Randomness and Quantum Mechanics

Paweł Klimasara, Jerzy Król

University of Silesia in Katowice

University of Information Technology and Management, Rzeszów

September 2, 2019

Bit Sequence as a Result of An Experiment

PERFORM REPEATEDLY AT GIVEN TIMES $t_0, \overline{t_1, t_2, t_3, t_4, \ldots}$

- CARRY OUT THE STATE PREPARATION PROCEDURE (USING A GIVEN DENSITY OPERATOR).
- APPLY THE QUESTION PROCEDURE (WITH A GIVEN PROJECTION OPERATOR).
- Observe outcome and discard system.

Quantum Mechanics: resulting 0-1 sequence should be <u>random</u>.

LOCAL VIEW: revealing sequence bit by bit as the experiment proceeds in time (at finite time we have access to some initial segment of outcome sequence).

 \star We work in a separable Hilbert space.

Mathematical Objects of Study

Randomness vs. Probability: Heuristics

Consider uniform probability distribution on space of 0-1 sequences with finite length - then all sequences are equally probable ($\mathbb{P} = \frac{1}{2^n}$).

Even worse for infinite dimensional sequences - then all have <u>zero</u> probability of appearance! Thus:

PROBABILITY CALCULUS CANNOT FORMALIZE OUR HEURISTIC IMAGE OF RANDOMNESS

Definitions of Randomness

* Some historical remarks¹

Intuitions on random bit sequences

- Should not have exceptional properties.
- Should be hard to describe.

Different approaches - randomness as ...

- **1** UNPREDICTIBLITY (VON MISES-WALD-CHURCH).
- HIGH ALGORITHMIC COMPLEXITY (KOLMOGOROV, SOLOMONOFF, CHAITIN, SCHNORR).
- **③ TYPICALITY** (LAPLACE-VILLE-MARTIN-LÖF).

¹Andrei Khrennikov. *Probability and randomness: quantum versus classical*. World Scientific, 2016.

'Typicality' randomness

The set of regular sequences has a small measure, while the set of random sequences has an essentially larger measure. A random sequence should satisfy all properties of probability one (tests of randomness).

'Algorithmic' randomness

A random sequence is incompressible: no prefix can be produced by a program much shorter than the prefix. An algorithmically random sequence should appear random to any algorithm.

 \star Both approaches are equivalent. Moreover such random sequences are random also in the sense of unpredictibility.²

²Claus P Schnorr. Zufälligkeit und Wahrscheinlichkeit: eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Vol. 218. Springer-Verlag, 2007.

Models of Set Theory

- ZFC AXIOMS LOGICAL SENTENCES DETERMINING WHICH STRUCTURES ARE SETS (HENCE ALSO SEQUENCES)
- MATHEMATICAL STRUCTURE IN WHICH ZFC AXIOMS HOLD TRUE IS A MODEL OF SET THEORY

 2^{ω} is relative to a model, i.e. in two different ZFC models there might be different sets of 0-1 sequences!

Cohen Forcing CAN BE SEEN AS A FORMAL TECHNIQUE TO EXTEND GIVEN MODEL OF ZFC

$$M \to M[G]$$
 - model extension, $M \subset M[G]$

 $2^{\omega}_{M} \rightarrow 2^{\omega}_{M[G]}$ - reals extension, $2^{\omega}_{M} \subset 2^{\omega}_{M[G]}$

***** First used to prove ZFC independence of Continuum Hypothesis

Gödel's Constructible Universe - L

Recursive Construction

•
$$L_0 = \emptyset$$
,
• $L_{\alpha+1} = def(L_{\alpha})$,
• $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}, \ \lambda$ - limit ordinal,
• $L = \bigcup_{\alpha \in Ord} L_{\alpha}$.

 \star Model that is a universe of all constructible sets.

 \star No "esoteric" infinite cardinalities - Generalized Continuum Hypothesis holds.

³ Quantum Mechanics CAN be formalized in L!

³Paul A Benioff. "Models of Zermelo Frankel set theory as carriers for the mathematics of physics. I". . In: *Journal of mathematical Physics* 17.5 (1976), pp. 618–628.

Assume that quantum mechanics is random according to the typicality definition (for bit sequences taken from experiment):

Random sequences lie on the intersection of sets with probability measure 1 (avoiding the null sets).

L <u>cannot</u> be the carrier for the mathematics of QM! (it is formalized but does not contain all its statistical predictions)

* Moreover, the same holds for all Cohen forcing extensions of L!⁵

⁴Paul A Benioff. "Models of Zermelo Frankel set theory as carriers for the mathematics of physics. I". . In: *Journal of mathematical Physics* 17.5 (1976), pp. 618–628.

⁵Paul A Benioff. "Models of Zermelo Frankel set theory as carriers for the mathematics of physics. II". . In: *Journal of Mathematical Physics* 17.5 (1976), pp. 629–640.

QUANTUM MECHANICS

RANDOM

- We need to go beyond *L* and its Cohen forcing extensions.
- Large cardinal ZFC axioms may shed some light on randomness of QM?
- Is there the weakest possible randomness definition needed for QM?

Not Random

- We cannot rule this out!
- Constructible QM inside L?
- Probably not since <u>all predicitions</u> of QM would <u>be constructible</u> - that could eventually contradict QM itself?

Connection with J. Król's talk from before an hour.

Assume that large scale spacetime structure of Universe is compatible with QM microscale structure.

Bacause of the presence of <u>random</u> forcing in QM lattice of projections the large scale smooth structure has to be exotic and 4-dimensional.⁷

Is randomness essential also in cosmological theories?

⁶Jerzy Król and Torsten Asselmeyer-Maluga. "Quantum Mechanics, Formalization and the Cosmological Constant Problem". In: (revision).

⁷Jerzy Król et al. "From Quantum to Cosmological Regime. The Role of Forcing and Exotic 4-Smoothness". In: *Universe* 3.2 (2017), p. 31.

Paul A Benioff. "Models of Zermelo Frankel set theory as carriers for the mathematics of physics. I". In: *Journal of mathematical Physics* 17.5 (1976), pp. 618–628.

Paul A Benioff. "Models of Zermelo Frankel set theory as carriers for the mathematics of physics. II". In: *Journal of Mathematical Physics* 17.5 (1976), pp. 629–640.

Andrei Khrennikov. Probability and randomness: quantum versus classical. World Scientific, 2016.

Jerzy Król and Torsten Asselmeyer-Maluga. "Quantum Mechanics, Formalization and the Cosmological Constant Problem". In: (revision).

Jerzy Król et al. "From Quantum to Cosmological Regime. The Role of Forcing and Exotic 4-Smoothness". In: *Universe* 3.2 (2017), p. 31.

Claus P Schnorr. Zufälligkeit und Wahrscheinlichkeit: eine algorithmische Begründung der Wahrscheinlichkeitstheorie. Vol. 218. Springer-Verlag, 2007.

Thank you for your attention!