow 4l$ LO Lepton isolation H + JJ (VBF) **NNLO** 1802.02445 YY Photon isolation LO H + V (VH)NNLO 1907.05836 $Z(\rightarrow 2l)\gamma$ LO Photon + lepton iso.

Parton level event generator with NNLO antenna subtraction method

- NNLOJET provides many cutting-edge predictions of the Higgs boson phenomenology.
- ► ggF, VBF and VH channels are linked with various decay channels.
- ► Identification of EW and QCD final states using EXP algorithms.

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

HIGGS TRANSVERSE MOMENTUM DISTRIBUTION IN FULL SPECTRUM

HIGGS TRANSVERSE MOMENTUM SPECTRUM

- Higgs pT spectrum tests SM in various aspects
- ► Small pT region (< 20 GeV):
 - Singular log terms spoil any reliable fixed order predictions ln^k(m_H²/p_T²)/p_T²
 - ► Resummation of log terms and match to fixed order: $d\sigma^{FO} \ominus d\sigma^S \oplus d\sigma^R$
- ► Medium pT region (20 ~ 200 GeV):
 - Reliable with heavy top limit (HTL)
 - Current best precision is H+J NNLO HTL
- ► Boosted pT region (> 200 GeV)
 - Energy scale resolve mass effect of quark loop
 - Best ggF precision is H+J at NLO SM
 - ► VBF, VH and ttH channels equally important

Many other effects involved: top-bottom interference, heavy quark Yukawa couplings, resummation of logs involving quark mass etc. Xuan Chen (UZH) Precision predictions for Higgs-boson differential cross sections at the LHC

Higgs p_T Spectrum from Gluon Fusion at the LHC

HIGGS TRANSVERSE MOMENTUM SPECTRUM

- ► Higgs pT **spectrum** tests SM in various aspects
- ► Small pT region (< 20 GeV):
 - Singular log terms spoil any reliable fixed order predictions $\ln^k(m_H^2/p_T^2)/p_T^2$
 - ► Resummation of log terms and match to fixed order: $d\sigma^{FO} \ominus d\sigma^S \oplus d\sigma^R$
- ► Medium pT region (20 ~ 200 GeV):
 - Reliable with heavy top limit (HTL)
 - Current best precision is H+J NNLO HTL
- ► Boosted pT region (> 200 GeV)
 - Energy scale resolve mass effect of quark loop
 - Best ggF precision is H+J at NLO SM
 - ► VBF, VH and ttH channels equally important
- Many other effects involved: top-bottom interference, heavy quark Yukawa couplings, resummation of logs involving quark mass etc. Xuan Chen (UZH)

Will separately discuss each HpT region for the rest of this talk

September 3, 2019 10

HIGGS TRANSVERSE MOMENTUM AT MEDIUM PT

- H+J Computed at NNLO QCD (HTL) by 4 groups using 3 methods
 - Antenna subtraction (NNLOJET) XC, Gehrmann, Glover et al. (1408.5325, 1607.08817)
 - Sector improved subtraction (STRIPPER) Boughezal, Caola et al. (1302.6216, 1504.07922)
 - N-Jettiness (BFGLP and MCFM) Boughezal, Focke et al. (1505.03893) Campbell et al. (1906.01020)
 - It was the battle ground for the first LHC process with single jet + colourless @ NNLO
 - Long-standing discrepancy between N-Jettiness and other methods

September 3, 2019

11

Xuan Chen (UZH)Precision predictions for Higgs-boson differential cross sections at the LHC

HIGGS TRANSVERSE MOMENTUM AT MEDIUM PT

- ► Fiducial cross section for H+J now known at NNLO QCD for:
 - ► $H \rightarrow \gamma \gamma$ Caola, Melnikov, Schulze (1508.02684), XC, Gehrmann, Glover et al. (1607.08817)
 - $H \rightarrow WW^* \rightarrow 2l2\nu$ Caola, Melnikov, Schulze (1508.02684)
 - $H \rightarrow ZZ^* \rightarrow 4l XC$, Gehrmann, Glover, Huss (1905.13738)

EPS2019

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

XC, Gehrmann, Glover, Huss (1905.13738)

September 3, 2019 12

HIGGS TRANSVERSE MOMENTUM AT SMALL PT

- ► FO break down, where is the problem come from?
 - ► Take $d\sigma_{NLO}^H$ as example:

 p_T^H

 $A^{0}_{2gH}(\hat{g},\hat{g},H) + A^{0}_{3gH}(\hat{g},\hat{g},g,H) - F^{0}_{3}(\hat{g},g,\hat{g})A^{0}_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + A^{1}_{2gH}(\hat{g},\hat{g},H) + \mathcal{F}^{0}_{3}(\hat{g},\hat{g})A^{0}_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H})$

► Finite p_T^H region has no IR regulator \rightarrow fixed order predictions break down

 $\delta(p_T^H)$

 $\delta(p_T^H)$

- > How to make reliable predictions of $d\sigma/dp_T^H$ at 1 GeV?
 - Use QCD factorisation to distinguish radiations from Born kinematics.

$d\sigma = \sigma_{LO} \otimes H \otimes B \otimes B \otimes S \otimes J$

Replace IR subtraction by IR renormalisation (IR poles removed).

► Find and solve RGE of factorised functions to include all order effects.

Xuan Chen (UZH)

 $\delta(p_T^H)$

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019 13

 $\delta(p_T^H)$

HIGGS TRANSVERSE MOMENTUM AT SMALL PT

- ► FO break down, where is the problem come from?
 - ► Take $d\sigma_{NLO}^H$ as example:

 p_T^H

 $\delta(p_T^H)$

 $A^{0}_{2gH}(\hat{g},\hat{g},H) + A^{0}_{3gH}(\hat{g},\hat{g},g,H) - F^{0}_{3}(\hat{g},g,\hat{g})A^{0}_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + A^{1}_{2gH}(\hat{g},\hat{g},H) + \mathcal{F}^{0}_{3}(\hat{g},\hat{g})A^{0}_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + A^{1}_{2gH}(\hat{g},\hat{g},H) + \mathcal{F}^{0}_{3}(\hat{g},\hat{g})A^{0}_{2gH}(\tilde{\hat{g}},\tilde{\hat{g}},\tilde{H}) + \mathcal{F}^{0}_{3}(\hat{g},\hat{g})A^{0}_{2gH}(\tilde{g},\hat{g},\tilde{g},\tilde{H}) + \mathcal{F}^{0}_{3}(\hat{g},\hat{g},h) + \mathcal{F}^{0}_{3}(\hat{g},h) +$

Finite p_T^H region has no IR regulator \rightarrow fixed order predictions break down

 $\delta(p_T^H)$

 $\delta(p_T^H)$

- ► How to make reliable predictions of $d\sigma/dp_T^H$ at 1 GeV?
 - Use QCD factorisation to distinguish radiations from Born kinematics.

$d\sigma = \sigma_{LO} \otimes H \otimes B \otimes B \otimes S \otimes J$

- Replace IR subtraction by IR renormalisation (IR poles removed).
- Find and solve RGE of factorised functions to include all order effects.

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019 13

 $\delta(p_T^H)$

HIGGS TRANSVERSE MOMENTUM SPECTRUM (SMALL+MEDIUM)

► NNLO + N3LL Resummation with SCET and RadISH

- ► RadISH + NNLOJET at N3LL + NNLO
- ➤ Multiplicative matching to NNLO total X.S.
- Substantial regulation from NNLO+N3LL at the peak of spectrum
- Scale variation reduced by 60% from NLO+NNLL to NNLO+N3LL

- Additive matching using profile functions
- Conservative uncertainty estimation involving 11 scale variation choices times 6 profile functions
- Noticeable deviation between NNLO and NNLO+N3LL starting from 30 GeV
- > Future extension to include m_t and m_b effect

Precision predictions for Higgs-boson differential cross sections at the LHC September 3, 2019

HIGGS TRANSVERSE MOMENTUM SPECTRUM (SMALL+MEDIUM)

Comparison with LHC data and HL-LHC projection

EPS2019

WG2 report on HL-LHC 1902.00134

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

September 3, 2019

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION

0000

0000

LHC 13 TeV

200

400

Jones, Kerner, Luisoni (1802.00349)

 $p_{t, H}$ [GeV]

600

September 3, 2019

800

 $\mu = \frac{H_T}{2}$

PDF4LHC15 NLO

 10^{0}

 $^{\text{H},10^{-3}}_{\text{dp}/_{\text{op}}}$

 10^{-5}

 10^{-6}

 10^{-7}

2.5

2.0

1.5

1.0

0

NLO/LO

200 Expect HTL approximation fail for pT > 200 GeV

Two approaches to include top mass effects

Expansion valid for $m_H^2, m_t^2 \ll |s| \sim |t| \sim |u|$ Lindert, Kudashkin, et al (1703.03886); Neumann (1802.02981) Exact results (numerical in SecDec) Jones, Kerner, Luisoni (1802.00349) ► Joint effort in HH: exact numerical+expansion $\begin{bmatrix} 10^{0} \\ \text{bb}/\text{qe}\\ 10^{-1} \\ 10^{-2} \end{bmatrix}$ Davies, Heinrich, Jones, et al. (1907.06408)

► Large NLO/LO K-factor ~ 2

K-factor very similar to HTL

- K-factor nearly flat at large pT
- Several open questions.....
 - Combination with NNLO HTL
 - Top-quark mass scheme uncertainty OS/MSbar
 - Numerical stability of P.S. at large pT

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

16

1000

LO Full

NLO Full

NLO FT_{approx}

HIGGS TRANSVERSE MOMENTUM AT BOOSTED REGION

Extension to NNLO HTL/NLO SM combined distributions in boosted region: $d\sigma^{\rm QCD, NLO}$ $d\sigma^{\rm EFT, NNLO}$ Rescale NLO by $K_{NNLO} = NNLO_{HTL}/NLO_{HTL}$ $d\sigma^{\text{EFT-improved (1), NNLO}}$ dp_{\perp} $d\sigma^{\rm EFT, NLO}$ Assumes SM/HTL K-factors similar dp_{\perp} dp_{\perp}

- Considerable contribution from VH, VBF and ttH.
- State-of-the-art precision at NNLO except ttH (NLO).
- Sensitive to BSM models like new generation of quark

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

0.2

450

500

550

600

pt^H [GeV]

September 3, 2019

650

17

800

HIGGS RAPIDITY DISTRIBUTION AT N3LO

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501). In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2) \\ S_c(M, b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c\left(\alpha_s(q^2)\right) \ln \frac{M^2}{q^2} + B_c\left(\alpha_s(q^2)\right) \right) \right]$$

- > Apply q_T^{cut} to factorise full N3LO into two parts.
- ➤ Above q_T^{cut}, recycle H+jet at NNLO from NNLOJET with qT counter terms (CT) to regulate IR divergence.
- > Below Q_T^{cut} , factorise real radiations from hard coefficient functions at $\delta(p_T)$ in HN3LO package.
- > Most of the factorised components of $\delta(p_T)$ contribution are known analytically at N3LO.
- ► We use a constant $C_{N3}\delta_{ga}\delta_{gb}(1-z)$ to approximate the unknown pieces.
- > Numerically abstract the C_{N3} coefficient using exact N3LO total cross section (1802.00833, 1802.00827).Xuan Chen (UZH)Precision predictions for Higgs-boson differential cross sections at the LHCSeptember 3, 201918

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501). In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2) \\ S_c(M, b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c\left(\alpha_s(q^2)\right) \ln \frac{M^2}{q^2} + B_c\left(\alpha_s(q^2)\right) \right) \right]$$

- > Apply q_T^{cut} to factorise full N3LO into two parts. $d\sigma_{N^{3}LO}^{H} = \mathcal{H}_{N^{3}LO}^{H} \otimes d\sigma_{LO}^{H} \Big|_{\delta(p_{T})} + \left[d\sigma_{NNLO}^{H+jet} - d\sigma_{N^{3}LO}^{H CT} \right]_{p_{T} > q_{T}^{cut}}$
- $a\sigma_{N^3LO}^{cut}$, recycle H+jet at NNLO from NULC, with qT counter terms (CT) to regulate IR divergence. > Above q_T^{cut} , recycle H+jet at NNLO from NNLOJET
- > Below q_T^{cut} , factorise real radiations from hard coefficient functions at $\delta(p_T)$ in HN3LO package.
- > Most of the factorised components of $\delta(p_T)$ contribution are known analytically at N3LO.
- > We use a constant $C_{N3}\delta_{ea}\delta_{eb}(1-z)$ to approximate the unknown pieces (related to N3LO beam function).

HIGGS PRODUCTION AT N3LO (APPROXIMATED)

Extend qT-subtraction method to N3LO (Cieri, XC et al. 1807.11501). In qT (CSS) factorisation to Higgs production at N3LO:

$$\frac{d\sigma}{dp_T^2 dy} = \frac{m_H^2}{s} \sigma_{LO}^H \int_0^{+\infty} db \frac{b}{2} J_0(bp_T) S_g(m_H, b) \sum_{a_1, a_2} \int_{x_1}^1 \frac{dz_1}{z_1} \int_{x_2}^1 \frac{dz_2}{z_2} \left[HC_1 C_2 \right]_{gg:a_1 a_2} \prod_{i=1,2} f_{a_i/h_i}(x_i/z_i, b_0^2/b^2) \\ S_c(M, b) = \exp\left[-\int_{b_0^2/b^2}^{M^2} \frac{dq^2}{q^2} \left(A_c\left(\alpha_s(q^2)\right) \ln \frac{M^2}{q^2} + B_c\left(\alpha_s(q^2)\right) \right) \right]$$

- > Apply q_T^{cut} to factorise full N3LO into two parts. $d\sigma_{N^{3}LO}^{H} = \mathcal{H}_{N^{3}LO}^{H} \otimes d\sigma_{LO}^{H} \Big|_{\delta(p_{T})} + \left[d\sigma_{NNLO}^{H+jet} - d\sigma_{N^{3}LO}^{H CT} \right]_{p_{T} > q_{T}^{cut}}$
- $a\sigma_{N^3LO}^{cut}$, recycle H+jet at NNLO from NULC, with qT counter terms (CT) to regulate IR divergence. > Above q_T^{cut} , recycle H+jet at NNLO from NNLOJET
- > Below q_T^{cut} , factorise real radiations from hard coefficient functions at $\delta(p_T)$ in HN3LO package.
- > Most of the factorised components of $\delta(p_T)$ contribution are known analytically at N3LO.
- ► We use a constant $C_{N3}\delta_{ga}\delta_{gb}\delta(1-z)$ to approximate the unknown pieces (related to N3LO beam function).
- > Numerically abstract the C_{N3} coefficient using exact N3LO total cross section (1802.00833, 1802.00827). Xuan Chen (UZH) Precision predictions for Higgs-boson differential cross sections at the LHC September 3, 2019 18

HIGGS RAPIDITY DISTRIBUTIONS AT N3LO (APPROXIMATED)

N3LO differential observables at the LHC from qT-subtraction and threshold expansion

- **Remarkably flat K-factor (as expected)**
- QCD scale uncertainty reduced to $\frac{+1\%}{-3\%}$
- Comparable to (S2) HL-LHC projections $\pm 3\%$
- Future upgrade to reduce PDF and α_s uncertainties

Xuan Chen (UZH)

0.8

-4

-2

0

Y

Dulat, Mistlberger, Pelloni 1810.09462

 $\mathbf{2}$

3

-3

Precision predictions for Higgs-boson differential cross sections at the LHC

SUMMARY

- High Energy Physics is advancing to precision study at a steady speed (Target set for the next 20 years)
- Higgs boson precision measurements focus on differential observables and distinguishing production and decay channels
- Higgs boson precision theory studies focus on reducing uncertainties from all sources. Major factor still from QCD
- ► NNLO QCD is the new standard for Higgs production channel, more consistent update to PDF and α_s will be available soon
- NNLO+N3LL and N3LO precision are available for limited observables and are already promising for HL-LHC accuracy
- ► Many important studies are still missing: quark mass, NLO parton shower, $\alpha \alpha_s$ mixing, interference contributions

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC September 3, 2019

SUMMARY

- High Energy Physics is advancing to precision study at a steady speed (Target set for the next 20 years)
- Higgs boson precision measurements focus on differential observables and distinguishing production and decay channels
- Higgs boson precision theory studies focus on reducing uncertainties from all sources. Major factor still from QCD
- ► NNLO QCD is the new standard for Higgs production channel, more consistent update to PDF and α_s will be available soon
- NNLO+N3LL and N3LO precision are available for limited observables and are already promising for HL-LHC accuracy
- ► Many important studies are still missing: quark mass, NLO parton shower, $\alpha \alpha_s$ mixing, interference contributions

Thank You for Your Attention

Xuan Chen (UZH)

Precision predictions for Higgs-boson differential cross sections at the LHC

Total time (int. dimension Of the tree level)	LO	NLO	NNLO
Н	1 min (3)	30 min (6)	300h (9)
H—>di-photon	1 min (3)	40 min (6)	400h (9)
H—>4l (2e2mu, 4e, 4mu require at least two separate runs)	2~3 min (9)	2h (12)	1000h (15)
H+j	3 min (6)	1.5h (9)	70000h (12)
H—>di-photon + jet	4 min (6)	2h (9)	90000h (12)
H—>4l (2e2mu, 4e, 4mu require at least two separate runs)+jet	20 min (12)	10h (15)	600000h (18)
H_qT	20 min (6)	5h (9)	7000000h (12)

ACCEPTANCE STUDY $H \rightarrow ZZ^* \rightarrow 4l$

➤ CMS (1706.09936) and ATLAS (1708.02810) use different lepton isolation algorithm in $ZZ^* \rightarrow 4l$

Fiducial Cuts	CMS	ATLAS					
Lepton Isolation							
Cone size R^l	0.3	_					
$\sum p_T^i / p_T^l \ (i \in \mathbb{R}^l)$	< 35%	Market -					
$\Delta R^{SF(DF)}(l_i, l_j)$	> 0.02	> 0.1(0.2)					
Jet Definition (anti-kT with R=0.4)							
p_T^{jets} (GeV)	> 30	> 30					
y ^{jets}	< 2.5	< 4.4					
$\Delta R(jet, e(\mu))$		> 0.2(0.1)					

Fixed order study of acceptance reveals detailed structures

$$A_{FO}(\mathcal{O}) = \frac{d\sigma_{FO}^{H(\to ZZ^* \to 4l) + jet}/d\mathcal{O}}{d\sigma_{FO}^{H + jet}/d\mathcal{O} \times (BR_{2e2\mu} + BR_{4\mu} + BR_{4e})}$$

Precision predictions for Higgs-boson differential cross sections at the LHC