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Spin-1 Dark Matter

The Einstein-Hilbert action with the matter field reads

S =
∫

d4x
√
−g

{ R
2κ2 + LSM + LDM

}
,

where κ = M−1
Pl is the effective gravitational constant.

After expanding in metric (the graviton field) fluctuations,

gµν = ηµν + κhµν ,

one can rewrite the above action as

Seff =
∫

d4xLeff =
∫

d4x [L(4) + L(5)
int + L(6)

int +O(κ3, h2)],

where L(4) = L(4)
SM + L(4)

DM is dimension-4 renormalizable Lagrangian,
whereas L(5)

int , L
(6)
int contain operators of dim-5 and 6 suppressed by M−1

Pl
and M−2

Pl , respectively.
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Spin-1 Dark Matter
In minimal scenario, communication between the SM and DM sectors is
only mediated indirectly through gravity, which couples to their
energy-momentum tensors:

L(5)
int = κ

2hµν(TDM
µν + T SM

µν ).

The annihilation of SM particles into DM that comes from this Lagrangian
is through s-channel graviton exchange

Note, there is no dimension-5 direct SM and DM interaction.
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Spin-1 Dark Matter

The lowest order direct interaction between the SM and DM appears at
dim-6 operator.

The interaction of a graviton with the SM and DM energy-momentum
tensors leads to an interaction between those two sectors proportional to
κ2 which is the same order as the interaction via the effective operator:

L(6)
int = κ2

2 κXm2
X |H|2XµXµ,

which arises through the following coupling

1
Λ2 DµΦ(DµΦ)∗H†H ⊃ 1

Λ2 g2XµXµΦΦ∗H†H,

where
DµΦ ≡ ∂µΦ− igXµΦ, κ2

2 κX ≡ Λ−2
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Boltzmann equations

Let us consider a universe composed of:
unstable, massive particles φ,
stable, massive DM species X,
ultra-relativistic SM particles R.

The dynamics of such a system is governed by the following Boltzmann
equations:

ρ̇φ + 3(1 + w)Hρφ = −(ΓR + ΓX )ρφ, (1)
ρ̇R + 4HρR = ΓRρφ + 〈σ|v |〉2〈EX 〉[n2

X − (neqX )2], (2)

ṅX + 3HnX = ΓX
ρφ
mφ
− 〈σ|v |〉[n2

X − (neqX )2]. (3)

where ΓX and ΓR denote the inflaton decay widths into DM and SM,
respectively, and 〈σv〉 is a thermally-averaged cross-section.
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T(a) and H(a) relations

To solve the above system of coupled equations we assume that:
during reheating, the epoch between H−1

I and H−1
RH = Γ−1

R , the total
energy ρ density is dominated by the φ field,
after reheating, during the RD period, the main contribution to the
total energy density comes from SM radiation.

It has been shown [1] that the evolution of the Hubble rate:

H2 = κ2

3 (ρφ + ρR + ρX ),

and the temperature T with time (scale factor) follows different laws
during and after reheating.
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T(a) and H(a) relations

The temperature scales as

T (a) '
{

Tmax a
− 3

8 (1+w)
, for ae < a < aRH

TRH
aRH
a , for a ≥ aRH ,

whereas the Hubble rate evolves as

H(a) =

{
HIa
− 3

2 (1+w)
, for a < aRH

HRH
( aRH

a

)2
, for a > aRH
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Boltzmann equation for DM

To simplify the system of Boltzmann equations it is convenient to
introduce dimensionless variables:

Φ̃ = ρφ
a3(1+w)

T 4
RH

, R = ρR
a4

T 4
RH
, X = nX

a3

T 3
RH
,

which allows us to rewrite Eq.(3) as

dX
da = ΓX

H
TRH
mφ

Φ̃a−1−3w−〈σ|v |〉
HT 3

RH
a2
(
n2
X − (neqX )2

)
. (4)
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Inflaton decay into DM

Now let us consider the coupling

Lint = −κV2 κm2
XgµνφXµXν ,

which originate from the term

Lint = − 1
Λgµν(DµΦ)(DνΦ)∗φ,

where

DµΦ ≡ (∂µ − igXµ)Φ,

and

Λ−1 ≡ κV
2 κ.

The corresponding vertex:

and the decay width:

ΓX=
κ2
Vκ

2
√

m4
φ − 4m2

Xm2
φ

128πm3
φ

×

×
(
12m4

X − 4m2
Xm2

φ + m4
φ

)
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Inflaton decay into DM

Assuming that initially X (ae) = 0 we get:

X (aRH) =
∫ aRH

ae

ΓX
H(a)

TRH
mφ

Φ̃a−1−3wda. (5)

The present day relic abundance of DM particles is

ΩXh2 = ρX
ρc

h2 = mXnX (T0)
ρc

h2, (6)

where

nX (T0) = X (T0)T 3
RHγ

4
1+w

s0
sRH

,

with X (T0) ' X (aRH) and γ2 ≡ HRH
HI

.
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Freeze-in from SM particles annihilation

Let us now focus on the second term in (4), which takes the form:

dX
da = 〈σ|v |〉

T 3
RHH

a2(neqX )2, (7)

where we have assumed that nX � neqX .
The Gondolo-Gelmini formula for the thermally- averaged cross sections is
given by

〈σ|v |〉 = 1
8m4TK2(m/T )2

∫ ∞
4m2

ds
√

s(s − 4m2)σ(s)K1

(√
s

T

)
,

where
σ(s) = −1

16πs(s − 4m2)

∫ t−

t+
dt|M|2,

with t± = −(
√

s/4−m2 ∓
√

s/4)2.
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Feynman diagrams

Interaction vertices for the graviton SM(DM) interaction.

Here H, f, V represents scalar, fermion, vector degrees of

freedom, respectively.

The annihilation of SM particles into DM through s-channel

graviton exchange results in the following amplitude

M =
∑
α,β

iγ(SM)
µν Gµνρσ iγ(DM)

ρσ,αβ

where

Gµνρσ = 1
2
ηµρηνσ + ηµσηνρ − ηµνηρσ

q2 + iε ,

denotes the graviton propagator in the de Donder gauge.
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Gravitational production during inflation
Let us now consider the action for the Abelian massive DM spin-1 field:

SDM =
∫

d4x
√
−g

(
−1
4gµαgνβXµνXαβ −

1
2m2

XgµνXµXν
)
,

where Xµν = ∂µXν − ∂νXµ and the background metric is in the FLRW
form, i.e. ds2 = a2(dτ2 − dx2).
Extremizing the above action with respect to the Xµ field one obtains,

X ′′± +
(
k2 + a2m2

X
)
X± = 0, (8)

X̃ ′′L +
(

k2 + m2
Xa2 − k2

k2 + m2
Xa2

a′′
a + 3 k2m2

Xa′2
(k2 + m2

Xa2)2

)
︸ ︷︷ ︸

ω2
L

X̃L = 0, (9)

where we have used the Fourier decomposition,

Xµ(t, x) =
∑
λ

∫ d3k
(2π)3/2 ε

λ
µ(k)X λµ (t, k)eik·x.
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As usual, we quantize our theory imposing equal-time commutation
relations,

[X̂L(τ, x), Π̂L(τ, y)] = iδ(3)(x− y),

where,

X̂L =
∫ d3k

(2π)3/2

{
εL(~k)â−k XL(τ,~k)eik·x + ε∗L(~k)â†kX

∗
L (τ,~k)e−ik·x

}
, (10)

and Π̂L = X̂ ′L.

The quantum Hamiltonian:

Ĥ =
∫

d3xdτ
(

Π̂2
L + (∇X̂L)2 + m2

eff (τ)X̂ 2
L

)
explicitly depends on time and thus does not have time-independent
eigenstates that could serve as the vacuum.
This phenomenon is interpreted as a particle production.
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Energy density

Using the classical definition of the energy-momentum tensor

Tµν = 2√
−g

δ(
√
−gLDM)
δgµν

,

one can find the energy density of the spin-1 DM vector field

T00 ≡ ρX = 1
2a2 (|~̇X −∇X0|2+ 1

a2 |~∇× ~X |2 + m2
Xa2X 2

0 + m2
X
~X 2),

inserting mode decomposition (10) we the compute vacuum expectation
value of the energy density

d〈ρL〉
d ln k

=
k3

2π2a4

{
|X ′L |

2 −
(
X ′LX

∗
L + X ′∗LXL

) k2

k2 + a2m2
X

a′

a
+
(

k4

(k2 + a2m2
X )2

(
a′

a

)2
+ k2 + a2m2

X

)
|XL|

2
}

where we have used the Bunch-Davies vacuum.
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Energy density scaling
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For DM vector bosons with mass HRH < mX < HI

d〈nL(τ : H = mX )〉
d ln k =


1

8π2 H
2(1+3w)
3(1+w)

I m
1−3w

3(1+w)
X

(
k
ae

)2
, for k < k∗

1
8π2 H

2
(

3w2+3w+2
)

(w+1)(3w+1)
I m

2
1+w
X

(
ae
k

) 3(1−w)
(1+3w) , for ke > k > k∗

For DM vector bosons with mass Hr .m.e < mX < HRH

d〈nL(τ : H = mX )〉
d ln k =


1

8π2 HIγ
2(1−3w)
3(1+w)

(
k
ae

)2
, for k < k∗

1
8π2 m3/2

X H5/2
I γ

−1+3w
3(1+w)

(
ae
k

)
, for k∗ < k < kRH

1
8π2 m3/2

X γ
1−3w
1+w H

3(w+3)
2(3w+1)
I

(
ae
k

) 3(1−w)
1+3w , for ke > k > kRH

The number density per log frequency has a peak structure if and only if
w ∈ (−1

3 , 1). Then, d〈nL(H=mX )〉
d ln k is dominated by modes with k = k∗.
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Summary

Spin-1 particles that communicate with SM sector only through
gravity can serve as a viable DM candidate.
Even in the minimal scenario there exist several mechanisms,
including:

the so-called pure gravitational production during and after inflation,
the inflaton decay,
freeze-in from SM particles,

that can produce DM species in right abundance.
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