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Motivation

4 Our universe
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Spin-1 Dark Matter

The Einstein-Hilbert action with the matter field reads
R
S = /d4X\/—g{2RQ + Lsm +£DM} ;

where Kk = I\/I,,;,1 is the effective gravitational constant.
After expanding in metric (the graviton field) fluctuations,

Buv = Nuv + ’{h;u/,

one can rewrite the above action as

Seff = /d4x£eff = /d4x[£(4) + L0+ £+ o3, 1),

where £(4) = £(4A)/, + E(SRA is dimension-4 renormalizable Lagrangian,
whereas E(-5), 29 contain operators of dim-5 and 6 suppressed by Mz}

int int Pl
and M,;,z, respectively.



Spin-1 Dark Matter

In minimal scenario, communication between the SM and DM sectors is
only mediated indirectly through gravity, which couples to their
energy-momentum tensors:

5 K,
Lot = S0 (TN + T2, J

The annihilation of SM particles into DM that comes from this Lagrangian
is through s-channel graviton exchange

\
SM ‘\ DM

’
SM 7 DM
’

Note, there is no dimension-5 direct SM and DM interaction.
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Spin-1 Dark Matter

The lowest order direct interaction between the SM and DM appears at
dim-6 operator.

The interaction of a graviton with the SM and DM energy-momentum
tensors leads to an interaction between those two sectors proportional to
k2 which is the same order as the interaction via the effective operator:

Ef,?t) = 7% xm% ]7—[\ X XM,

which arises through the following coupling

1
A2 Du®(D®)" HIH D —gQX XHod* 1,
where
/{2
Du® = 0,® — ighy®,  S-rix = A2

v

D
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Boltzmann equations

Let us consider a universe composed of:
@ unstable, massive particles ¢,
@ stable, massive DM species X,
@ ultra-relativistic SM particles R.

The dynamics of such a system is governed by the following Boltzmann
equations:

P+ 3(L+w)Hpy = —(Tr + Tx)ps, (1)
PR+ 4HpR = Trps + (o |V])2(Ex)[nk — (n)7], 2)
hx + 3Hnx = rxfj; — (alv]) [k — (n)?]. (3)

where I'x and g denote the inflaton decay widths into DM and SM,
respectively, and (ov) is a thermally-averaged cross-section.
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T(a) and H(a) relations

To solve the above system of coupled equations we assume that:

@ during reheating, the epoch between H,_1 and H,;,}, = FEl, the total
energy p density is dominated by the ¢ field,

@ after reheating, during the RD period, the main contribution to the
total energy density comes from SM radiation.

It has been shown [1] that the evolution of the Hubble rate:

K2

H2
3

(pe + PR+ px),

and the temperature T with time (scale factor) follows different laws
during and after reheating.
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T(a) and H(a) relations
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Boltzmann equation for DM

To simplify the system of Boltzmann equations it is convenient to
introduce dimensionless variables:

— o, R=preg—s X = nx—g—
TRH

which allows us to rewrite Eq.(3) as

% _ |;X TRH&)37173W_ {o|v]) 22 (n2
da H my HT,%H
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Inflaton decay into DM

. . The corresponding vertex:
Now let us consider the coupling P &

K
Lint = =5 kg™ $Xu X, v
kl/ «
which originate from the term exx _ . my
d(p1) --- Vap = TV, [ Tleb
1 .
Line = — 58" (D,@)(D, )", BN
where

and the decay width:
D,® = (0, — igX,)®,

; . K K2 mg — 4m§<m§) )
an X 1287m3
_ Ry
ANt= o X (12m§< — 4m§<m§> + mé)
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Inflaton decay into DM

Assuming that initially X(a.) = 0 we get:

arH [ Try ~
X(arH) :/ H();) nf:d>a_1_3wda. (5)

The present day relic abundance of DM particles is
Quh? = PX g2 = Mxnx(To) (6)
Pc Pc 7

where

_4 S
nx(To) = X(TO)TI%H'YH'Wﬁa

with X(To) ~ X(ag) and 72 = e,

y
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Freeze-in from SM particles annihilation

Let us now focus on the second term in (4), which takes the form:

dX <U‘V|> 2(..€9\2
_ a 7
da TgHHa (nx)", (7)

where we have assumed that nx < n¥'.
The Gondolo-Gelmini formula for the thermally- averaged cross sections is
given by

where

1 t
=~ | dt|Mm]?
o(s) 167s(s — 4m?) /t+ M,

with ty = —(W; Vs/8)2.
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Feynman diagrams
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Interaction vertices for the graviton SM(DM) interaction.

Here H, f, V represents scalar, fermion, vector degrees of

freedom, respectively.

The annihilation of SM particles into DM through s-channel

graviton exchange results in the following amplitude

M= S PG )
o 713

where

Grveo _ 1nhtn¥e + nhon? — ntnP?
2 g2+ ie ’

denotes the graviton propagator in the de Donder gauge.

\
\
\ GHVPo
 (SM) N, . (DM
Wy Myl
/
’
/
’
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Gravitational production during inflation

Let us now consider the action for the Abelian massive DM spin-1 field:
1
/d4x\/ < g“"‘g”ﬁXWX 53— meg“”X Xl,>,

where X, = 9,,X, — 0, X, and the background metric is in the FLRW
form, i.e. ds? = a%(d1? — dx?).
Extremizing the above action with respect to the X, field one obtains,

XY+ (K +a°m¥) X =0, (8)

. K2 5 Km 2 32 .
X// k2 2 2 = A =0 9
z +( +mxa k? + m%a® a (k2+m a2)2 L ’ )

2

L

where we have used the Fourier decomposition,
X, (t,x) = Z/ 3/2 (k)N (¢, K)e™*.
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As usual, we quantize our theory imposing equal-time commutation
relations,

[XL(T’ X), IQIL(Ta Y)] = ’6(3)()( - y)7
where,

-

d3k A ik-x s I\ —ik-x
*/ 3/2 er(K)ag Xy (1, k)e™™ + ¢ (k)al X} (1, k)e } (10)

and M, = )Aq
The quantum Hamiltonian:

[ / dxdr (A + (VX? + m2e (1) XP)
explicitly depends on time and thus does not have time-independent

eigenstates that could serve as the vacuum.
This phenomenon is interpreted as a particle production.
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Energy density

Using the classical definition of the energy-momentum tensor

1o~ 2 d(/=gLow)
g vV —8 5g,ul/

one can find the energy density of the spin-1 DM vector field

Too = px = (|x V Xo|? + |v x X2+ mya®XZ + mxX?),

inserting mode decomposition (10) we the compute vacuum expectation
value of the energy density

2
d{pr) [ /2 e ra Kk K a 2, 22 2
= — X - (X X+ XX ) — + — + k" +a"m X
dlnk 27224 i Lot L) ey aZmi a (k2 + anE()2 a x ) 1%l

where we have used the Bunch-Davies vacuum.
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Energy density scaling
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@ For DM vector bosons with mass Hry < mx < H;

2(143w)  1—3w

31+w) _3(1tw) 2
d<nL(T - H = mX)> ﬁH, mgy (i) s for k < ky
= 2(3w24+3w+2
dink ) I
ﬁ”l (w+1)(Bw+1) m;w ('375) GF3) | for ke > k > ke

@ For DM vector bosons with mass H, ;e < mx < Hgry

2(1—3w,

LH/'Y 314w 1+W for k < ky
d(nL(T H= mx)> o ( v)v
=1 m/2HE /2y Eem) gaf , for ky < k < kpyy
dInk 3(w+3 3(1—w)

3/2 S 203w+l 13w
ﬁmX/VH—W HI(W )(%) 3w for ke > k > kgy

The number density per log frequency has a peak structure if and only if
w € (—3,1). Then, M is dominated by modes with k = k,. J
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@ Spin-1 particles that communicate with SM sector only through
gravity can serve as a viable DM candidate.

@ Even in the minimal scenario there exist several mechanisms,
including:

o the so-called pure gravitational production during and after inflation,
o the inflaton decay,

o freeze-in from SM particles,

that can produce DM species in right abundance.
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