Recent results from NA61/SHINE

Seweryn Kowalski for the NA61/SHINE Collaboration,

University of Silesia, Katowice

NA61/SHINE - Physics program

Strong interactions program

- search for the critical point of strongly interacting matter
- study of the properties of the onset of deconfinement
- study high p_T particles production (energy dependence of nuclear modification factor)
- Hadron-production measurements for neutrino experiments
 - reference measurements for the neutrino experiment for computing initial neutrino fluxes at J-PARC, FERMILAB
- Hadron-production measurements for cosmic ray experiments
 - reference measurements of p+C, p+p, π +C, and K+C interactions for cosmic-ray physics (Pierre-Auger, KASCADE) for improving air shower simulations
 - measurement of Nuclear Fragmentation Cross Sections of intermediate mass nuclei needed to understand the propagation of cosmic rays in our Galaxy (background for dark matter searches with space-based experiments as AMS)

NA61/SHINE - Acceleration chain

Primary beams:

- Protons at 400 GeV/c
- Ions (Ar, Xe, Pb) at 13A 150A GeV/c
- Secondary beams:
 - Hadrons (π^{+/-}, K^{+/-}, anty-p) at 13
 400 GeV/c
 - Ions (Be) at 13A 150A GeV/c

NA61/SHINE - Experimental layout

Large acceptance hadron spectrometer

- Beam particles measured in set of counters and position detectors
- Tracks of charged particles measured in set of TPCs: measurement of q, p and identification by energy loss measurement
- 3 Time of Flight Walls: identification via time of flight measurement
- Projectile Spectator Detector measures the forward energy which characterizes centrality of collision Recent upgrades:
- Vertex Detector (open charm measurements)
- FTPC-1/2/3

NA61/SHINE Performance

 $\sigma(p)/p^2 \approx 10^{-4} (GeV/c)^{-1}$

 $\sigma(dE/dx) \approx 4\%$

 $\sigma(ToF) \approx 100\,ps$

S

5

Centrality selection in ion collisions

- Centrality is measured using Projectile Spectator Detector (PSD)
- PSD is located on the beam axis and measures the forward energy E_F related to the non-interacting nucleons of the beam nucleus
- Intervals in E_F allow to select different centrality classes

NA61/SHINE 2-dimensional scan

NA61/SHINE performerd the 2D scan in **collision energy and system size** to study the phase diagram of strongly interacting matter

//

Study of the onset of deconfinement: Particle production properties

9

Uniqueness of heavy ion results from NA61/SHINE

NA61/SHINE recorded unique data for:

- Onset of deconfinement
- Onset of fireball
- Critical point?

Two onsets in nucleus-nucleus collisions

- Onset of deconfinement beginning of QGP formation
- Onset of fireball beginning of formation of a large cluster which decays statistically

 $Ar+Sc\rightarrow K^{-}+X$

0.5

150A GeV/c 75A GeV/c

767

dn dp_Tdy

3.5

2.5

1.5

0.5

3

Onset of deconfinement: step

Plateau – **STEP** – in the inverse slope parameter T of m_T spectra in Pb+Pb collisions observed at SPS energies. This is expected for the onset of deconfinement due to mixed phase of HRG and QGP (SMES).

Onset of deconfinement: horn

Rapid changes in K⁺/ π^+ – **HORN** – were observed in Pb+Pb collisions at SPS energies. This was predicted (SMES) as a signature of onset of deconfinement.

Plateau like structure visible in p+p

Be+Be close to p+p

Ar+Sc is higher than p+p but for of energy dependence is similar to p+p (no horn)

Onset of deconfinement: p+p data

Rates of increase of $K+/\pi+$ and T change sharply in p+p collisions at SPS energies .

The fitted change energy is ≈ 7 GeV - close to the energy of the onset of deconfinement ≈ 8 GeV.

Study of the onset of deconfinement: Flow

SUINE

Directed flow and the onset of deconfinement

Directed flow v1 is considered to be **sensitive to 1**st **order phase transition** (softening of EOS). Expected: **non-monotonic behavior** (positive \rightarrow negative \rightarrow positive) **of proton dv**₁ /**dy as a function of beam energy** -"collapse of proton flow"

 p_x

at middle SPS energy ("anti-flow" of protons at mid-rapidity):

SHINE

Centrality dependence of dv_1 /dy in Pb+Pb at $\sqrt{s_{NN}}$ = 7.6 GeV

- ▶ NA61/SHINE fixed target setup \rightarrow tracking and particle identification over wide rapidity range
- Flow coefficients are measured relative to the spectator plane estimated with Projectile Spectator Detector (PSD) \rightarrow unique for NA61/SHINE

Close to mid-rapidity(-0.2 < y < 0.8) Slope of pion v₁ is always negative Slope of proton v₁ changes sign at centrality of about 50%

Proton directed flow vs rapidity

NA61 Pb+Pb at 13A GeV/c

No evidence for the collapse of proton directed flow in Pb+Pb at 13*A*GeV/c

17

π^+/π^- ratio and spectator-induced electromagnetic effects

- Spectators (in non-central collisions) follow their initial path with unchanged momenta; charged spectators generate electromagnetic fields
- Charged pion trajectories can be modified by electromagnetic interactions (repulsion for π^+ and attraction for π^-) with the spectators \rightarrow the effect is sensitive to the space-time evolution the system
- ► π +/ π ratio allows to study spectator-induced electromagnetic effects \rightarrow new information on the space and time evolution of the particle production process

Spectator-induced electromagnetic effects

EM-repulsion of π^+ and attraction π^- of is the strongest for pions with rapidities close to spectator (beam) rapidity and with low p_{τ}

First observation of spectator induced EM effects in small systems at SPS

Similar effect seen in intermediate centrality Ar+Sc (NA61/SHINE) and peripheral Pb+Pb (NA49)

SINE

Onset of fireball: system size dependence

Change between p+p ≈ Be+Be and Ar+Sc, Pb+Pb results

p+p data are corrected for experimental biases, systematic uncertainty ~0.1 [EPJ.C76:635]
0-1% Be+Be data is uncorrected, experimental bias is ~10-15%
0-0.2% Ar+Sc data is uncorrected, experimental bias is ~5-7%

 $\omega[N] \models \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$

Scaled variance of multiplicity distributions

SIINE

Critical point: Strongly intensive measures Σ[PT,N]

Comparison to NA49 A+A at 158A GeV/c within NA49 two different acceptances

System size dependence of $\Sigma[P_T, N]$ at 150/158A GeV/c: NA49 and NA61/SHINE points show consistent trends

So far there are no prominent structures which could be related to critical point

Eur.Phys.J. C77 (2017) no.2, 59, CERN-SPSC-2018-029

Strangeness production in p+p at 158 GeV/c

INF

K*(892)⁰ production in inelastic p+p collisions

<K*(892)>=0.08058 ± 0.00059 ± 0.0026

<K*(892)>=0.03812 ± 0.00538 ± 0.00372

Ξ production in inelastic p+p collisions at 158 GeV/c

SHINE

Ξ production in inelastic p+p collisions at 158 GeV/c

UrQMD fails to describe $\overline{z}^+/_{z^-}$ ratio – known problem of string models.

EPOS describes rapidity distributions of $\overline{\Xi}^+$, Ξ^- and their ratio, but not shape of transverse momentum distributions.

v

S.INE

NA61/SHINE program for 2021-2024

- What is the mechanism of open charm production?
- How does the onset of deconfinement impact open charm production?
- How does the formation of quark gluon plasma impact J/ψ production?

To answer these questions mean number of charm quark pairs, ссъ

produced in A+A collisions has to be known. Up to now corresponding experimental data **does not exist** and

only NA61/SHINE can perform this measurement in the near future.

Detector upgrade during LS2

30

Uniqueness of NA61 open charm

program

Landscape of present and future heavy ion experiments

Only NA61/SHINE is able to measure open charm production in heavy ion collisions in full phase space in the near future

- LHC and RHIC at high energies: measurements in small phase space due to collider geometry
- RHIC BES collider: measurement not possible due to collider topology
- RHIC BES fixed-target: measurement require dedicated setup, not under consideration
- NICA (< 80AGeV/c): measurement during stage 2 under consideration
- J-PARC (< 20AGeV/c): maybe possible after 2025
- FAIR (< 10AGeV/c): not possible

Reference measurements: Nuclear fragmentation cross section for cosmic ray experiments

- Primary cosmic rays from supernova remnants
- Secondary cosmic rays from interactions with interstellar matter during propagation e.g. ${}^{12}C + p \xrightarrow{frag.} B + X$

$${}^{^{12}}\mathsf{C} + \mathsf{p} \stackrel{^{\mathsf{frag.}}{\rightarrow}}{\overset{^{\mathsf{11}}}{\rightarrow}}\mathsf{C} + \mathsf{p} \stackrel{^{\mathsf{decay}}}{\rightarrow}\mathsf{B} + \mathsf{Y}$$

- Primary-to-secondary ratios (e.g. B/C)
 → traversed mass density
- Unstable-to-stable ratios (e.g. ${}^{10}\text{Be}/{}^{9}\text{Be}$) \rightarrow traversed distance
- Important for the understanding of origin of Galactic cosmic rays and backgrounds for DM searches

Understanding of cosmic ray propagation limited by uncertainties of fragmentation cross sections

NA61/SHINE will significantly reduce the uncertainties (from 20% to 0.5%)

First look on 2018 test Fragmentation cross sections

Pb at 13.5A GeV/c \rightarrow Secondary fragments with A/Z=1/2 at 13A GeV/c

NA61/SHINE setup allows to determine fragmentation cross section

Reference measurements: Hadron production for neutrino experiments

- Further improvement of the precision of measurements for the currently used T2K replica target,
- Measurements for a new target material (super-sialon) for T2K-II and Hyper-Kamiokande,
- Study of the possibility of measurements with beams <12 GeV/c for improved predictions of atmospheric and accelerator ν fluxes,
- Ultimate hadron production measurements with prototypes of Hyper-Kamiokande and DUNE targets.

NA61/SHINE will decrease systematic uncertainties on neutrino fluxes (for T2K-II, Hyper-K from 10% to 3%)

Neutrino-related accomplishments from NA61/SHINE first phase

NA61/SHINE took thin and thick target data with 31 GeV/c protons specifically for T2K in 2007, 2009 and 2010

T2K flux predictions (Phys.ReV.D87 2013 no.1, 012001) currently uses thin target data and incorporation of thick target data is in progress

2016/17 data collection:

- Thin target measurements with p and π beams at C, Be, Al targets at 30, 60 and 120 GeV/c 2018 data collection:
- 120 GeV/c p on NOvA replica target provided by Fermilab
- 18M events recorded

Summary

- 2D scan in system size and collision energy was completed in 2017 with Xe+La data
- Analysis ongoing for p+p, Be+Be Ar+Sc , Xe+La and Pb+Pb data
- No horn in Ar+Sc collisions
- Unexpected system size dependence : (p+p Be+Be) ≠ (Ar+Sc ≠ Pb+Pb)
- No convincing indication of CP
- Plans to extend NA61/SHINE program with measurements of open charm production in 2021 2024

BACKUP

37

S^{//}INE

The important questions:

- How does the formation of quark gluon plasma impact J/ψ production?
- How does the onset of deconfinement impact open charm production?
- What is the mechanism of open charm and J/ψ production? Can be answer by NA61/SHINE in the near future (2021-2024)

NA61/SHINE - Experimental layout Unique, multi-purpose facility to study hadron production in hadron-proton, hadron-nucleus and nucleus-nucleus collisions at the CERN SPS Beams: ions (Be, Ar, Xe, Pb) ~13 m p_{beam}=13A-150A GeV/c • hadrons (п, К, р) MTPC-L ToF-L p_{beam}=13-400 GeV/c Vertex magnets √s_{NN} = 5.1–16.8 (27.4) GeV ToF-F GAP VTPC-1 VTPC-2 TPC ETPC-2/3 Target PSD VD FTPC-1 Large acceptance hadron ToF-R VI^PV1 CEDAR spectrometer - coverage MTPC-R of full forward hemisphere, BPD-3 BPD-1 BPD-2 down to $p_{\tau} = 0$

Feasibility studies of open charm measurements in NA61/SHINE

In 2016 Small Acceptance Vertex Detector was introduce to NA61/SHINE detector system:

- 16 MIMOSA-26 sensors located on 2 horizontally movable arms
- Target holder integrated

Search for D⁰

First results using simplified reconstruction (200k 0-20% central Pb+Pb at 150 AGeV/c in 2016)

With background suppression

- First indication of D⁰ signal in heavy ion collision at the CERN SPS
- Significant NA61/SHINE detector upgrades are need for a precise open charm measurements

Large Acceptance Vertex Detector

- General requirements:
 - Precise vertex measurement (at the level of better ~20-30µm for particles)
 - Fast detectors (< 30 μs) with high granularity</p>
 - The low material budget
 - Large acceptance is desirable to accept 100% of the D⁰s produced and to match the VTPC-1 of NA61/SHINE
- LAVD is planned on technology develop for ALICE ITS and MFT:
 - CMOS ALPIDE pixel sensors
 - Sensor size 15 mm x 30 mm.
 - Pixel pitch 29 μm x 27 μm.
 - Carbon fiber support structure
 - Read-out electronics
- ▶ 6 stations, 220 sensors

Replacement of the TPC electronics Will increase the read-out rate by a factor

of about 10 (up to 1 kHz)

 ALICE will transfer to NA61/SHINE its present TPC electronics that will be replaced during the long shutdown LS2 Present NA61 ALICE Front-End Card Front-End Card

ALICE Front-End Card on NA61 TPC

Upgrade of the trigger and data acquisition Need for 1kHz readout frequency,

Critical point: Strongly intensive measures Δ and Σ

$$\Delta[P_{\tau}, N] = \frac{1}{\omega[p_{\tau}]\langle N \rangle} [\langle N \rangle \omega[P_{\tau}] - \langle P_{\tau} \rangle \omega[N]] \qquad P_{\tau} = \sum_{i=1}^{N} p_{\tau i}$$
$$\Sigma[P_{\tau}, N] = \frac{1}{\omega[p_{\tau}]\langle N \rangle} [\langle N \rangle \omega[P_{\tau}] + \langle P_{\tau} \rangle \omega[N] - 2 \langle \langle P_{\tau} N \rangle - \langle P_{\tau} \rangle \langle N \rangle$$

$$\omega[P_T] = \frac{\langle P_T^2 \rangle - \langle P_T \rangle^2}{\langle P_T \rangle}$$

$$\omega[p_T] = \frac{p_T^2 - \overline{p_T}^2}{\overline{p_T}}$$

 $\Delta = \Sigma = 0$ for no fluctuations

 $\Delta = \Sigma = 1$ for Independent Particle Model • Δ [P_T, N] uses only first two moments: $\langle N \rangle, \langle P_T \rangle, \langle P_T^2 \rangle, \langle N^2 \rangle$

 $\omega[N] = \frac{\langle N^2 \rangle - \langle N \rangle^2}{\langle N \rangle}$

• $\Sigma[P_{\tau}, N]$ uses also correlation term: $\langle P_{\tau}N \rangle - \langle P_{\tau} \rangle \langle N \rangle$

thus Δ and Σ can be sensitive to several physics effects in different ways

Expected: non-monotonic behavior of CP signatures

Motivation of K* measurement

The picture assumes that conditions at chemical freeze-out of p+p and Pb+Pb are the same K^{*}lifetime (≈ 4 fm/c) comparable with time between freeze-outs \rightarrow

Some resonances may decay inside fireball; momenta of their decay products can be modified due to elastic scatterings \rightarrow problems with experimental reconstruction of resonance via invariant mass \rightarrow

Suppression of observed K* yield

Assuming no regeneration processes (Fig.) time between freeze-outs can be determined from (STAR, PR C71, 064902, 2005):

 $\frac{K^*}{K} (\text{kinetic}) = \frac{K^*}{K} (\text{chemical}) \cdot e^{\frac{-\Delta t}{\tau}}$ use Pb+Pb or Au+Au ratio use p+p ratio

 Δt – time between kinetic and chemical freeze-outs $\tau - K^*(892)^0$ lifetime = 4.17 fm/c; PDG, PR D98, 030001, 2018

