QCD corrections to evolution equations for operator matrix elements

Sven-Olaf Moch

Universität Hamburg

Matter To The Deepest: Recent Developments In Physics of Fundamental Interactions, Podlesice, Sep 07, 2017

Based on work done in collaboration with:

- Four-Loop Non-Singlet Splitting Functions in the Planar Limit and Beyond
 S. M., B. Ruijl, T. Ueda, J. Vermaseren and A. Vogt arXiv:1707.08315
- Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics
 V.M. Braun, A.N. Manashov, S. M. and M. Strohmaier arXiv:1703.09532
- Two-loop conformal generators for leading-twist operators in QCD
 V.M. Braun, A.N. Manashov, S. M. and M. Strohmaier arXiv:1601.05937
- Many more papers of MVV and friends ...
 2001 ...

Motivation

Operator matrix elements

 QCD applications to hard processes use nonlocal operators of partons at light-like separation

 $\mathcal{O}_{\mu}(x;z_1,z_2) = \bar{\psi}(x+z_1)\gamma_{\mu}[z_1,z_2]\psi(x+z_2)$

- Expansion of $\mathcal{O}_{\mu}(x; z_1, z_2)$ at short distances leads to local operators
 - (anti-)quark fields with covariant derivatives $D_{\mu} = \partial_{+} igA_{+}$ $\bar{\psi}(x)(\overleftarrow{D}_{+})^{m}\gamma_{\mu}(\overrightarrow{D}_{+})^{k}\psi(x)$

Applications

- (Generalized) parton distributions: PDFs and GPDs
- Hard exclusive reactions with identified hadrons N(p) and N(p') in initial and final state: $\gamma^* N(p) \rightarrow \gamma N(p')$ (DVCS)
- Meson-photon transition form factors $\gamma^*
 ightarrow \gamma \pi$

Light-ray operators

• Short-distance expansion yields light-ray operators $\mathcal{O}_{\mu}(x; z_1, z_2)$ with light-like direction n

$$[\mathcal{O}](x;z_1,z_2) \equiv \sum_{m,k} \frac{z_1^m z_2^k}{m!k!} \left[\bar{\psi}(x) (\stackrel{\leftarrow}{D} \cdot n)^m \not\!\!/ (n \cdot \stackrel{\rightarrow}{D})^k \psi(x) \right]$$

- multiplicative renormalization $[\mathcal{O}] = Z\mathcal{O}$
- Light-ray operators satisfy renormalization group equation Balitsky, Braun '87

$$\left(\mu\partial_{\mu}+\beta(a)\partial_{a}+\mathbb{H}(a)\right)[\mathcal{O}](x;z_{1},z_{2})=0$$

- Integral operator $\mathbb{H}(a)$ acts on light-cone coordinates of fields $z_{12}^{\alpha} = z_1(1-\alpha) + z_2\alpha$
 - evolution kernel $h(\alpha, \beta)$ $\mathbb{H}(a)[\mathcal{O}](z_1, z_2) = \int_0^1 d\alpha \int_0^1 d\beta h(\alpha, \beta) [\mathcal{O}](z_{12}^{\alpha}, z_{21}^{\beta})$
- Powers $[\mathcal{O}](z_1, z_2) \mapsto (z_1 z_2)^N$ are eigenfunctions of \mathbb{H}
- Eigenvalues $\gamma(N) = \int d\alpha d\beta h(\alpha, \beta) (1 \alpha \beta)^N$ are anomalous dimensions of leading-twist local operators with N = m + k derivatives

Sven-Olaf Moch

Evolution equations

Leading-order result for evolution kernel

$$\mathbb{H}^{(1)}f(z_1, z_2) = 4C_F \left\{ \int_0^1 d\alpha \frac{\bar{\alpha}}{\alpha} \left[2f(z_1, z_2) - f(z_{12}^{\alpha}, z_2) - f(z_1, z_{21}^{\alpha}) \right] - \int_0^1 d\alpha \int_0^{\bar{\alpha}} d\beta f(z_{12}^{\alpha}, z_{21}^{\beta}) + \frac{1}{2}f(z_1, z_2) \right\}$$

- Expression comprises all classical leading-order QCD evolution equations
 - PDFs Altarelli, Parisi; $\gamma^{(0)}(N)$
 - meson light-cone distribution amplitudes

Efremov, Radyushkin, Brodsky, Lepage

• general evolution equation for GPDs Belitsky, Müller; $h^{(1)}(\alpha,\beta)$

Task

- Push accuracy of evolution equations to NNLO and beyond
- Computation of $h(\alpha, \beta)$ to three loops and $\gamma(N)$ to four loops

Off-forward kinematics

Conformal symmetry

- Full conformal algebra in 4 dimensions includes fifteen generators Mack, Salam '69; Treiman, Jackiw, Gross '72
 - **D** (dilatation)
 - \mathbf{P}_{μ} (4 translations) $\mathbf{M}_{\mu\nu}$ (6 Lorentz rotations)
 - \mathbf{K}_{μ} (4 special conformal transformations)

Collinear subgroup $SL(2,\mathbb{R})$

- Leading order evolution operator $\mathbb{H}^{(1)}$ commutes with (canonical) generators of collinear conformal transformations
 - Special conformal transformation $x_- \rightarrow x' = \frac{x_-}{1+2ax}$
 - Translations $x_- \to x' = x_- + c$ and dilatations $x_- \to x' = \lambda x_-$

• Evolution kernel $h^{(1)}(\alpha,\beta) = \overline{h}(\tau)$ effectively function of one variable $au = \frac{\alpha\beta}{\bar{\alpha}\bar{\beta}}$ (conformal ratio) Braun, Derkachov, Korchemsky, Manashov '99 $h^{(1)}(\alpha,\beta) = -4C_F \left[\delta_+(\tau) + \theta(1-\tau) - \frac{1}{2}\delta(\alpha)\delta(\beta) \right],$

Higher orders

- Conformal symmetry is broken in any realistic four-dimensional QFT
 β(a) ≠ 0
- Leading order generators of $SL(2, \mathbb{R})$ commute with $\mathbb{H}^{(1)}$ satisfy the usual $SL(2, \mathbb{R})$ algebra $[S_0, S_{\pm}] = \pm S_{\pm}, [S_+, S_-] = 2S_0$ $S_-^{(0)} = -\partial_{z_1} - \partial_{z_2},$ $S_0^{(0)} = z_1\partial_{z_1} + z_2\partial_{z_2} + 2,$ $S_{\pm}^{(0)} = z_1^2\partial_{z_1} + z_2^2\partial_{z_2} + 2(z_1 + z_2)$

Idea

- Instead of considering consequences of broken conformal symmetry in QCD make use of exact conformal symmetry of modified theory
 - $\beta(a) = 2a(-\epsilon \beta_0 a \beta_1 a^2 \dots)$ with $a = \frac{\alpha_s}{4\pi}$
 - large- n_f QCD in $4 2\epsilon$ dimensions at critical coupling a_* with $\beta(a_*) = 0$ Banks, Zaks '82
- Maintain exact conformal symmetry, but the generators of $SL(2,\mathbb{R})$ are modified by quantum corrections

Conformal anomaly (I)

• Generators in interacting theory (at the critical point a_*) are nontrivial $S_- = S_-^{(0)}$

$$S_0 = S_0^{(0)} + \Delta S_0 = S_0^{(0)} - \epsilon + \frac{1}{2}\mathbb{H}(a_*)$$

 $S_{+} = S_{+}^{(0)} + \Delta S_{+} = S_{+}^{(0)} + (z_{1} + z_{2}) \left(-\epsilon + \frac{1}{2} \mathbb{H}(a_{*}) \right) + (z_{1} - z_{2}) \Delta_{+}(a_{*})$

- generator of special conformal transformations ΔS_+
- conformal anomaly $\Delta_+(a_*)$ restores conformal Ward identity
- Integral operator $\mathbb{H}(a_*)$ commutes with all generators
 - eigenvalues at order k satisfy $\mathbb{H}^{(k)}(z_1 z_2)^N = \gamma^{(k)}(N) (z_1 z_2)^N$ where $SL(2, \mathbb{R})$ -invariant is function of conformal spin N(N+1)
 - full anomalous dimension constrained by 'self-tuning' with universal evolution kernel γ_u reciprocity-respecting (invariant for $N \rightarrow -N 1$)

$$\gamma(N) = \gamma_{u} \left(N + \gamma(N) - \beta(a) \right)$$

Conformal anomaly (II)

Feynman diagrams for deformation of generator of special conformal transformations ΔS_+

Upshot

 Three-loop evolution equation for flavor-nonsinglet operators in off-forward kinematics computed with two-loop conformal anomaly and algebraic solution of constraint for conformal Ward identity Forward kinematics

Anomalous dimensions

- Anomalous dimensions $\gamma(N)$ of leading twist non-singlet local operators
 - ultraviolet divergence of loop corrections to operator in (anti-)quark two-point function

expressible in harmonic sums up to weight 7

$$S_{\pm m_1,\dots,m_k}(N) = \sum_{i=1}^N \frac{(\pm 1)^i}{i^{m_1}} S_{m_2,\dots,m_k}(i)$$

- $2 \cdot 3^{w-1}$ sums at weight w
- Reciprocity relation $\gamma(N) = \gamma_u (N + \gamma(N) \beta(a))$ reduces number of 2^{w-1} sums at weight w for γ_u
 - additional denominators with powers 1/(N+1) give $2^{w+1} 1$ objects (255 at weight 7)
- Constraints at large-x/small-x ($N \rightarrow \infty/N \rightarrow 0$) give additional 46 conditions

Calculation

- Non-singlet operator of spin-*N* and twist two $O_{\{\mu_1,\dots,\mu_N\}}^{ns} = \overline{\psi} \lambda^{\alpha} \gamma_{\{\mu_1} D_{\mu_2} \dots D_{\mu_N\}} \psi$, $\alpha = 3, 8, \dots, (n_f^2 - 1)$
- Feynman diagrams for operator matrix elements generated up to four loops with Qgraf Nogueira '91
- Parametric reduction of four-loop massless propagator diagrams with Forcer Ruijl, Ueda, Vermaseren '17
- Symbolic manipulations with Form Vermaseren '00; Kuipers, Ueda, Vermaseren, Vollinga '12 and multi-threaded version TForm Tentyukov, Vermaseren '07
- Diagrams of same topology and color factor combined to meta diagrams
 - 1 one-, 7 two-, 53 three- and 650 four-loop meta diagrams for $\gamma_{\rm ns}^{\pm}$
 - 1 three- and 29 four-loop meta diagrams for $\gamma_{
 m ns}^{
 m s}$

Upshot

- Computation of Mellin moments up to N = 18 for anomalous dimensions feasible
- Reconstruction of analytic all-N expressions in large- n_c limit from solution of Diophantine equations

Mellin moments at four loops

Sven-Olaf Moch

QCD corrections to evolution equations for operator matrix elements – p.15

Sven-Olaf Moch

 $^{\Lambda}_{\text{QCD}}$ corrections to evolution equations for operator matrix elements – p.16

Numerical implications

Large-*x* limit

$$P_{\rm ns}^{(n-1)}(x) = \frac{A_n}{(1-x)_+} + B_n \,\delta(1-x) + C_n \,\ln(1-x) + D_n$$

Cusp anomalous dimension

• Large- n_c limit (agrees with Henn, Lee, Smirnov, Smirnov, Steinhauser '16)

$$A_{L,4} = C_F n_c^3 \left(\frac{84278}{81} - \frac{88832}{81} \zeta_2 + \frac{20992}{27} \zeta_3 + 1804\zeta_4 - \frac{352}{3} \zeta_2 \zeta_3 - 352\zeta_5 - 32\zeta_3^2 - 876\zeta_6 \right) - C_F n_c^2 n_f \left(\frac{39883}{81} - \frac{26692}{81} \zeta_2 + \frac{16252}{27} \zeta_3 + \frac{440}{3} \zeta_4 - \frac{256}{3} \zeta_2 \zeta_3 - 224\zeta_5 \right) + C_F n_c n_f^2 \left(\frac{2119}{81} - \frac{608}{81} \zeta_2 + \frac{1280}{27} \zeta_3 - \frac{64}{3} \zeta_4 \right) - C_F n_f^3 \left(\frac{32}{81} - \frac{64}{27} \zeta_3 \right)$$

Full QCD result

 $A_4 = 20702(2) - 5171.9(2) n_f + 195.5772 n_f^2 + 3.272344 n_f^3$

• includes non-vanishing coefficients of quartic Casimir contributions $\frac{d_F^{abcd}d_A^{abcd}}{N_R}$ and $\frac{d_F^{abcd}d_F^{abcd}}{N_R}$

Scale stability of evolution

Summary

- QCD radiative corrections to evolution equations for operator matrix elements
 - necessary for precision of non-perturbative quantities: PDFs, GPDs, DAs
- Light-ray operators
 - QCD evolution equations possess a "hidden" conformal symmetry
 - evolution kernel $h(\alpha, \beta)$ at NNLO for off-forward kinematics
- Matrix elements of non-singlet local operators of twist two
 - anomalous dimension $\gamma(N)$ (fixed Mellin moments and exact results for large- n_c) at N³LO
- Non-singlet splitting functions at four loops