

#### Physics beyond collider – future NA61

Szymon Puławski on behalf of NA61/SHINE collaboration

#### **Physics motivation**

# NA61 physics program beyond 2020

#### Strong interaction program

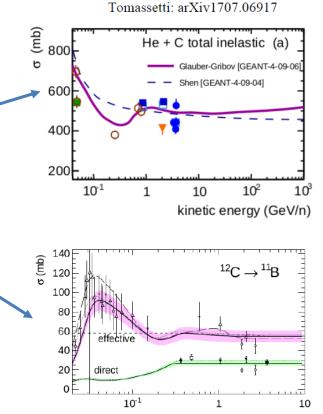
Cosmic ray program Neutrino program

Open charm in heavy ion collisions

Multi-strange hyperons in heavy ion collisions

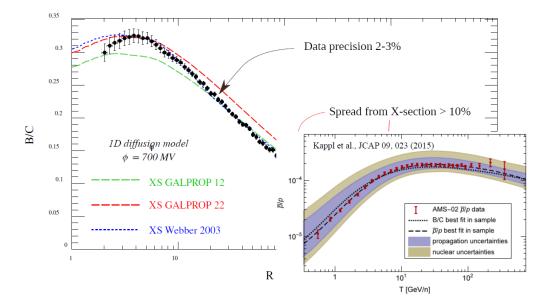
Fragmentation cross sections needed for interpretation of AMS-02 data Accelerator and atmospheric neutrino experiments expressed interest in thintarget measurements

# Cosmic ray program


S...II

1G\$ (AMS) game-changing data 'cannot be' exploited because of GeV nuclear physics (XS uncertainties >> AMS-02 data uncertainties) Cosmic Ray data modelling requires

• Reaction cross-section (CR destruction)


- Production cross sections (secondary species)
- No data above 5 GeV/n

- Cross section uncertainties ~10-15%
- AMS-02 uncertainties ~3%



kinetic energy (GeV/n)

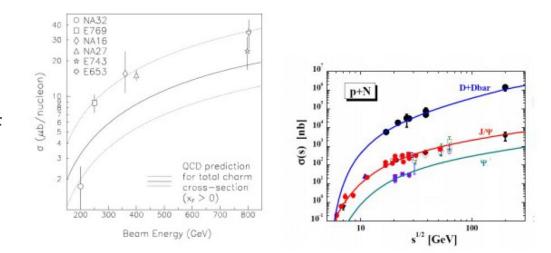
## Cosmic ray program

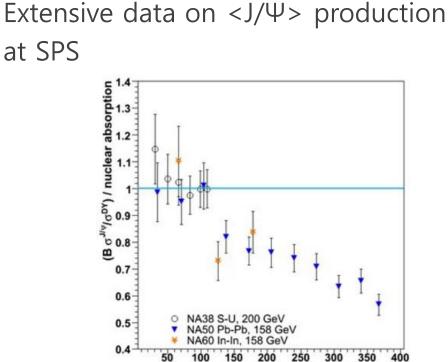


Nuclear cross section is dominant systematic uncertainty on transport parameters

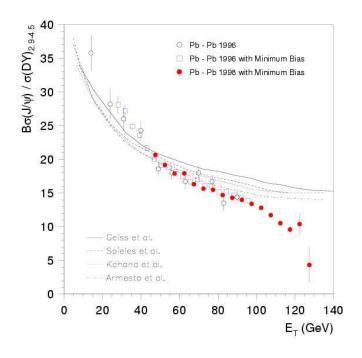
From Y. Genolini

## Cosmic ray program





| <b>Ranking of individual XS (with short-lived nuclei)</b><br>[Set $\sigma_{(P+T \rightarrow F)} = 0$ one at a time, propagate, sort]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                      |                                             | Energy<br>1 step<br>2 steps            | 10 GeV/nuc<br>80.6%<br>15.9%                                             | :                                                                                                                                                                                                                                                                                                                    | To reach 3% precision<br>on B flux @10 GeV              |                                     |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------|--|
| Separate short-lived (ghost) nuclei<br>$\sigma_{CR}^{P+T-X} = \sigma_{Direct}^{P+T-X} + \sum_{i} Br_{i} \sigma_{Ghost}^{P+T-Xi(-X)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>Contributions (with gho</u><br>secondary =<br>primary =<br>radioactive =                                                                                                                                                                                                                                                                          | 0%<br>84.7%<br>0%<br>15.3%                  | <u>10 GeV/n</u>                        | >2 steps                                                                 | $\begin{array}{c} 3.5\% \\ \hline {}^{11}B \leftarrow {}^{12}C \\ {}^{11}B \leftarrow {}^{16}O \\ {}^{10}B \leftarrow {}^{12}C \\ {}^{10}B \leftarrow {}^{12}C \\ {}^{10}B \leftarrow {}^{11}B \leftarrow {}^{12}C \\ {}^{11}B \leftarrow {}^{24}Mg \\ {}^{11}B \leftarrow {}^{12}C \leftarrow {}^{16}O \end{array}$ | 32.4%<br>18.8%<br>10.4%<br>9.0%<br>2.3%<br>1.8%<br>1.7% | 77% Need a 2% precision on          |  |
| $\frac{160}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sorted XS<br>$\sigma(^{12}C+H \rightarrow^{11}B)$ $\sigma(^{12}C+H \rightarrow^{11}C^{[20,4m\rightarrow11B]}$ $\sigma(^{16}O+H \rightarrow^{11}B)$ $\sigma(^{12}C+H \rightarrow^{10}B)$                                                                                                                                                              | Involved<br>20.0%<br>17.9%<br>19.9%<br>8.3% | XS[mb]<br>30.0<br>26.8<br>27.3<br>12.3 |                                                                          |                                                                                                                                                                                                                                                                                                                      | 1.6%<br>1.5%<br>1.4%<br>1.4%<br>1.3%<br>3.4%            | ~ 10 reactions                      |  |
| $^{57}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11}$ $^{11$ | $\sigma(^{16}O+H \rightarrow^{10}B)$<br>$\sigma(^{11}B+H \rightarrow^{10}B)$<br>$\sigma(^{16}O+H \rightarrow^{12}C)$                                                                                                                                                                                                                                 | 8.1%<br>4.4%<br>3.0%                        | 11.0<br>38.9<br>32.3                   | $\begin{array}{l} [0.1\%,1\%] \\ [0.01\%,0.1\%] \\ < 0.01\% \end{array}$ | # 61 reactions<br>28<br>90<br>277                                                                                                                                                                                                                                                                                    | 8.8%)                                                   | and 10% precision<br>3% on the rest |  |
| $\rightarrow$ Exactly what we need!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sigma(^{16}\text{O}+\text{He}\rightarrow^{11}\text{B})$<br>$\sigma(^{12}\text{C}+\text{He}\rightarrow^{11}\text{B})$<br>$\sigma(^{12}\text{C}+\text{He}\rightarrow^{11}\text{C}^{[20.4\text{m}\rightarrow11\text{B}]}$                                                                                                                             |                                             | 36.6<br>38.6<br>34.6                   | Ene                                                                      | ergy depe                                                                                                                                                                                                                                                                                                            | enden                                                   | t cross                             |  |
| N.B.: flight time between target/detector<br>determines which XS is measured                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $ \begin{array}{l} \sigma(^{14}\mathrm{N+H} \rightarrow^{11}\mathrm{B}) \\ \sigma(^{12}\mathrm{C+H} \rightarrow^{10}\mathrm{C}^{[19.3 \mathrm{s} \rightarrow 10\mathrm{B}]} \\ \sigma(^{13}\mathrm{C+H} \rightarrow^{11}\mathrm{B}) \\ \sigma(^{16}\mathrm{O+H} \rightarrow^{13}\mathrm{O}^{[8.6\mathrm{ms} \rightarrow 13\mathrm{C}]} \end{array} $ | 2.6%<br>2.1%<br>1.5%<br>1.4%                | 29.2<br>3.1<br>22.2<br>30.5            |                                                                          | tion mea<br>portant re                                                                                                                                                                                                                                                                                               |                                                         | nent for all<br>ns:                 |  |
| (direct or cumulative of some sort)<br>Maurin – NA61 beyo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{\sigma(^{16}O+He \rightarrow^{10}B)}{md 2020 \text{ wo}}$                                                                                                                                                                                                                                                                                     | <sup>1.2%</sup><br>rkshop                   | 14.7<br>)                              |                                                                          | <ul><li>parameterization</li><li>compilation of data</li></ul>                                                                                                                                                                                                                                                       |                                                         |                                     |  |

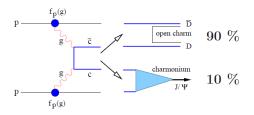
#### Open charm and multi-strange hadron production


Why open charm:

- No measurements for A+A at SPS energies
- Important for onset of deconfinament






N<sub>part</sub>



NE

How to properly calibrate J/Ψ production (Satz – NA61 beyond 2020 workshop)

charmonium production in pp collisions



 $J/\psi$  measured in pp collisions is approximately 60 % direct  $J/\psi(1S)$ , 30 %  $\chi_c(1P)$  & 10 %  $\psi'$  (2S)feed-down

narrow resonances  $\rightarrow$  decay outside interaction region medium sees traversal of higher resonances

• crucial question:

are these features (hidden/open, relative quarkonium fractions) changed in nuclear collisions?

modifications in nuclear collisions:

• initial state effects

pdf modification (shadowing, antishadowing) energy loss of incident parton (gluon)

• final state effects

energy loss of primary  $c\bar{c}$ cold nuclear matter effect on (nascent) charmonium secondary matter effect on (nascent) charmonium

(Satz – NA61 beyond 2020 workshop)



previous analysis procedure:

• measure production in pp and pA

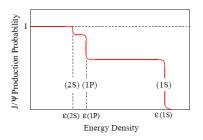
determine pdf modification (shadowing, antishadowing) determine parton energy loss

determine cold nuclear matter effect

• construct model for AA

scale pp by number of collisions

incorporate initial & cnm final state modifications

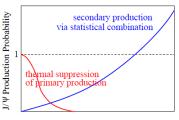

- compare to AA data: is there anomalous behavior?
  - i.e., something not accounted for by model  $\rightarrow$  inconclusive

# SUINE

#### Theoretical Scenarios

#### • <u>sequential suppression</u>

color screening dissociates charmonium states in QGP first higher excited states (2S), (1P), then ground state (1S)




- Both scenarios claim that presence of medium modifies the relative fraction of *cc* going into charmonia
- neither says anything about how many  $c\bar{c}$  pairs are produced in AA relative to scaled pp

#### Conclusions

#### • statistical enhancement

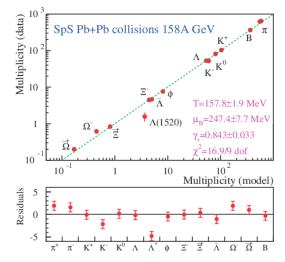
all primary charmonia dissociated at high collision energy, overabundance of charm quarks equilibration,  $c\bar{c}$  excess survives hadronisation by statistical combination



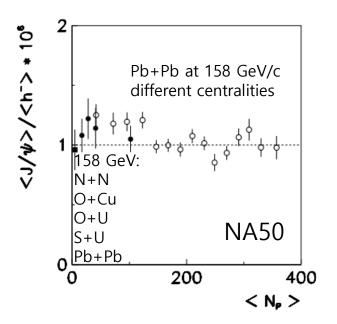


Only measurements of hidden/open heavy flavor production,

measurements of excited/ground state quarkonium production


in pp, pA, AA

can provide model-independent answers


to model-independent questions.

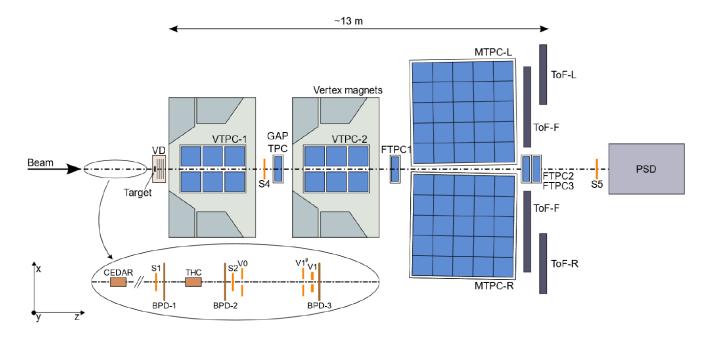
Alternative model – statistical hadronization model

Successfully describes strange and non-strange particle production



 $<J/\Psi>(\sim V)/<h^{-}>(\sim V)=const(A)$ 

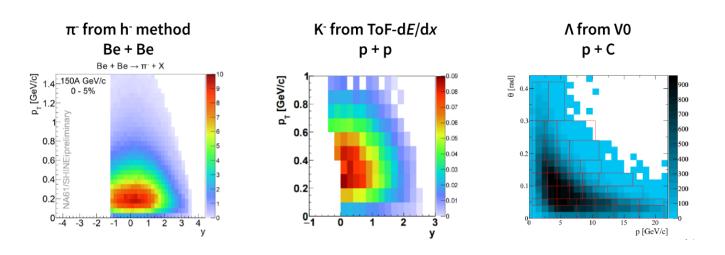





#### **NA61/SHINE - beams and targets** NA61/SHINE Possible beams: Hadrons: • Primary protons at 400 GeV/c • Secondary (π, K, p) at 13–350 GeV/c lons: SPS • Primary: Ar, Xe, Pb at 13A–150A GeV/c • Secondary from Pb fragmentation (e.g. Be) at 13A–150A GeV/c I HC Targets: Almost any solid state (from 500 $\mu$ m to 1 m) Liquid hydrogen (20 cm) H2 beamline is used for momentum PS and chargé selection as well as selection # nuclear fragments separation Bo~(A/Z)+p beam matrix R34 ("monochromatic beam

#### **NA61** spectrometer




**Large acceptance hadron spectrometer** – coverage of the full forward hemisphere, down to  $p_T = 0$ 



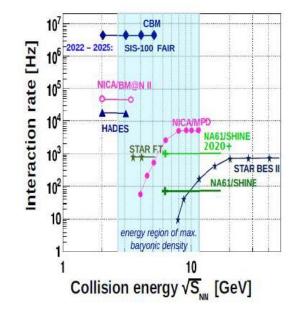
#### **NA61** particle identification

S.INE

- Particle identification methods
  - d*E*/d*x* based on TPCs energy loss measurements
  - ToF-d*E*/d*x* based on combined TPCs and ToFs measurements
  - $h^2$  used for  $\pi^2$  identification based on Monte-Carlo models
  - V0,  $\Xi$ ,  $\Omega$ ,  $D^0$  based on decay topology
- Example phase space coverage of various identification methods:



## Facility upgrades

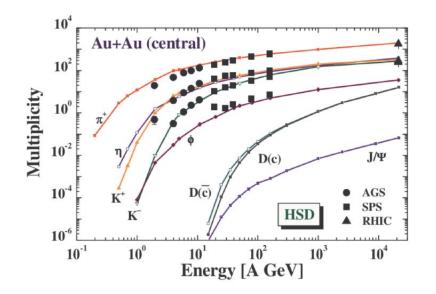

#### Increase readout rate to 1kHz:

New TPC readout electronics (from ALICE)

New Data Acquisition System

#### **Detectors upgrades:**

- Large acceptance Vertex Detector based on ALPIDE sensors
- New ToF walls based on mRPC technology
- New BPDs based on scintillating fibers
- Upgrade of the PSD to handle large beam intensities






#### **Open charm simulations**

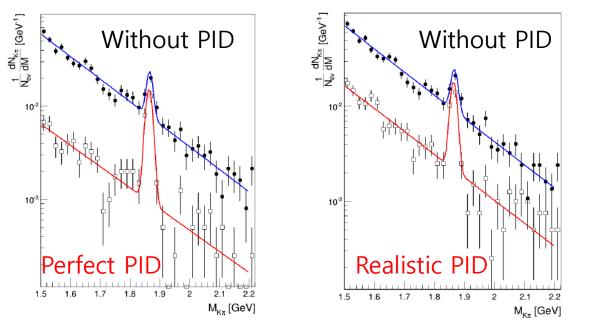
SHINE

200k of the 0-10% most central Pb+Pb collisions at 150AGeV/c were generated using the AMPT (A MultiPhase Transport) model



The model properly describes production of charged pions and kaons.

The AMPT model predicts an average multiplicity of about 0.01 for  $D^0 + \overline{D}$  mesons produced in central Pb+Pb collisions at 150*A* GeV/c (significa ntly lower than the predictions of PYTHIA and H SD)


AMPT mean multiplicity for  $D^0 + \overline{D}^0$  mesons was scaled to the HSD prediction.

L. Zi-Wei et al. Phys. Rev. **C72** (2005) 064901 E. Linnyk, Bratkovskaya and W. Cassing Int. J. Mod. Phys. **E17** (2008) 1367.

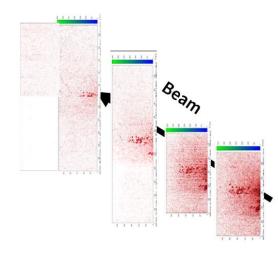
#### **SAVD** simulations results

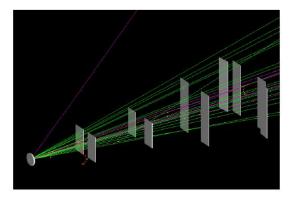
SHINE

The invariant mass of pion-kaon pair candidates after the cuts for the SAVD.



The total numb<u>er</u> of measured  $D^0 + D$  decays in 4 millions central **Pb+Pb collisions at 150***A* **GeV/c** (statistics aft er 1 day of data taking beyond 2020) is estimated to be about **1500** 


#### **SAVD** simulations results


Population of D<sup>0</sup> mesons in transverse momentum  $p_T$  and rapidity y. all generated within the within the SAVD acceptance and after all cuts SAVD acceptance 100 3.5 3.5 3.5p<sub>T</sub> [GeV/c] 2.5 2.5 2.5 1.5 1.5 0.5 0.5 0.5 -1.5 -1 -0.5 0 0.5 -1.5 -1 -0.5 0 0.5 1.5 -1.5 -0.5 0 0.5 1.5  $\mathsf{y}_{\mathsf{CM}}$  $\mathsf{A}^{\mathsf{CM}}$ СМ

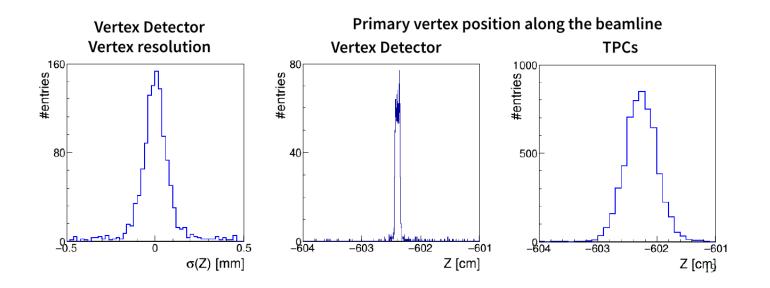
Results are plotted for the 0-20 % most central Pb+Pb collisions at 150*A* GeV/c and correspond to 4 million events.

#### NA61 – Vertex detector

- Built for open charm measurements
- Based on Mimosa26 sensors
- Small Acceptance VD: 4 stations, 16 sensors
- 5 µm tracking resolution

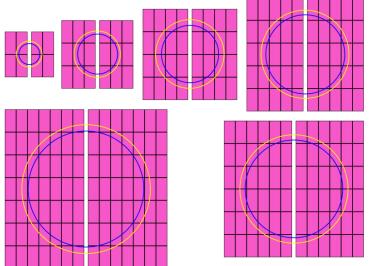









#### **NA61 – Vertex detector**




- Vertex detector was commissioned in December 2016
- Pb + Pb at 150A GeV/c data taking with 1 mm target
- Vertex resolution:  $30 \,\mu\text{m}$  possible to distinguish D<sup>0</sup> decays



#### **Vertex Detector beyond 2020**

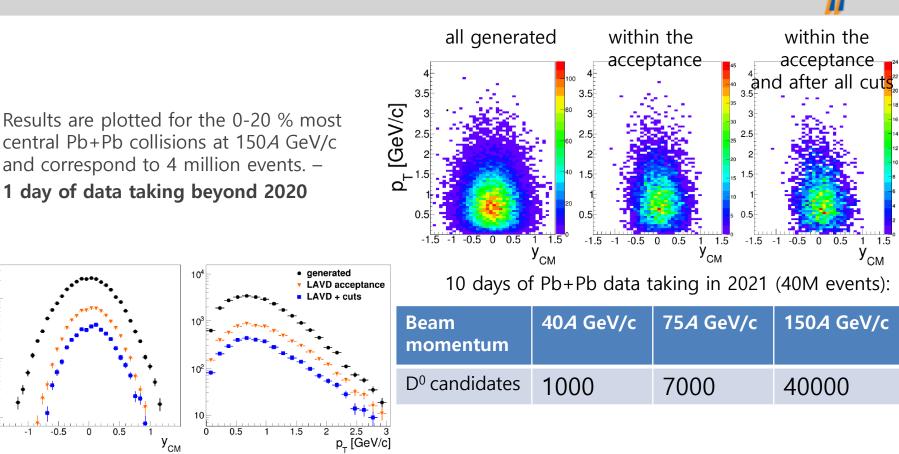
In the VD beyond 2020 the stations are located at the same distances as in the SAVD.



Approximately 6 layers with 400 ALPIDE sensors. Basically geometry of SAVD with additional sensors and layers.

#### **Vertex Detector beyond 2020**

counts


 $10^{2}$ 

10

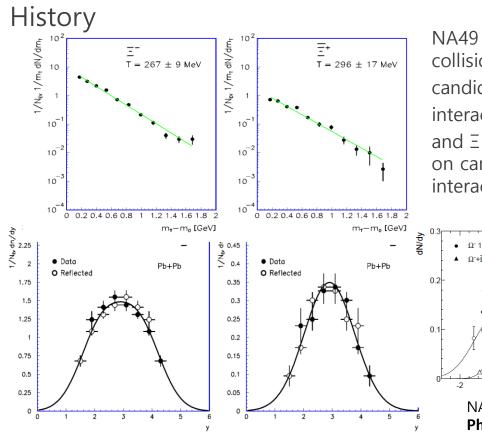
-1

-0.5

Ω



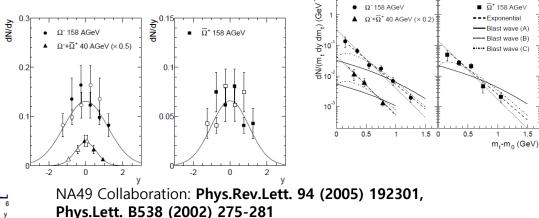
INE


#### Summary

- SHINE
- NA61 beyond 2020 will be well suited to precisely measure open charm produced in Pb+Pb collisions at 40-150A GeV/c.
   Statistics should be sufficient to obtain two dimensional spectra of D<sup>0</sup> and their antiparticles.
- Fragmentation cross sections measurements needed for interpretation of AMS-02 data can be performed only by NA61 beyond 2020.
- Measurements for neutrino experiments are under consideration.
- Proposal for the new program should be ready by the end of the year.

#### Backup

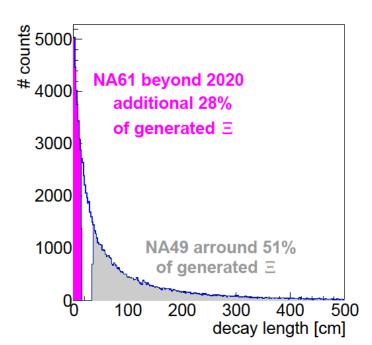



#### Multi-strange hadrons beyond 2020



NA49 experiment measured  $\Omega$  production in Pb+Pb collisions (with centrality window 22%) based only on candidates with decay length higher than 25 cm from interaction point

INE


and  $\Xi$  production (with centrality window 7%) based only on candidates with decay length higher than 35 cm from interaction point



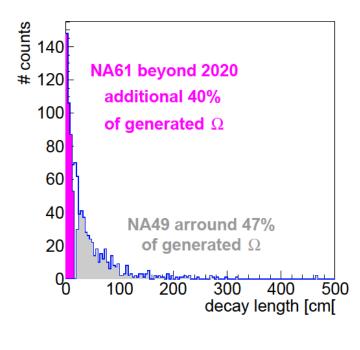
### Multi-strange hadrons beyond 2020



Impact of vertex detector for  $\Xi$  measurements



Precise vertex measurement should automatically reduce combinatorial background. Acceptance similar to NA49. Additional 28% of  $\Xi$  visible.


#### Pb+Pb at 158A GeV/c:

| Source                          | $\Xi^-$ | $\Xi^+$ |
|---------------------------------|---------|---------|
| NA49 (400k events)              | 4800    | 900     |
| VD improvement<br>(400k events) | 7400    | 1400    |
| Readout rate<br>(40M events)    | 740000  | 140000  |

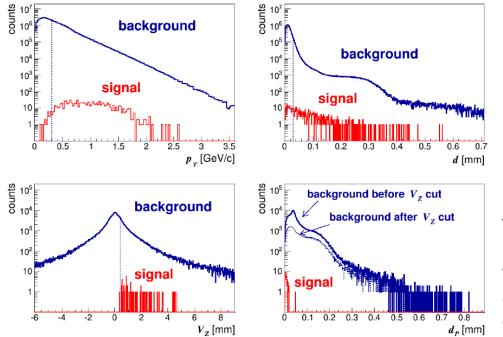
### Multi-strange hadrons beyond 2020



Impact of vertex detector for  $\Omega$  measurements



Precise vertex measurement should automatically reduce combinatorial background. Acceptance similar to NA49. Additional 40% of  $\Omega$  visible.


#### Pb+Pb at 158A GeV/c:

| Source                          | $\Omega^{-}$ | $\overline{\Omega}^+$ |
|---------------------------------|--------------|-----------------------|
| NA49 (2.5M events)              | ~350         | ~100                  |
| VD improvement<br>(2.5M events) | 650          | 185                   |
| Readout rate<br>(40M events)    | 10400        | 3000                  |

# The strategy for reconstructing open charm



In order to reduce the large combinatorial background, kinematical and topological cuts are applied:

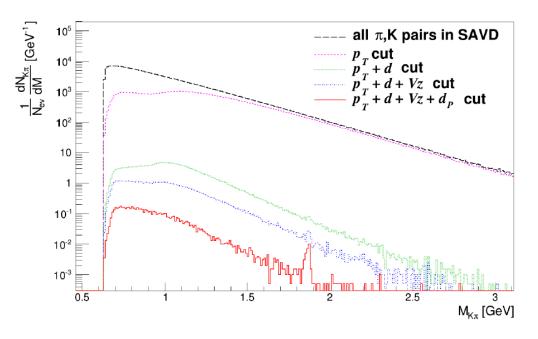


(i) A cut on the track transverse momentum  $p_{T'}$ 

(ii) a cut on the track impact parameter d,

(iii) a cut on the longitudinal distance  $V_Z$  between the D decay candidate and the interaction point,

(iv) a cut on the impact parameter  $d_p$  of the back-extrapolated D candidate momentum vector.


We select tracks with  $p_T$  > 0.31 GeV/c, d > 31  $\mu m,$  and track pairs with  $V_z$  > 400  $\mu m,$  d\_P < 20  $\mu m.$ 

Addendum to the NA61/SHINE Proposal SPSC-P-330 CERN-SPSC-2015-038 / SPSC-P-330-ADD-8

# The strategy for reconstructing open charm



The cuts reduce the number of **signal pairs by a factor of 2**, while the number of **background** pairs in the signal region is reduced **by a factor of 2x10<sup>5</sup>** 



The distributions were obtained assuming perfect particle identification.

Addendum to the NA61/SHINE Proposal SPSC-P-330 CERN-SPSC-2015-038 / SPSC-P-330-ADD-8