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smooth quantum gravity - motivations

In dim. 4 there are (typically) continuum infinite many different
smoothness structures on open 4-manifolds like R4 or S3 × R. These
standard manifolds are extensively used in physics. Do their exotic
smoothness is physically (especially QG) valid?

Or: Given exotic R4 it is Riemannian smooth 4-manifold homeomorhic to
R4. Its Riemannian curvature tensor can not vanish! So exotic R4 has to
have non-zero curvature and density of gravitational energy is non-zero
as well. Is this curvature physical?

i) YES, the Riemannian curvature of exotic R4’s leads directly to QG.

ii) Embeddings of exotic R4’s determine topological 3-D invariants with
cosmological meaning.

SQG is a theoretical attempt to understand and derive
some free parameters in physics based on topology
underlying smooth exotic R4
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smooth quantum gravity - some results

a. Large exotic R4’s are gravitational instantons. Any
theory of QG has to deal with them [G. Etesi, 2019].

b. The path integral of GR is dominated by
contributions from exotic R4’s [TAM, 2016].

c. The curvature of R4 embnedded in K3#CP2 determines
the realistic (small) value of the Cosm. Const. [TAM,
JK, 2018]

d. This CC is a topological invariant [TAM, JK, 2018].

e. The cosmological FRW model on exotic S3 × R (from
R4 ↪→ K3#CP2) predicts and explains the realistic
values of inflation parameters [TAM, JK, 2019].

f. The electroweak and GUT’s scales and the bound on
neutrino masses are also predicted [TAM, JK, 2019].

g. Exotic R4’s determine von Neuman algebras containing
factor III1 [G. Etesi, 2018, TAM 2016].



The realistic (small) value of the Cosm. Constant

I The formula for CC (curvature of exotic R4 embedded in
K3#CP2)

ΩΛ =
c5

24hGH20
· exp

(
− 3

CS(Σ(2, 5, 7))
− 3

CS(P#P)
− χ(A)

4

)
here χ(A) = 1 is the Euler characteristic of the Akbulut cork A,
Σ(2, 5, 7) is the Brieskorn homology 3-sphere, CS(Σ(2, 5, 7)) - the
Chern-Simons invariant of Σ, P#P - the connected sum of two
copies of the Poincaré 3-spheres. The CC value follows

ΩΛ ≈ 0, 7029

which agrees with PLANCK

This CC is a topological invariant!

I Why it is so? The derivation follows from hyperbolic geometry of 3
and 4-manifolds (cobordisms) in the embedding R4 ↪→ K3#CP2
[T.Asselmeyer-Maluga,JK,Phys.Dark.Univ.2018].



Two topology changes

Exotic R4’s are topologically trivial, where does the nontrivial topology
come from?

The embedding R4 ↪→ K3#CP2 determines two topology changes
(3-dimensional):

S3
1→ Σ(2, 5, 7)

2→ P#P

I The evolution in K3 must be smooth through both
topology changes, so we need to glue in 3 Casson
handles at the second step and one at the first.

Based on this we can determine energy scales of both transitions...
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1st topology change

Inside K3 there is a cork (Akbulut) - a compact, contractible smooth
submanifold A ⊂ K3.

I The boundary ∂A is a homology 3-sphere Σ(2, 5, 7)
(hyperbolic).

I Σ(2, 5, 7) can not be replaced by S3: inside A there is smoothly
embedded S3 but there is no smooth S3 ⊂ K3 such that A ⊂ S3.

But

There exists smooth 4-cobordism in K3 between S3 ⊂ A
and Σ(2, 5, 7)



smooth cob S3 → Σ(2, 5, 7)

To go smoothly from S3 to Σ(2, 5, 7) we need to glue in flexible handles
– Casson handles (CH). Then we get smooth 4-cobordism
W (S3,Σ) ⊂ A ⊂ K3.

I Σ(2, 5, 7) is hyperbolic and it is rigid – one can not
scale it and its volume V is an invariant.

I thus Σ determines characteristic length 3
√
V = L.

I Expressing via CS invariant and taking the radius of
3-sphere as rS3 we obtain the rescaling

a = rS3 · exp
( 3

2 · CS(Σ(2, 5, 7)

)
.



energy and time scales of 1
I Freedman: Every CH is embedable in its 1st 3-stages.

Then (for θ = 3
2·CS(Σ(2,5,7)) )

E1 =
EP

1 + θ + θ2

2 + θ3

6

' 1015GeV t1 = tP
(

1 + θ +
θ2

2
+
θ3

6

)
' 10−39

E1 (∼ GUT energy) – topologically supported



energy and time scales of 2
I K3 is decomposed as

K3 = |E8 ⊕ E8|#(S2 × S2)#(S2 × S2)#(S2 × S2) .

I |E8| has boundary P – the Poincaré sphere. |E8 ⊕ E8| can
not be realized as smooth closed 4-manifold
(Donaldson). It has boundary P#P (3-submanifold of
K3).

I Σ(2, 5, 7)
2→ P#P here we need full infinite 3CH’s since

|E8 ⊕ E8| is not smooth (Donaldson). After gluing CH’s
we have smooth evolution 2 within K3#CP(2).



energy and time scales of 2

Again θ = 3
2·CS(Σ(2,5,7)) = 140

3 and taking ∆0t as the time for 1-level CH

we have for the total time and energy after 2nd change (CS(P#P) = 1
60 ):

∆t =
tPl · exp

(
−1

2CS(P#P)

)
1 + θ2 + θ22

2 + θ23

6

, ∆E =
EPl · exp

(
−1

2CS(P#P)

)
1 + θ2 + θ22

2 + θ23

6

' 63GeV .

2nd energy scale is close to the electroweak scale and it
is topologically supported



massive neutrinos

Seesaw mechanism for generating the masses of neutrinos:(
0 M
M B

)
, M � B, λ1 = B, λ2 = −M2

B
.

Let us fix the energy scales E1 = 0, 67 · 1015GeV as B and E2 = 63Gev
as M. Then mn = M2

B ' 0, 006 eV – agrees with current limitation for the
sum of 3 neutrino masses from PLANCK ∼ 0, 12 eV .

Topology determines the realistic neutrino masses.



left-right neutrinos
I 1st topology change: S3 → Σ(2, 5, 7) with the GUT scale gives rise

to 2 Dirac operators on Σ, since the mapping class group of Σ is
nontrivial

π0(Diff(Σ(2, 5, 7))) = Z2 .

hence left and right-handed neutrinos are there.

I The 2nd topology change Σ(2, 5, 7)→ P#P gives rise only to
left-handed neutrinos (EW energy scale) since

π0(Diff(P)) = 1 .

We found ’first principles’ allowing for derivation of
certain free parameters in Cosmology and Particle

Physics. This is R4 ↪→ K3#CP2, R4 exotic.



again 1st topology change

Let rS3 ∼ PL to be of Planck length thus (with CS(Σ) = 9/280)

10−34[m]→ 10−15[m], N = 3
2·CS(Σ(2,5,7) + ln 8π2 ' 51 .

I The topology of the Akbulut cork for exotic K3
codes the inflationary expansion of the Universe.



Starobinsky model for inflation

S =

∫
M4

d4x
√
−g(R + α · R2), α free param.

α ·M−2Pl = ∆Einfl
EPl

so we get from 1st topology change:

α ∼ 10−5;

(
α ·M−2Pl =

1

1 + θ + θ2

2 + θ3

6

, θ =
3

2 · CS(Σ(2, 5, 7))

)

the spectral tilt ns and the tensor-scalar ratio r follow

ns = 1− 2
θ + ln(8π2)

≈ 0, 961, r =
12

(θ + ln(8π2))2
≈ 0, 0046 .

α, ns , r are topologically supported due to the K3
smoothness structure



Smooth quantum gravity
Exclusively in dimension 4:

I nonstandard smoothness ⇒ nonzero curvature of R4

I nonstandard smoothness ⇒ quantization in spacetime

Large exotic R4 embedded in K3#CP2 is Ricci flat, hyperkähler,
self-dual, hence gravitational instanton [Etesi, 2019]. Any QG theory has
to deal with them.



Smooth quantum gravity

I the 3-sphere S3 ↪→ A ↪→ K3 is wildly embedded –
represents a quantum state.

I Connes: wild S3 generates the factor III1 von Neuman
algebra and the Fock space of certain QFT.

I When smoothness of K3 and R4 are standard the
sphere S3 is tame and no quantum algebras result.

SQG explores the overlapping space of QM and GR via
exotic differentiable structures on K3 and R4.



Thank You
for Your Attention !!
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