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Status of particle physics:  
energy frontier

3

LEP, LHC: SM describes final states of particle collisions 
precisely 

SM is unstable 

No proven sign of new physics beyond SM at colliders*  

*There are some indications below discovery significance (such as lepton 
flavor non-universality in meson decays)



Status of particle physics:  
cosmic and intensity frontiers
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Universe at large scale described precisely by 
cosmological SM: ΛCDM (Ωm =0.3), without 
astrophysical explanation

Neutrino flavours oscillate requiring neutrino masses

Existing baryon asymmetry cannot be explained by CP 
asymmetry in SM

Inflation of the early, accelerated expansion of the 
present Universe



Extension of SM

5

There are many extensions proposed, mostly 
with the aim of predicting some observable 
effect at the LHC — but those have not been 
observed so far,  so why not try something else
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There are many extensions proposed, mostly 
with the aim of predicting some observable 
effect at the LHC — but those have not been 
observed so far,  so why not try something else

SM is highly efficient — let us stick to efficiency
the only exception of economical description is the 
relatively large number of Yukawa couplings 
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Neutrinos must play a key role
with non-zero masses they must feel another force apart from the weak 
one, such as Yukawa coupling to a scalar, which requires the existence of 
right-handed neutrinos
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Extension of SM

6

Neutrinos must play a key role
with non-zero masses they must feel another force apart from the weak 
one, such as Yukawa coupling to a scalar, which requires the existence of 
right-handed neutrinos

Simplest extension of GSM=SU(3)c×SU(2)L×U(1)Y is to 
G=GSM×U(1)Z 

     renormalizable gauge theory without any other symmetry
Fix Z-charges by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass generation



Focus only on addition to the SM, 
find SM in this new book:
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fermion fields: 

where 

(νL can νR can also be Majorana neutrinos, embedded into 
different Dirac spinors) 

covariant derivative (includes kinetic mixing): 

Fermions 
(with new highlighted)
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propose an extension of the particles zoo of the standard model with three right-handed
Dirac neutrinos‡ and the gauge symmetry of the standard model Lagrangian GSM =
SU(3)c ⇥ SU(2)L ⇥ U(1)Y to GSM ⇥ U(1)Z . Such extensions have already been consid-
ered in the literature extensively§. In particular, it was shown that the charge assignment
of the matter fields is constrained by the requirement of anomaly cancellations up to two
free charges []. To define the model completely, one has to take a specific choice for these
remaining free charges. In this article we propose a new mechanism for the generation of
neutrino masses that fixes the values of the U(1)Z charges up to an overall scale that can
be embedded in the U(1)Z coupling.

2 Definition of the model

2.1 Fermion sector

We consider the usual three fermion families of the standard model extended with one
right-handed Dirac neutrino in each family.¶ We introduce the notation

 f
q,1 =

✓
U f

Df

◆

L

 f
q,2 = U f

R ,  f
q,3 = Df

R

 f
l,1 =

✓
⌫f

`f

◆

L

 f
l,2 = ⌫fR ,  f

l,3 = `fR

(2.1)

for the quark fields  q and for the lepton fields  l. In Eq. (2.1) L and R denote the left and
right-handed projections,

 L/R ⌘  
⌥

=
1

2
(1⌥ �5) ⌘ PL/R , (2.2)

except for the neutrinos, which di↵er from the charged fermions in the sense that the left and
right-handed fields are not projections of the same field, but denote di↵erent transformation

properties. Then the field content in family f (f = 1, 2 or 3) consists of two quarks, Uf ,
Df , a neutrino ⌫f and a charged lepton `f where Uf is the generic notation for the u-type
quarks U1 = u, U2 = c, U3 = t, while Df is that for d-type quarks, D1 = d, D2 = s
and D3 = b. The charged leptons `f can be `1 = e, `2 = µ or `3 = ⌧ and ⌫f are the
corresponding neutrinos, ⌫1 = ⌫e, ⌫2 = ⌫µ, ⌫3 = ⌫⌧ .

‡The negative results of the experiments searching for neutrinoless double �-decay make the Majorana
nature of neutrinos increasingly unlikely.

§For an incomplete set of popular examples and their studies see [?,?,?]
¶We find natural to assume one extra neutrino in each family although known observations do not

exclude other possibilities.
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Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫

R

are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)
c

SU(2)
L

yj zj zj rj = zj/z� � yj
U
L

, D
L

3 2 1

6

Z
1

1

6

0

U
R

3 1 2

3

Z
2

7

6

1

2

D
R

3 1 �1

3

2Z
1

� Z
2

�5

6

�1

2

⌫
L

, `
L

1 2 �1

2

�3Z
1

�1

2

0

⌫
R

1 1 0 Z
2

� 4Z
1

1

2

1

2

`
R

1 1 �1 �2Z
1

� Z
2

�3

2

�1

2

� 1 2 1

2

z� 1 1

2

� 1 1 0 z� �1 �1

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @
[µB⌫], Zµ⌫ = @

[µZ⌫] and W µ⌫ = @
[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T ·W µ⌫ transforms covariantly under G transformations, T ·W µ⌫
G�!

U(x)T ·W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, therefore a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�sin ✓Z
2

Bµ⌫Z
µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓
B0

µ

Z 0

µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
. (2.8)

In terms of the redefined fields, the covariant derivative becomes

Dµ
j = @µ + ig

L

T ·W µ + igY yjB
0µ + i(g0Z zj � g0Y yj)Z

0µ (2.9)

where g0Y = gY tan ✓Z and g0Z = gZ/ cos ✓Z . Thus the e↵ect of the kinetic mixing is to change
the couplings of the matter fields to the vector field Zµ. Note that we cannot immediately
combine the coupling factor (g0Z zj�g0Y yj) into a single product of a coupling and a charge.
We shall discuss this issue further below.

Gauge symmetry forbids mass terms for gauge bosons. Fermion masses must also be
absent because

m  ̄ = m  ̄
L

 
R

+m  ̄
R

 
L

,

4

⌘g0
Zrj+(g0

Z�g0
Y )yjz }| {



Scalars
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Standard Φ complex SU(2)L doublet and new   
� complex singlet:

with scalar potential

2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�+

�0

◆
=

1p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ �]⇤D(�)µ�+ [D(�)

µ �]⇤D(�)µ�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D(s)
µ = @µ + igL T ·W µ + igY ysBµ + i(g0Z zs � g0Y ys)Z

0

µ (2.12)

and the potential energy

V (�,�) = µ2
�|�|2 + µ2

�|�|2 +
�|�|2, |�|2�

✓
��

�
2

�
2 ��

◆✓ |�|2
|�|2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �2 > 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

� � 4��µ2
�

4���� � �2
, � = w =

s
2�µ2

� � 4��µ2
�

4���� � �2
, (2.15)

provided the conditions

�µ2
� > 2��µ

2
� and �µ2

� > 2��µ
2
� (2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ2

� and µ2
� are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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✓
��

�
2

�
2 ��

◆✓ |�|2
|�|2

◆
, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length p|�+|2 + |�0|2. The value
of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�
±

=
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�

�

� ��)
1

◆
. (2.17)

As �+ > 0 and �
�

< 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p
2

s
2��µ2

� � �µ2
�

4���� � �2
, w =

p
2

s
2��µ2

� � �µ2
�

4���� � �2
. (2.19)
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Scalars
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Standard Φ complex SU(2)L doublet and new   
� complex singlet:

with scalar potential

After SSB, G → SU(3)c×U(1)QED:

                                              &
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After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
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�

4���� � �2
, w =

p
2

s
2��µ2

� � �µ2
�

4���� � �2
. (2.19)
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫

R

are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)
c

SU(2)
L

yj zj zj rj = zj/z� � yj
U
L

, D
L

3 2 1

6

Z
1

1

6

0

U
R

3 1 2

3

Z
2

7

6

1

2

D
R

3 1 �1

3

2Z
1

� Z
2

�5

6

�1

2

⌫
L

, `
L

1 2 �1

2

�3Z
1

�1

2

0

⌫
R

1 1 0 Z
2

� 4Z
1

1

2

1

2

`
R

1 1 �1 �2Z
1

� Z
2

�3

2

�1

2

� 1 2 1

2

z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +

i

g
L

[@µ U(x)] U †(x)

Bµ G�! B0µ(x) = Bµ(x) � 1

gY
@µ�(x)

Zµ G�! Z 0µ(x) = Zµ(x) � 1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �1

4
Bµ⌫B

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @
[µB⌫], Zµ⌫ = @

[µZ⌫] and W µ⌫ = @
[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫
G�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

� ✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0

µ

Z 0

µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)
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Standard Yukawa terms:

lead to fermion masses after SSB:

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.

6

where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.

7
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Standard Yukawa terms:

lead to fermion masses after SSB:

Neutrino Yukawa terms  (                   ):

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.
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fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
(2.36)

where

M(h, s)ij =

 
0 mD

�
1 + h

v

�

mD

�
1 + h

v

�
MM

�
1 + s

w

�

!

ij

, (2.37)
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fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
(2.36)

where

M(h, s)ij =

 
0 mD

�
1 + h

v

�

mD

�
1 + h

v

�
MM

�
1 + s

w

�

!

ij

, (2.37)
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Standard Yukawa terms:

lead to fermion masses after SSB:

Neutrino Yukawa terms  (                   ):

After spontaneous symmetry breaking of G ! SU(3)c ⇥ U(1)Q⇤⇤ we use the following
convenient parametrization for the scalar fields:

� =
1p
2
eiT ·⇠(x)/v

✓
0

v + h0(x)

◆
and �(x) =

1p
2
ei⌘(x)/w

�
w + s0(x)

�
. (2.17)

We can use the gauge invariance of the model to choose the unitary gauge when

�0(x) =
1p
2

✓
0

v + h0(x)

◆
and �0(x) =

1p
2

�
w + s0(x)

�
(2.18)

and the vector fields are transformed according to Eq. (2.5). With this gauge choice, the
scalar kinetic term contains quadratic terms of the gauge fields from which one can identify
mass parameters of the massive standard model gauge bosons proportional to the vac-
uum expectation value v of the BEH-field and also that of a massive vector boson Z

0µ

proportional to w.

We can diagonalize the mass matrix (quadratic terms) of the two real scalars (h0 and
s0) by the rotation ✓

h
H

◆
=

✓
cos ✓S � sin ✓S
sin ✓S cos ✓S

◆✓
h0

s0

◆
(2.19)

where for the scalar mixing angle ✓S 2 (�⇡
4 ,

⇡
4 ) we find

sin(2✓S) =
�vwp

(��v2 � ��w2)2 + (�vw)2
. (2.20)

The masses of the mass eigenstates h and H are

Mh/H =

✓
��v

2 + ��w
2 ⌥

q
(��v2 � ��w2)2 + (�vw)2

◆1/2

(2.21)

where Mh  MH by convention. At this point either h or H can be the standard model
Higgs boson.

2.3 Fermion masses

We already discussed that explicit mass terms of fermions would break SU(2)L ⇥ U(1)Y
invariance. However, we can introduce gauge-invariant fermion-scalar Yukawa interactions

LY = �

cD

�
Ū , D̄

�
L

✓
�(+)

�(0)

◆
DR + cU

�
Ū , D̄

�
L

✓
�(0) ⇤

��(+) ⇤

◆
UR + c`

�
⌫̄`, ¯̀

�
L

✓
�(+)

�(0)

◆
`R

�

+ h.c.
(2.22)

⇤⇤These are the only symmetries that we could observe in Nature so far.
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where h.c. means hermitian conjugate terms and the parameters cD, cU , c` are called
Yukawa couplings that are matrices in family indices. The Z-charge of the BEH-field
is constrained by U(1)Z invariance of the Yukawa terms to z� = z2 � z1, which works
simultaneously for all three terms.

After spontaneous symmetry breaking and fixing the unitary gauge, this Yukawa La-
grangian becomes

LY = � 1p
2
(v + h(x))

⇥
cD D̄LDR + cU ŪLUR + c` ¯̀L`R

⇤
+ h.c. (2.23)

We see that there are mass terms with mass matrices Mi =
civ
p

2
where i = D, U , `:

LY = �
✓
1 +

h(x)

v

◆⇥
D̄L MD DR + ŪL MU UR + ¯̀

L M` `R
⇤
+ h.c. (2.24)

The general complex matrices Mi can be diagonalized by bi-unitary transformations. The
diagonal elements on the basis of mass eigenstates provide the mass parameters of the
fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments prove that at least two flavours of neutrinos are also
massive. In principle, the standard model charge assignment allows for a gauge invariant
Yukawa term

+c⌫
�
⌫̄`, ¯̀

�
L

✓
�(0) ⇤

��(+) ⇤

◆
⌫R + h.c. (2.25)

where ⌫L and ⌫R are the projections of the same field in the sense of Eq. (2.2). However,
such an option is rather arbitrary for multiple reasons. To mention three: (i) it would not
explain any other deviations from the standard model; (ii) it also would require a rather
unnatural hierarchy of Yukawa couplings, (iii) and such sterile neutrinos have no other role
in the theory and could not be observed directly.

To amend upon this issue, one can assume see-saw type mass generation [?]. In that
case the right-handed neutrino has a Majorana mass term [?]. The source of a Majorana
mass term can be Yukawa couplings to a new scalar, such as � in our case:

LR
Y = �1

2

X

i,j

(cR)ij ⌫c
i,R⌫j,R �+ h.c. (2.26)

The mass term appears after the spontaneous symmetry breaking of the symmtery of the �
field vacuum. At the same time the right-handed neutrino is the gauge singlet partner of the
left handed neutrino with a corresponding Yukawa coupling to the BEH field as in (2.25),
leading to Dirac mass terms after spontaneous symmetry breaking of the SU(2)L ⇥ U(1)Y
symmetry. Although this is a very attractive possibility, the right-handed neutrino has
to be either too heavy or the corresponding Yukawa coupling too small so that it cannot
e↵ectively influence the vacuum of the standard model [], which remains metastable.
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fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
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Charge assignment from gauge invariant 
neutrino interactions

12

(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫

R

are sterile under the G
SM

group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.
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1 1 �1 �2Z
1

� Z
2

�3

2

�1

2

� 1 2 1

2

z� 1 1

2
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fields introduced in the covariant derivative transform as

T · W µ(x)
G�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +

i

g
L

[@µ U(x)] U †(x)

Bµ G�! B0µ(x) = Bµ(x) � 1

gY
@µ�(x)

Zµ G�! Z 0µ(x) = Zµ(x) � 1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �1

4
Bµ⌫B

µ⌫ � 1

4
Zµ⌫Z

µ⌫ � 1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @
[µB⌫], Zµ⌫ = @

[µZ⌫] and W µ⌫ = @
[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫
G�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

� ✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0

µ

Z 0

µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)
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Charge assignment from re-parametrization of 
couplings
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After SSB neutrino mass terms appear

14

where

6x6 symmetric matrix (mD complex, MM real)

fermions. Due to the bi-unitary transformation the left and right-handed components of
the fermion field are di↵erent linear combinations of the mass eigenstates.

The neutrino oscillation experiments suggest non-vanishing neutrino masses and the
weak and mass eigenstates of the left-handed neutrinos do not coincide. In principle, the
charge assignment of our model allows for the following gauge invariant Yukawa terms of
dimension four for the neutrinos

L⌫
Y = �

X

i,j

✓
(c⌫)ijL̄i,L · �̃ ⌫j,R +

1

2
(cR)ij ⌫c

i,R⌫j,R �

◆
+ h.c. (2.31)

for arbitrary values of z1 and z2 if the superscript c denotes the charge conjugate of the field,
⌫c = �i�2⌫⇤ and the Z-charge of the right-handed neutrinos and the new scalar satisfy the
relation z� = �2z⌫R . There are two natural choices to fix the Z-charges: (i) the left- and
right-handed neutrinos have the same charge, or (ii) those have opposite charges. In the
first case we have

z2 � 4z1 = �3z1 , (2.32)

which is solved by z1 = z2 and it leads to the charge assignment of the U(1)B�L extension
of the standard model, studied in detail []. In the second case

z2 � 4z1 = 3z1 , (2.33)

which is solved by z1 = z2/7. As the overall scale of the Z-charges depends only on the
value of the gauge coupling g0Z , we set z2 freely. For instance, choosing z2 = 7/6 implies
z1 = 1/6 and the Z-charge of the BEH scalar is

z� = 1 , (2.34)

while that of the new scalar is
z� = �1 = �z� . (2.35)

While we cannot exclude the infinitely many cases when the magnitudes of Z-charges
of the left- and right-handed neutrinos di↵er, we find natural to assume that Eq. (2.33) is
valid. The corresponding Z-charges are given explicitly in the sixth column of Table 1.

After the spontaneous symmetry breaking of the symmtery of the vacuum of the scalar
fields Eq. (2.31) leads to the following mass terms for the neutrinos:

L⌫
Y = �1

2

X

i,j

"
�
⌫L, ⌫c

R

�
i
M(h, s)ij

✓
⌫c
L

⌫R

◆

j

+ h.c.

#
(2.36)

where

M(h, s)ij =

 
0 mD
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1 + h

v

�

mD

�
1 + h

v

�
MM

�
1 + s

w

�

!

ij

, (2.37)
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in diagonal: Majorana mass terms (so νL massless!)
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in diagonal: Majorana mass terms (so νL massless!)

but  νL and νR have the same q-numbers,                       
can mix, leading to type-I see-saw
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where                     are Majorana masses

with complex mD and real MM being symmetric 3 ⇥ 3 matrices, so M(0, 0) is a complex
symmetric 6 ⇥ 6 matrix. The diagonal elements of the mass matrix M(0, 0) provide Ma-
jorana mass terms for the left-handed and right-handed neutrinos. Thus we conclude that
the model predicts vanishing masses of the left-handed neutrinos at the fundamental level.

The o↵-diagonal elements represent interaction terms that look formally like Dirac mass
terms, �Pi,j ⌫i,L(mD)ij⌫j,R+ h.c. After spontaneous symmetry breaking the quantum
numbers of the particles ⌫c

i,L and ⌫i,R are identical, hence they can mix. Thus the prop-
agating states will be a mixture of the left- and right-handed neutrinos, so those can be
obtained by the diagonalization of the full matrix M(0, 0).

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize
the matrices mD and MM separately by a unitary transformation and an orthogonal one.
Defining

⌫ 0

L,i =
X

j

(UL)ij⌫L,j and ⌫ 0

R,i =
X

j
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we can rewrite the neutrino Yukawa Lagrangian as
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!
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In Eq. (2.40) m and M are real diagonal matrices, while V = UT
L OR is a unitariy matrix,

V V † = 1, so M 0(0, 0) is mainfestly Hermitian with real eigenvalues that are the masses of
the mass eigenstates of neutrinos. In general,M 0(0, 0) may have 15 independent parameters:
mi and Mi (i = 1, 2 ,3), while there are three Euler angles and six phases V . Three phases
can be absorbed into the definition of ⌫ 0

L.

Assuming the hierarchy mi ⌧ Mj, we can integrate out the right-handed (heavy)
neutrinos and obtain an e↵ective higher dimensional operator with Majorana mass terms
for the left-handed neutrinos
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◆2 ⇣
⌫
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⌘
. (2.41)

The Majorana masses

mM,i =
m2

i

Mi

(2.42)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
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Z0
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Tµ

Aµ

1

A

QED current remains unchanged:

and
tan � =

w

v
(2.50)

is the ratio of the scalar vacuum expectation values (not a scalar mixing angle). For small
values of the new couplings �0ZY and �0Z , implying small , we have

✓T = +O(⌧ 2,3) . (2.51)

The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

L
NC

= L
QED

+ LZ + LT (2.52)

where the first term is the usual Lagrangian of QED,

L
QED

= eAµJ
µ
em

, Jµ
em

=
3X

f=1

3X

j=1

ej
⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.53)

the second one is a neutral current coupled to the Z0 boson,

LZ = eZµ

⇣
cos ✓TJ

µ
Z � sin ✓TJ

µ
T

⌘
= eZµJ

µ
Z +O(✓T ) (2.54)

and the third one is the neutral current coupled to the T0 boson,

LT = eTµ

⇣
sin ✓TJ

µ
Z + cos ✓TJ

µ
T

⌘
= eTµJ

µ
T +O(✓T ) . (2.55)

In Eq. (2.53) e is the electric charge unit and ej is the electric charge of field  j in units of
e. In Eqs. (2.54) and (2.55) Jµ

Z is the usual neutral current,

Jµ
Z =

3X

f=1

3X

j=1

T
3

� sin2 ✓
W

ej
sin ✓

W

cos ✓
W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
, (2.56)

while the new neutral current has the same dependence on fermion dynamics with di↵erent
coupling strength:

Jµ
T =

3X

f=1

3X

j=1

�0Zrj + �0ZY yj
sin ✓

W

⇣
 

f

q,j(x)�
µ f

q,j(x) +  
f

l,j(x)�
µ f

l,j(x)
⌘
. (2.57)

As the dependence on the couplings and charges of the neutral currents in Eqs. (2.56)
and (2.57) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.54) and (2.55).

To define the perturbation theory of this model explicitly, we present the Feynman rules
in Appendix A.
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so tan(2✓T ) = 2/(1 � 2 � ⌧ 2), with
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with new current JT  of new couplings:

both can be written as v-a interactions for non-chiral 
fields:
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and for the mixing angle ✓T of the Z 0 boson we find

sin ✓T =

"
1

2

 
1 � 1 � 2 � ⌧ 2p

(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#
1/2

,

cos ✓T =

"
1

2

 
1 +

1 � 2 � ⌧ 2p
(1 + 2 + ⌧ 2)2 � 4⌧ 2

!#
1/2

,

(2.48)

so tan(2✓T ) = 2/(1 � 2 � ⌧ 2), with

 =
�0ZY + �0Zp

1 + �2Y
, ⌧ = 2

�0Z tan �p
1 + �2Y

(2.49)

and
tan � =

w

v
(2.50)

is the ratio of the scalar vacuum expectation values (not a scalar mixing angle). For small
values of the new couplings �0ZY and �0Z , implying small , we have

✓T = + O(⌧ 2,3) . (2.51)

The charged current interactions remain the same as in the standard model. The neutral
current Lagrangian can be written in the form

L
NC

= L
QED

+ LZ + LT (2.52)

where the first term is the usual Lagrangian of QED,

L
QED

= �eAµJ
µ
em

, Jµ
em

=
3X

f=1

3X

j=1

ej
⇣
 

f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
, (2.53)

the second one is a neutral current coupled to the Z0 boson,

LZ = �eZµ

⇣
cos ✓TJµ

Z � sin ✓TJµ
T

⌘
= �eZµJ

µ
Z + O(✓T ) (2.54)

and the third one is the neutral current coupled to the T0 boson,

LT = �eTµ

⇣
sin ✓TJµ

Z + cos ✓TJµ
T

⌘
= �eTµJ

µ
T + O(✓T ) . (2.55)

In Eq. (2.53) e is the electric charge unit and ej is the electric charge of field  j in units of
e. In Eqs. (2.54) and (2.55) Jµ

Z is the usual neutral current,

Jµ
Z =

3X
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T
3

� sin2 ✓
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W
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f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
, (2.56)
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while the new neutral current has the same dependence on fermion dynamics with di↵erent
coupling strength:

Jµ
T =

3X

f=1

3X

j=1

�0Zrj + �0ZY yj
sin ✓

W

⇣
 

f

q,j(x)�µ f
q,j(x) +  

f

l,j(x)�µ f
l,j(x)

⌘
. (2.57)

We can rewrite these currents as vector–axialvector currents using the non-chiral fields  f

Jµ
X =

X

f

 f (x)�µ
�
v(X)

f � a(X)

f �
5

�
 f (x) , X = Z or T , (2.58)

with vector couplings v(X)

f and axialvector couplings a(X)

f given in Appendix A and the
summation runs over all quark and lepton flavours.

As the dependence on the couplings and charges of the neutral currents in Eqs. (2.56)
and (2.57) are very di↵erent for di↵erent fermion fields, the only way that the standard
model phenomenology is not violated by the extended model if ✓T is small, which supports
the expansions used in Eqs. (2.54) and (2.55).

To define the perturbation theory of this model explicitly, we present the Feynman rules
in Appendix A.

2.6 Masses of the gauge bosons

The photon is massless, while the masses of the massive neutral bosons are

MZ = MW
cos ✓T
cos ✓

W

h
(1 +  tan ✓T )2 + (⌧ tan ✓T )2

i
1/2

(2.59)

and

MT = MW
sin ✓T
cos ✓

W

h
(1 �  cot ✓T )2 + (⌧ cot ✓T )2

i
1/2

(2.60)

where MW = 1

2

vgL and we assumed MT < MZ . Indeed, in order to have MZ within the
experimental uncertainty of the known measured value, we need ✓T ' 0, which justifies the
expansions at  = 0,

MZ =
MW

cos ✓
W

�
1 + O(2)

� ' MW

cos ✓
W

(2.61)

and

MT =
MW

cos ✓
W

⌧
�
1 + O(2)

� ' MZ0 (2.62)

where we used Eq. (2.51) and MZ0 = wg0

Z . Thus ⌧ can also be written as the ratio of the
masses of the two massive neutral gauge bosons,

⌧ =
MZ0

MW

cos ✓
W

' MT

MZ

, (2.63)
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Possible consequences with 5 new parameters
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The lightest massive new particle is a natural candidate for WIMP 
dark matter if it is sufficiently stable.

Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and 
oscillations. 

Diagonalization of neutrino mass terms leads to the PMNS matrix, 
which in turn can be the source of lepto-baryogenesis.

The vacuum of the χ scalar is charged (zj = −1) that may be a source 
of accelerated expansion of the universe as seen now. 

The second scalar together with the established BEH field may be 
the source of hybrid inflation. 



Credibility requirement
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Is there any region of the parameter space of 
the model that is not excluded by experimental 
results, both established in standard model 
phenomenology and elsewhere? 



Credibility requirement

19

Is there any region of the parameter space of 
the model that is not excluded by experimental 
results, both established in standard model 
phenomenology and elsewhere? 

Answer is not immediate, extensive studies are 
needed
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particular, the BaBar limits exclude values of 
the AΧ coupling suggested by the dark-photon 
interpretation of the muon g-2 anomaly, 
as well as a broad range of parameters for 
dark-sector models (see figure). 

“This paper is the final word from %a%ar 
on a search where the dark photon decays 
invisibly,” says BaBar spokesperson Michael 
Roney. “%ut we are continuing to search for 
dark photons and other dark-sector particles 
that have visible decay modes.” 

The BaBar result follows another direct 
search for sub-GeV dark photons carried out 
recently by CERN’s NA64 experiment, in 
which electrons incident on an active target 
probe the process eï Z → eï Z AΧ. Again, no 
evidence for such decays was found, and 
NA64 was able to exclude dark photons with 
a mass less than around 0.1 *e9. 

“The thing is, there are dark photons and 
dark photons,” says theorist  Sean Carroll 

of Caltech, who has worked on dark-photon 
models. “In contrast to massless dark 
photons, which are analogous to ordinary 
photons, this experiment constrains a 
slightly different idea of dark force-carrying 
particles that are associated with a broken 
symmetry, which therefore get a mass and 

then can decay. They are more like ¶dark 
= bosons· than dark photons.” 

 ● Further reading 
BaBar Collaboration 2017 arXiv:1702.03327.
NA64 Collaboration 2017 Phys. Rev. Lett. 118 
011802.

Regions of the dark-photon 
parameter space (mixing 
strength versus mass) 
excluded by BaBar (green) 
compared with the previous 
constraints. The new 
analysis rules out 
dark-photon coupling as 
the explanation for the 
muon (g-2) anomaly and 
places stringent constraints 
on dark-sector models. 

Les physiciens des particules du monde entier sont invités à apporter leurs 
contributions au CERN Courier, en français ou en anglais. Les articles retenus 
seront publiés dans la langue d’origine. Si vous souhaitez proposer un article, 
faites part de vos suggestions à la rédaction à l’adresse cern.courier@cern.ch.

CERN Courier welcomes contributions from the international 
particle-physics community. These can be written in English or French, 
and will be published in the same language. If you have a suggestion for 
an article, please send proposals to the editor at cern.courier@cern.ch.
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D A R K  M A T T E R

Dark photons, are hypothetical low-mass 
spin-1 particles that couple to dark matter 
but have vanishing couplings with normal 
matter. Such a boson, which may be 
associated with a U(1) gauge symmetry 
in the dark sector and mix kinetically 
with the Standard Model photon, offers 
an explanation for puzzling astrophysical 
observations such as the positron abundance 

in cosmic rays reported by the PAMELA 
satellite. Dark photons have also been 
invoked as possible explanations to the muon 
g-2 anomaly. 

Based on single-photon events in 53 fbï1 
of e+e– collision data collected at the PEP-II 
B factory in SLAC, California, the BaBar 
collaboration has now completed a thorough 
search for these particles (AΧ) via the process 

e+e– → a AΧ. The search was based on the 
assumption that the dark photon decays 
almost entirely to dark-matter particles and 
therefore that no energy would be deposited 
in the BaBar detector from its decay products. 
Finding no evidence for such processes, 
the analysis places �0� confidence-level 
upper limits on the coupling strength of AΧ to 
e+e– for dark photons lighter than 8 GeV. In 

BaBar casts further doubt on dark photons 

particles cease to interact. The source 
eccentricity at freeze-out can be estimated 
from oscillations of the HBT radius at low 
pion-pair transverse momentum. ALICE has 
measured the pion HBT-radius oscillations 
for different transverse-momentum ranges as 
a function of centrality in lead–lead collisions 
at an energy of 2.76 TeV per nucleon pair and 
plotted the results as a function of the initial 
eccentricity (see figure on previous page). 

The final eccentricities are significantly 
below the initial eccentricities due 
to a larger expansion in the in-plane 

direction. The freeze-out eccentricities 
measured by ALICE are smaller than 
those measured at RHIC energies, likely 
reflecting the longer lifetime of the system 
at the LHC. Hydrodynamic calculations 
performed for similar centralities and pair 
transverse-momentum ranges as in the 
ALICE experiment show a similar trend, 
but predict smaller final-source eccentricity 
corresponding to a more spherical source. 

The final-state source eccentricity 
remains positive for all the pair 
transverse-momentum ranges, indicating 

that even after a stronger expansion in 
the in-plane direction, the pion source 
at freeze-out is still elongated in the 
out-of-plane direction. In the future, the 
ALICE collaboration intends to measure 
the azimuthal dependence of the HBT 
radii relative to the higher-harmonic (n � 3) 
flow planes, which is directly sensitive 
to anisotropies in the system’s collective 
velocity fields. 

 ● Further reading 
ALICE Collaboration 2017 arXiv:1702.01612.

The decay rate of the Bs
0 

meson to two muons is 
a flagship measurement 
in flavour physics. It is 

extremely rare and well predicted in the 
Standard Model (SM), with a branching 
fraction of (3.65(0.23) =�10–9. It proceeds 
via a loop diagram that involves the heaviest 
known particles: the Z and W bosons and the 
top quark. Any unknown heavier particles 
that exist are likely to also contribute to this 
decay, which makes it a very sensitive probe 
of physics beyond the SM. After three decades 
of unsuccessful searches, the observation of 
the decay was first announced in a joint paper 
in Nature in 2015 by the CMS and LHCb 
collaborations using LHC data from Run 1. 

Recently the LHCb collaboration reported 
an improved analysis of this decay with 
data from 2015 and 2016 added to the Run-1 
sample. Work during the long shutdown 
allowed significant improvements to be made 
in background rejection, which increased 
the experimentϞs sensitivity. The %s

0 →�+++– 
peak is clearly visible in the resulting mass 
plot, with a small bump possibly due to 
the B0 meson to its left (see figure, top). 
The significance of the former is �.�m, 
corresponding to the first observation of this 
decay by a single experiment. At just 1.�m, 
the B0 peak is not significant. 

Using the well-known decays B0 →�K+/– 
and B+ →�J/sK+ to calibrate and normalise the 
efficiencies, the %s

0 →�+++– branching fraction 
is measured to be (3.0(0.6) = 10–9, which is the 
most precise measurement to date. Although 
consistent with the SM, the experimental 
precision still has to improve before it matches 
the present theoretical accuracy.

For the first time, LHCb also measured 
the effective lifetime of the Bs

0 →�+++– 

decay. The Bs meson system has much in 
common with that of the K0 meson, in that 
it exhibits a heavier long-lived state and a 
lighter shorter-lived state. Only the former 
is allowed to decay into +++– in the SM, but 
that may not be the case in other scenarios. 
The contributions of the two states can be 
disentangled by fitting a single exponential 
to the lifetime distribution (figure, below). 
The fitted effective lifetime is consistent 
within 1m with the hypothesis of only the 
heavier state contributing, and within 1.4m 
of the opposite. While this result does not yet 
tell us anything about new physics, it allows 
the sensitivity to be extrapolated to larger 
data samples. With the 300 fb–1 integrated-
luminosity target of the LHCb phase-II 
upgrade, the two states could be disentangled 
at the 5m level and thus provide a new and 
important test of the SM.

 ● Further reading 
LHCb Collaboration 2017 LHCb-PAPER-2017-001. 
De Bruyn et al. 2012 Phys. Rev. Lett. 109 041801. 

Rare decay puts Standard Model on the spot
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particular, the BaBar limits exclude values of 
the AΧ coupling suggested by the dark-photon 
interpretation of the muon g-2 anomaly, 
as well as a broad range of parameters for 
dark-sector models (see figure). 

“This paper is the final word from %a%ar 
on a search where the dark photon decays 
invisibly,” says BaBar spokesperson Michael 
Roney. “%ut we are continuing to search for 
dark photons and other dark-sector particles 
that have visible decay modes.” 

The BaBar result follows another direct 
search for sub-GeV dark photons carried out 
recently by CERN’s NA64 experiment, in 
which electrons incident on an active target 
probe the process eï Z → eï Z AΧ. Again, no 
evidence for such decays was found, and 
NA64 was able to exclude dark photons with 
a mass less than around 0.1 *e9. 

“The thing is, there are dark photons and 
dark photons,” says theorist  Sean Carroll 

of Caltech, who has worked on dark-photon 
models. “In contrast to massless dark 
photons, which are analogous to ordinary 
photons, this experiment constrains a 
slightly different idea of dark force-carrying 
particles that are associated with a broken 
symmetry, which therefore get a mass and 

then can decay. They are more like ¶dark 
= bosons· than dark photons.” 

 ● Further reading 
BaBar Collaboration 2017 arXiv:1702.03327.
NA64 Collaboration 2017 Phys. Rev. Lett. 118 
011802.

Regions of the dark-photon 
parameter space (mixing 
strength versus mass) 
excluded by BaBar (green) 
compared with the previous 
constraints. The new 
analysis rules out 
dark-photon coupling as 
the explanation for the 
muon (g-2) anomaly and 
places stringent constraints 
on dark-sector models. 
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Dark photons, are hypothetical low-mass 
spin-1 particles that couple to dark matter 
but have vanishing couplings with normal 
matter. Such a boson, which may be 
associated with a U(1) gauge symmetry 
in the dark sector and mix kinetically 
with the Standard Model photon, offers 
an explanation for puzzling astrophysical 
observations such as the positron abundance 

in cosmic rays reported by the PAMELA 
satellite. Dark photons have also been 
invoked as possible explanations to the muon 
g-2 anomaly. 

Based on single-photon events in 53 fbï1 
of e+e– collision data collected at the PEP-II 
B factory in SLAC, California, the BaBar 
collaboration has now completed a thorough 
search for these particles (AΧ) via the process 

e+e– → a AΧ. The search was based on the 
assumption that the dark photon decays 
almost entirely to dark-matter particles and 
therefore that no energy would be deposited 
in the BaBar detector from its decay products. 
Finding no evidence for such processes, 
the analysis places �0� confidence-level 
upper limits on the coupling strength of AΧ to 
e+e– for dark photons lighter than 8 GeV. In 

BaBar casts further doubt on dark photons 

particles cease to interact. The source 
eccentricity at freeze-out can be estimated 
from oscillations of the HBT radius at low 
pion-pair transverse momentum. ALICE has 
measured the pion HBT-radius oscillations 
for different transverse-momentum ranges as 
a function of centrality in lead–lead collisions 
at an energy of 2.76 TeV per nucleon pair and 
plotted the results as a function of the initial 
eccentricity (see figure on previous page). 

The final eccentricities are significantly 
below the initial eccentricities due 
to a larger expansion in the in-plane 

direction. The freeze-out eccentricities 
measured by ALICE are smaller than 
those measured at RHIC energies, likely 
reflecting the longer lifetime of the system 
at the LHC. Hydrodynamic calculations 
performed for similar centralities and pair 
transverse-momentum ranges as in the 
ALICE experiment show a similar trend, 
but predict smaller final-source eccentricity 
corresponding to a more spherical source. 

The final-state source eccentricity 
remains positive for all the pair 
transverse-momentum ranges, indicating 

that even after a stronger expansion in 
the in-plane direction, the pion source 
at freeze-out is still elongated in the 
out-of-plane direction. In the future, the 
ALICE collaboration intends to measure 
the azimuthal dependence of the HBT 
radii relative to the higher-harmonic (n � 3) 
flow planes, which is directly sensitive 
to anisotropies in the system’s collective 
velocity fields. 

 ● Further reading 
ALICE Collaboration 2017 arXiv:1702.01612.

The decay rate of the Bs
0 

meson to two muons is 
a flagship measurement 
in flavour physics. It is 

extremely rare and well predicted in the 
Standard Model (SM), with a branching 
fraction of (3.65(0.23) =�10–9. It proceeds 
via a loop diagram that involves the heaviest 
known particles: the Z and W bosons and the 
top quark. Any unknown heavier particles 
that exist are likely to also contribute to this 
decay, which makes it a very sensitive probe 
of physics beyond the SM. After three decades 
of unsuccessful searches, the observation of 
the decay was first announced in a joint paper 
in Nature in 2015 by the CMS and LHCb 
collaborations using LHC data from Run 1. 

Recently the LHCb collaboration reported 
an improved analysis of this decay with 
data from 2015 and 2016 added to the Run-1 
sample. Work during the long shutdown 
allowed significant improvements to be made 
in background rejection, which increased 
the experimentϞs sensitivity. The %s

0 →�+++– 
peak is clearly visible in the resulting mass 
plot, with a small bump possibly due to 
the B0 meson to its left (see figure, top). 
The significance of the former is �.�m, 
corresponding to the first observation of this 
decay by a single experiment. At just 1.�m, 
the B0 peak is not significant. 

Using the well-known decays B0 →�K+/– 
and B+ →�J/sK+ to calibrate and normalise the 
efficiencies, the %s

0 →�+++– branching fraction 
is measured to be (3.0(0.6) = 10–9, which is the 
most precise measurement to date. Although 
consistent with the SM, the experimental 
precision still has to improve before it matches 
the present theoretical accuracy.

For the first time, LHCb also measured 
the effective lifetime of the Bs

0 →�+++– 

decay. The Bs meson system has much in 
common with that of the K0 meson, in that 
it exhibits a heavier long-lived state and a 
lighter shorter-lived state. Only the former 
is allowed to decay into +++– in the SM, but 
that may not be the case in other scenarios. 
The contributions of the two states can be 
disentangled by fitting a single exponential 
to the lifetime distribution (figure, below). 
The fitted effective lifetime is consistent 
within 1m with the hypothesis of only the 
heavier state contributing, and within 1.4m 
of the opposite. While this result does not yet 
tell us anything about new physics, it allows 
the sensitivity to be extrapolated to larger 
data samples. With the 300 fb–1 integrated-
luminosity target of the LHCb phase-II 
upgrade, the two states could be disentangled 
at the 5m level and thus provide a new and 
important test of the SM.

 ● Further reading 
LHCb Collaboration 2017 LHCb-PAPER-2017-001. 
De Bruyn et al. 2012 Phys. Rev. Lett. 109 041801. 
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particular, the BaBar limits exclude values of 
the AΧ coupling suggested by the dark-photon 
interpretation of the muon g-2 anomaly, 
as well as a broad range of parameters for 
dark-sector models (see figure). 

“This paper is the final word from %a%ar 
on a search where the dark photon decays 
invisibly,” says BaBar spokesperson Michael 
Roney. “%ut we are continuing to search for 
dark photons and other dark-sector particles 
that have visible decay modes.” 

The BaBar result follows another direct 
search for sub-GeV dark photons carried out 
recently by CERN’s NA64 experiment, in 
which electrons incident on an active target 
probe the process eï Z → eï Z AΧ. Again, no 
evidence for such decays was found, and 
NA64 was able to exclude dark photons with 
a mass less than around 0.1 *e9. 

“The thing is, there are dark photons and 
dark photons,” says theorist  Sean Carroll 

of Caltech, who has worked on dark-photon 
models. “In contrast to massless dark 
photons, which are analogous to ordinary 
photons, this experiment constrains a 
slightly different idea of dark force-carrying 
particles that are associated with a broken 
symmetry, which therefore get a mass and 

then can decay. They are more like ¶dark 
= bosons· than dark photons.” 

 ● Further reading 
BaBar Collaboration 2017 arXiv:1702.03327.
NA64 Collaboration 2017 Phys. Rev. Lett. 118 
011802.

Regions of the dark-photon 
parameter space (mixing 
strength versus mass) 
excluded by BaBar (green) 
compared with the previous 
constraints. The new 
analysis rules out 
dark-photon coupling as 
the explanation for the 
muon (g-2) anomaly and 
places stringent constraints 
on dark-sector models. 
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particle-physics community. These can be written in English or French, 
and will be published in the same language. If you have a suggestion for 
an article, please send proposals to the editor at cern.courier@cern.ch.
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Dark photons, are hypothetical low-mass 
spin-1 particles that couple to dark matter 
but have vanishing couplings with normal 
matter. Such a boson, which may be 
associated with a U(1) gauge symmetry 
in the dark sector and mix kinetically 
with the Standard Model photon, offers 
an explanation for puzzling astrophysical 
observations such as the positron abundance 

in cosmic rays reported by the PAMELA 
satellite. Dark photons have also been 
invoked as possible explanations to the muon 
g-2 anomaly. 

Based on single-photon events in 53 fbï1 
of e+e– collision data collected at the PEP-II 
B factory in SLAC, California, the BaBar 
collaboration has now completed a thorough 
search for these particles (AΧ) via the process 

e+e– → a AΧ. The search was based on the 
assumption that the dark photon decays 
almost entirely to dark-matter particles and 
therefore that no energy would be deposited 
in the BaBar detector from its decay products. 
Finding no evidence for such processes, 
the analysis places �0� confidence-level 
upper limits on the coupling strength of AΧ to 
e+e– for dark photons lighter than 8 GeV. In 

BaBar casts further doubt on dark photons 

particles cease to interact. The source 
eccentricity at freeze-out can be estimated 
from oscillations of the HBT radius at low 
pion-pair transverse momentum. ALICE has 
measured the pion HBT-radius oscillations 
for different transverse-momentum ranges as 
a function of centrality in lead–lead collisions 
at an energy of 2.76 TeV per nucleon pair and 
plotted the results as a function of the initial 
eccentricity (see figure on previous page). 

The final eccentricities are significantly 
below the initial eccentricities due 
to a larger expansion in the in-plane 

direction. The freeze-out eccentricities 
measured by ALICE are smaller than 
those measured at RHIC energies, likely 
reflecting the longer lifetime of the system 
at the LHC. Hydrodynamic calculations 
performed for similar centralities and pair 
transverse-momentum ranges as in the 
ALICE experiment show a similar trend, 
but predict smaller final-source eccentricity 
corresponding to a more spherical source. 

The final-state source eccentricity 
remains positive for all the pair 
transverse-momentum ranges, indicating 

that even after a stronger expansion in 
the in-plane direction, the pion source 
at freeze-out is still elongated in the 
out-of-plane direction. In the future, the 
ALICE collaboration intends to measure 
the azimuthal dependence of the HBT 
radii relative to the higher-harmonic (n � 3) 
flow planes, which is directly sensitive 
to anisotropies in the system’s collective 
velocity fields. 

 ● Further reading 
ALICE Collaboration 2017 arXiv:1702.01612.

The decay rate of the Bs
0 

meson to two muons is 
a flagship measurement 
in flavour physics. It is 

extremely rare and well predicted in the 
Standard Model (SM), with a branching 
fraction of (3.65(0.23) =�10–9. It proceeds 
via a loop diagram that involves the heaviest 
known particles: the Z and W bosons and the 
top quark. Any unknown heavier particles 
that exist are likely to also contribute to this 
decay, which makes it a very sensitive probe 
of physics beyond the SM. After three decades 
of unsuccessful searches, the observation of 
the decay was first announced in a joint paper 
in Nature in 2015 by the CMS and LHCb 
collaborations using LHC data from Run 1. 

Recently the LHCb collaboration reported 
an improved analysis of this decay with 
data from 2015 and 2016 added to the Run-1 
sample. Work during the long shutdown 
allowed significant improvements to be made 
in background rejection, which increased 
the experimentϞs sensitivity. The %s

0 →�+++– 
peak is clearly visible in the resulting mass 
plot, with a small bump possibly due to 
the B0 meson to its left (see figure, top). 
The significance of the former is �.�m, 
corresponding to the first observation of this 
decay by a single experiment. At just 1.�m, 
the B0 peak is not significant. 

Using the well-known decays B0 →�K+/– 
and B+ →�J/sK+ to calibrate and normalise the 
efficiencies, the %s

0 →�+++– branching fraction 
is measured to be (3.0(0.6) = 10–9, which is the 
most precise measurement to date. Although 
consistent with the SM, the experimental 
precision still has to improve before it matches 
the present theoretical accuracy.

For the first time, LHCb also measured 
the effective lifetime of the Bs

0 →�+++– 

decay. The Bs meson system has much in 
common with that of the K0 meson, in that 
it exhibits a heavier long-lived state and a 
lighter shorter-lived state. Only the former 
is allowed to decay into +++– in the SM, but 
that may not be the case in other scenarios. 
The contributions of the two states can be 
disentangled by fitting a single exponential 
to the lifetime distribution (figure, below). 
The fitted effective lifetime is consistent 
within 1m with the hypothesis of only the 
heavier state contributing, and within 1.4m 
of the opposite. While this result does not yet 
tell us anything about new physics, it allows 
the sensitivity to be extrapolated to larger 
data samples. With the 300 fb–1 integrated-
luminosity target of the LHCb phase-II 
upgrade, the two states could be disentangled 
at the 5m level and thus provide a new and 
important test of the SM.

 ● Further reading 
LHCb Collaboration 2017 LHCb-PAPER-2017-001. 
De Bruyn et al. 2012 Phys. Rev. Lett. 109 041801. 

Rare decay puts Standard Model on the spot
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Contribution of the new gauge boson to a�
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experimentally:

• The neutrino Yukawa terms provide a source for the PMNS matrix as shown in in
Sect. 2.3, which in turn can produce leptogenesis (and hence baryogenesis).

• The vacuum of the � scalar has a charge zj = �1 (or rj = �1) that may be a source
of the current accelerated expansion of the universe.

• The second scalar together with the established BEH field can cause hybrid inflation.

In order that the model makes these explanations credible, we have to find answer to the
following question: Is there any region of the parameter space of the model that is not
excluded by experimental results, both established in standard model phenomenology and
elsewhere? Of course, answering this question requires studies well beyond the scope of a
single article. Here we shall focus on the constraints over the parameter space that can be
obtained from the standard model phenomenology and in particular from the anomalous
magnetic moment of the muon.

4 Anomalous magnetic moment of the muon

There is a long standing deviation between the experimental result and predicted standard
model value of the anomalous magnetic moment of the muon [20],

a(exp)µ � a(SM)

µ = 268(76) · 10�11 . (4.1)

Here we assume that this di↵erence–which will be tested by the increased precision of future
experiments–is due to the e↵ect of the new gauge boson to the anomalus magnetic moment
and we estimate the allowed values for the ratio tan � of the vacuum expectation values
and that of the mixed coupling �0

ZY and the right coupling �0

Z ,

⇢0Z =
�0

ZY

�0

Z

= 1� �0

Y

�0

Z

= 1� gY
gZ

sin ✓Z . (4.2)

Note that if ⇢0Z were vanishing, then the new gauge boson couples only to right-handed
fermions.

As the new U(1)Z sector may influence the standard model phenomenology only within
the current experimental uncertainties, the new gauge coupling must be small. Therefore,
the use of first order perturbation theory is justified. At one-loop accuracy, the only new
contributions to the anomaly constant aµ = (gµ � 2)/2 emerge due to the modified Zµ̄µ
interaction and the new interaction T µ̄µ, both presented in the Appendix. The only new
Feynman graph is a triangle with the exchange of a T0 boson between the muon legs, which
is formally identical to the triangle with the exchange of a Z0 boson between the muon legs
as shown in Fig. 1. Consequently, the computation follows the same steps as in the case of
the electroweak corrections [21–24], so we present only the result for the exchange of a Z0,
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Z0, T

Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.

a(Z
0
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2 sin ✓
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2 sin ✓
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(hf cos ✓W sin ✓T � sin ✓
W

cos ✓T ) + cos ✓T
⌘
� cos2 ✓T

�
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and that for the exchange of a T0 boson,

a(T
0
)

µ (hf , ✓T ) =
G

F

m2

µ

6
p
2⇡2

M2

Z

0

M2

T

0


2 sin ✓

W

(hf cos ✓W cos ✓T + sin ✓
W

sin ✓T )

⇥
⇣
2 sin ✓

W

(hf cos ✓W cos ✓T + sin ✓
W

sin ✓T )� sin ✓T
⌘
� sin2 ✓T

� (4.4)

where hf represents h±

f defined in Eq. (A.1) for the right/left-handed muon. The contri-
bution of the Z0 boson in the standard model is recovered by setting hf = 0 and ✓T = 0.
Thus, the complete new contribution to the aµ in this model is given by

�aµ = a(T+SM)

µ � a(SM)

µ = a(Z
0
)

µ � a(Z
0
)

µ (0, 0) + a(T
0
)

µ . (4.5)

As mentioned before, the standard model phenomenology requires ✓T ' 0, which justifies
the expansion in ✓T :

�aµ(hf ) =
G

F

m2

µ

6
p
2⇡2

✓
hf/g0Z
tan �

◆
2

+O(✓T ) (4.6)

where we used Eqs. (2.58) and (2.59) together with the definitions in Eqs. (2.48) and (2.49)
and according to Ref. [4],

G
F

m2

µ

6
p
2⇡2

' 155.5 · 10�11 (4.7)

numerically. For the left-handed muon h�

µ /g
0

Z = �⇢0Z/2, while for the right-handed muon
h+

µ /g
0

Z = �1/2�⇢0Z where ⇢0Z is defined in Eq. (4.2). The muons in the experiment oscillate
between the two chiralities with short time period [], so the experiment measures the average
of the two predictions,

�aµ =
1

2

⇣
�aµ(h

�

f ) +�aµ(h
+

f )
⌘
=

G
F

m2

µ

6
p
2⇡2

5⇢0Z
2 + 4⇢0Z + 1

8 tan2 �
+O(✓T ) (4.8)
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Figure 1: Feynman diagram containing the e↵ect of the new vector boson on the anomalous
magnetic moment of the muon at one loop accuracy.

the same steps as in the case of the electroweak corrections [23–26], so we present only the
result for the exchange of a massive U(1) gauge boson X (X = Z0) or T0):

a(X)

µ (hf , ✓T ) =
G

F

m2

µ

6
p
2⇡2

h
3C+

XC
�

X � (C+

X)
2 � (C�

X)
2

i
, (4.3)

with coe�cients C+

X and C�

X given for both gauge bosons in the Appendix in terms of
flavour dependent constants g±f and h±

f defined in Eq. (A.1). For the muon

g+µ =
sin ✓

W

cos ✓
W

, g�µ =
sin ✓2

W

� 1

2

sin ✓
W

cos ✓
W

, h�

µ = � �0

Z

2 sin ✓
W

, h+

µ = � �0

Z

2 sin ✓
W

(1 + 2⇢0Z) .

(4.4)
The contribution of the Z0 boson in the standard model is recovered by setting h±

f = 0 and
✓T = 0. Thus, the complete new contribution to the aµ in this model is given by

�aµ = a(T+SM)

µ � a(SM)

µ = a(Z
0
)

µ (hf , ✓T )� a(Z
0
)

µ (0, 0) + a(T
0
)

µ (hf , ✓T ) . (4.5)

As mentioned before, the standard model phenomenology requires ✓T ' 0, which justi-
fies the expansion in ✓T :
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where we used Eqs. (2.58) and (2.59) together with Eq. (2.51) and the definitions in Eqs. (2.48)
and (2.49). According to Ref. [4], numerically

G
F

m2

µ

6
p
2⇡2

' 155.5 · 10�11 . (4.7)

The deviation in Eq. (4.1) is explained by the contribution in Eq. (4.6) if ⇢0Z and tan �
are confined to the region determined by

tan � '
r

155.5
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⇣
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, (4.8)
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Favoured region by Δa� differs from that in 
kinetic mixing model
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Searches for invisibly decaying, light, neutral 
gauge bosons, BaBar limit
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Figure 3: Feynman diagram producing a photon and a T0 boson in electron-positron anni-
hilation.
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is proportional to the square of the kinetic mixing parameter ✏. As the T0 boson couples
to the fermions with V-A type couplings, the cross section for the e+e� ! �T0 process,
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. Hence, we can define the e↵ective kinetic mixing

parameter for the e+e� ! �T0 production channel as
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6 Conclusions

In this paper we collected the well established experimental observations that cannot be ex-
plained by the standard model of particle interactions. We have then proposed an anomaly
free extension by a U(1)Z gauge group, which is the simplest possible model. We also
assumed the existence of a new complex scalar field with Z-charge only (i.e. neutral with
respect to the standard model interactions) and three right-handed neutrinos. In order
to fix the Z-charges of the particle spectrum we assumed that the left- and right-handed
neutrinos have opposite Z-charges. Thus such a model predicts the existence of (i) a mas-
sive neutral vector boson, (ii) a massive scalar particle and (iii) three massive right-handed
neutrinos. The left-handed neutrinos remain massless as in the standard model, but their
Yukawa interactions with the BEH field and the right-handed neutrinos provide a field
theoretical basis for explaining neutrino oscillations and predict e↵ective Majorana masses
for the propagating mass eigenstates.
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Favoured region of Δa� = a�(exp) -a�(SM) = (268 ±76) 10-11   in the kinetic 
mixing—vector boson mass plane with the existence of a T0 boson 
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Searches for invisibly decaying, light, neutral 
gauge bosons, BaBar limit
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Figure 3: Feynman diagram producing a photon and a T0 boson in electron-positron anni-
hilation.
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6 Conclusions

In this paper we collected the well established experimental observations that cannot be ex-
plained by the standard model of particle interactions. We have then proposed an anomaly
free extension by a U(1)Z gauge group, which is the simplest possible model. We also
assumed the existence of a new complex scalar field with Z-charge only (i.e. neutral with
respect to the standard model interactions) and three right-handed neutrinos. In order
to fix the Z-charges of the particle spectrum we assumed that the left- and right-handed
neutrinos have opposite Z-charges. Thus such a model predicts the existence of (i) a mas-
sive neutral vector boson, (ii) a massive scalar particle and (iii) three massive right-handed
neutrinos. The left-handed neutrinos remain massless as in the standard model, but their
Yukawa interactions with the BEH field and the right-handed neutrinos provide a field
theoretical basis for explaining neutrino oscillations and predict e↵ective Majorana masses
for the propagating mass eigenstates.
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BaBar and NA64 together allow for the interpretation of  
Δa� = a�(exp) -a�(SM) = (268 ±76) 10-11   with the existence of a T0 boson 
only if MT < 1.1 MeV 
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Conclusions
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Established observations require physics beyond SM, but 
do not suggest a rich BSM physics

U(1)Z extension has the potential of explaining all known 
results

Anomaly cancellation and neutrino mass generation 
mechanism are used to fix the Z-charges up to reasonable 
assumptions

Parameter space can and need be constrained from 
existing experimental results (like searches in missing 
energy events)
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SM is unstable
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Figure 1: Left: SM RG evolution of the gauge couplings g1 =
p

5/3g0, g2 = g, g3 = gs, of the
top and bottom Yukawa couplings (yt, yb), and of the Higgs quartic coupling �. All couplings are
defined in the MS scheme. The thickness indicates the ±1� uncertainty. Right: RG evolution of
� varying Mt, Mh and ↵s by ±3�.

the Yukawa sector and can be considered the first complete NNLO evaluation of ��(µ).

We stress that both these two-loop terms are needed to match the sizable two-loop scale

dependence of � around the weak scale, caused by the �32y4t g
2
s + 30y6t terms in its beta

function. As a result of this improved determination of ��(µ), we are able to obtain a

significant reduction of the theoretical error on Mh compared to previous works.

Putting all the NNLO ingredients together, we estimate an overall theory error on Mh of

±1.0GeV (see section 3). Our final results for the condition of absolute stability up to the

Planck scale is

Mh [GeV] > 129.4 + 1.4

✓

Mt [GeV]� 173.1

0.7

◆

� 0.5

✓

↵s(MZ)� 0.1184

0.0007

◆

± 1.0th . (2)

Combining in quadrature the theoretical uncertainty with the experimental errors on Mt and

↵s we get

Mh > 129.4± 1.8 GeV. (3)

From this result we conclude that vacuum stability of the SM up to the Planck scale is

excluded at 2� (98% C.L. one sided) for Mh < 126GeV.

Although the central values of Higgs and top masses do not favor a scenario with a

vanishing Higgs self coupling at the Planck scale (MPl) — a possibility originally proposed
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Figure 5: Regions of absolute stability, meta-stability and instability of the SM vacuum in the Mt–
Mh plane (upper left) and in the �–yt plane, in terms of parameter renormalized at the Planck
scale (upper right). Bottom: Zoom in the region of the preferred experimental range of Mh and
Mt (the gray areas denote the allowed region at 1, 2, and 3�). The three boundary lines correspond
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error. The dotted contour-lines show the instability scale ⇤ in GeV assuming ↵s(MZ) = 0.1184.

determined at hadron colliders su↵ers from O(⇤QCD) non-perturbative uncertainties [41]. A

possibility to overcome this problem and, at the same time, to improve the experimental

error on Mt, would be a direct determination of the MS top-quark running mass from ex-

periments, for instance from the tt̄ cross-section at a future e+e� collider operating above

the tt̄ threshold. In this respect, such a collider could become crucial for establishing the

structure of the vacuum and the ultimate fate of our universe.

As far as the RG equations are concerned, the error of ±0.2 GeV is a conservative

estimate, based on the parametric size of the missing terms. The smallness of this error,

compared to the uncertainty due to threshold corrections, can be understood by the smallness

of all the couplings at high scales: four-loop terms in the RG equations do not compete with

finite tree-loop corrections close to the electroweak scale, where the strong and the top-quark

Yukawa coupling are large.

The LHC will be able to measure the Higgs mass with an accuracy of about 100–200

MeV, which is far better than the theoretical error with which we are able to determine the

condition of absolute stability.
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First diagonalize mD and MM  by defining

so

where

with m and M diagonal,                     unitary matrix

with complex mD and real MM being symmetric 3 ⇥ 3 matrices, so M(0, 0) is a complex
symmetric 6 ⇥ 6 matrix. The diagonal elements of the mass matrix M(0, 0) provide Ma-
jorana mass terms for the left-handed and right-handed neutrinos. Thus we conclude that
the model predicts vanishing masses of the left-handed neutrinos at the fundamental level.

The o↵-diagonal elements represent interaction terms that look formally like Dirac mass
terms, �Pi,j ⌫i,L(mD)ij⌫j,R+ h.c. After spontaneous symmetry breaking the quantum
numbers of the particles ⌫c

i,L and ⌫i,R are identical, hence they can mix. Thus the prop-
agating states will be a mixture of the left- and right-handed neutrinos, so those can be
obtained by the diagonalization of the full matrix M(0, 0).

In order to understand the structure of the matrix M(0, 0) better, we first diagonalize
the matrices mD and MM separately by a unitary transformation and an orthogonal one.
Defining
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In Eq. (2.40) m and M are real diagonal matrices, while V = UT
L OR is a unitariy matrix,

V V † = 1, so M 0(0, 0) is mainfestly Hermitian with real eigenvalues that are the masses of
the mass eigenstates of neutrinos. In general,M 0(0, 0) may have 15 independent parameters:
mi and Mi (i = 1, 2 ,3), while there are three Euler angles and six phases V . Three phases
can be absorbed into the definition of ⌫ 0

L.

Assuming the hierarchy mi ⌧ Mj, we can integrate out the right-handed (heavy)
neutrinos and obtain an e↵ective higher dimensional operator with Majorana mass terms
for the left-handed neutrinos
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The Majorana masses

mM,i =
m2

i

Mi

(2.42)

are suppressed by the ratios mi/Mi as compared to mi. The latter have a similar role
in the Lagrangian as the mass parameters of the charged leptons, so one may assume
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