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Introduction

Bump hunt at LHC was successful: we found the Higgs boson.

On the downside: no other sharp resonance — the zoo of particle
physics does not want to expand

The need for high precision predictions is higher than ever!

In the absence of sharp peaks we have to rely on precision predictions
to tell minute differences from our models

Example: Indirect top mass determination using Peskin-Takeuchi
parameters: mt € [149, 185] GeV.

—> Not just the measurement has to be precise but predictions as well
for both signal and background processes!
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Introduction

Not just discovery requires precision:
Our models can have several free parameters: masses, couplings, PDFs,

etc.
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Introduction

The de jure method for calculations in high energy particle physics
Is perturbation theory:
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Introduction

For IR safe observables only the sum of all contributions is finite
order-by-order!

The problem is the complexity: phase space integrals can only be
done numerically!

Consider a simple example:
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Two traditional ways exist to deal with the situation:
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Introduction

To assess second order corrections in QCD we use the CoLoRFULNNLO
scheme (Del Duca, Somogyi & Trocsanyi) which is a subtraction scheme

Subtractions are formulated by applying soft and/or collinear factorization
properties of QCD amplitudes

These are equipped with momentum mappings from multi-emission
to Born kinematics and various momentum fractions

Bear in mind that this is a solution to the problem! Other schemes are
available as well:

® Antenna

e STRIPPER

* Projection to Born
e Jettiness slicing

¢ | _oop-tree duality
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QCD is Alive and Kicking

QCD is important for multiple reasons:

QCD processes can be irreducible backgrounds to several interesting
processes, like for t t~ H production in the H—= b b~ channel (tt~ b b~
production)

LHC is a hadron-hadron machine...we have underlying events, soft
content, heavy hadronic activity, jets are made of hadrons from partons
through hadronization

Gauge field of QCD is non-abelian = calculations are beautifully complex
Computations are worth performing for their sheer beauty

Not to mention that we are in an era where these extremely complex
computations can be handled both numerically and analytically
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QCD is Alive and Kicking

In certain areas our understanding is limited: like in hadronization

So far non-perturbative corrections cannot be assessed from first
principles, only phenomenological models exist

A dispersive model exists (Dokshitzer, Marchesini & Webber)
with a recent facelift with an alternate effective coupling (Catani,

De Florian & Grazzini)

Model uncertainties of power corrections propagate to final results
hampering overall uncertainties in precision measurements

Two options remain:

e hetter understand power corr’s: derivation from first principles

e getting rid of them: choosing observables which are not sensitive
to them



Observables of Soft-Drop Variety

Soft drop offers a way to get rid (partially) of power corrections:

1) Perform a jet clustering according to one of the algorithms keeping
full track of pseudojet mergings

2) Consider the last merging and apply condition of:
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3) If condition fails drop the softer pseudojet and consider the next
merging in the remaining one, if passes apply condition to both merges

4) Recursively apply the condition until reaching initial tracks

9) In any further analysis only consider those tracks which survive the
soft-drop condition by keeping intact those pseudojets which they are
building up



Soft drop thrust had. corr. by PYTHIA
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Observables of Soft-Drop Variety

For soft-drop observables resummed results can also be obtained
But it is always nice to be able to check the result...

A possible check:

The exponentiated result is expanded and log structure is checked
with high-precision computations in region where resummation is
Important (very small or very close values to one)

Rule of thumb:

If the resummation is carried out to Nk+'LL we need an NkLO
computation to check logs

Nowadays it became very common to have k=2 —large demand for
precise, numerically stable NNLO computations

The computation has to be numerically stable even for values close
to kinematic limit (where resummation is understood) to really see
the logs
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Observables of Soft-Drop Variety

Note: in the NNLO computation we have to go very-very close to
Kinematic limit
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Computer Science 101

In modern computers floating point arithmetics is implemented using
the IEEE754 standard, stored in 1+m-+l bits:

sign exponent fraction

An n-bit floating point number consists of 1 bit (sign) + m bit (exponent)
+ L bit (fraction)

Exponent: in terms of powers of two: & {22m1_1, o 22m1}
Fraction: in terms of powers of two: € {1,1+27",...,2 — 27"}

—>We have a fixed number of digits

—>Single precision: 8 digits
—>Double precision: 16 digits
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Computer Science 101

A simple example:

1.254657 - 1072
+2.346789 - 107
797 :
We have to align: ~ Alignment forees
1.254657 - 10™° K ’ yow to Loose precision!
+0.0002346 - 10~°
1.257003 - 102

We lost precision due to difference in magnitude!

The same happens when a subtraction scheme is used: after subtraction
the resulting difference is orders of magnitude smaller than the original
contributions!
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Does Your Number Make Sense?

Close to kinematic limit the SME can become enormously large, so
does the subtraction terms!

— Contribution after subtraction can only have a couple of meaningful
digits!

We can also loose accuracy when the SME is calculated!

—> can partially ruin cancellation!

=—can result in with bins with large content with large uncertainty!
—>This must be avoided!

Possible solution: avoid the edges of phase space!
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Does Your Number Make Sense?

Possible solution: avoid the edges of phase space!

Two-particle invariants can be limited from below:
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Does Your Number Make Sense?

Examples:
eEVENTRZ: CUTOFF
e POWHEG-BOX: par_isrtiny * * *, par_fsrtiny * * *

e Your favorite beyond LO code...

If an NNLO calculation is used to check log structure coming from
resummation a priori we cannot tell which technical cut value allows

for a fair comparison!

As an example we can consider the soft-dropped version of the heavy
hemisphere jet mass
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Soft-Dropped Heavy Hemisphere Mass

Sticking to B=0, original jet clustering to find hemispheres is according
to kr algorithm

In both hemispheres Cambridge/Aachen algorithm is run to find
merging history

Soft drop criterium is applied to pseudojets:
min [EZ, EJ]
iy e D

= <cut

Remaining tracks are used to calculate the hemisphere mass:
max [m%, mQL}

E;

p:

19



Soft-Dropped Heavy Hemisphere Mass

The perturbative expansion of soft-dropped heavy hemisphere mass in
terms of as:

olp] = o] + oM Clp] + O] + .

The NNLO contribution can be further dissected:

ANEO] — ¥ ool + ool + BB ol

As number of unresolved emissions increase the need for a technical

cut becomes more and more severe
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Soft-Dropped Heavy Hemisphere Mass
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Soft-Dropped Heavy Hemisphere Mass
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Soft-Dropped Heavy Hemisphere Mass
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Soft-Dropped Heavy Hemisphere Mass
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Soft-Dropped Heavy Hemisphere Mass
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Conclusions

¢ Jechnical cuts are frequently used in beyond LO computations but
seldomly mentioned

e Any number coming out of a beyond LO computation should treated
with scrutiny

e Can only be sure of the result if it does not show any dependence on
the used technical cut

*|n case of slicing the situation is more elaborate: not just the slicing
parameter should be selected to be a small value but the technical

cut as well = saturation should be shown on a 2D domain

e |t is possible to calculate observables @ NNLO for small values but
extra work has to be done to be sure about the physicality of
obtained numbers
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