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and threshold singularities, 
integrable but numerically unstable
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DREG LTD / FDU
▪ Modify the dimensions of the space-

time to d = 4-2e 
▪ Computations without altering the  

d=4 space-time dimensions1 

▪ Singularities manifest after 
integration as 1/e poles:
▪ IR cancelled through suitable 

subtraction terms, which need 
to be integrated over the 
unresolved phase-space

▪ UV renormalized

▪ Singularities killed before 
integration: 
▪ Unsubtracted summation over 

degenerate IR states at 
integrand level through a 
suitable momentum mapping 

▪ UV through local counter-terms

▪ Virtual and real contributions are 
considered separately: phase-space 
with different number of final-state 
particles

▪ Virtual and real contributions are 
considered simultaneously: more 
efficient Monte Carlo implementation 
and fully differential

1 Gnendiger et al., To d, or not to d: Recent developments and 
comparisons of regularization schemes, arXiv:1705.01827
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   The loop-tree duality theorem
Cauchy residue theorem
in the loop energy complex plane 

selects residues with definite positive 
energy  and negative imaginary part 
(indeed in any coordinate system)

 

Feynman Propagator +i0:
positive frequencies are propagated 
forward in time, and negative backward

GF (qi) =
1

q2i �m2
i + i0

[Catani et al. 2008]



G. Rodrigo

The loop-tree duality theorem [Catani et al. 2008]

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary 
QFT) represented as a linear combination of N single-cut phase-space integrals 

๏                                                     sets internal line on-shell, positive energy mode 

๏                                                          dual propagator,

�̃(qi) = i 2⇡ ✓(qi,0) �(q
2
i �m2

i )

GD(qi; qj) =
1

q2j �m2
j � i0 ⌘ kji

kji = qj � qi

Z

`

Y
GF (qi) = �

XZ

`
�̃(qi)

Y

j 6=i

GD(qi; qj)



G. Rodrigo

The loop-tree duality theorem [Catani et al. 2008]

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary 
QFT) represented as a linear combination of N single-cut phase-space integrals 

๏                                                     sets internal line on-shell, positive energy mode 

๏                                                          dual propagator,

๏ LTD realised by modifying the customary +i0 prescription of the Feynman 
propagators, it compensates for the absence of multiple-cut contributions that 
appear in the Feynman Tree Theorem

�̃(qi) = i 2⇡ ✓(qi,0) �(q
2
i �m2

i )

GD(qi; qj) =
1

q2j �m2
j � i0 ⌘ kji

kji = qj � qi

Z

`

Y
GF (qi) = �

XZ

`
�̃(qi)

Y

j 6=i

GD(qi; qj)



G. Rodrigo

The loop-tree duality theorem [Catani et al. 2008]

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary 
QFT) represented as a linear combination of N single-cut phase-space integrals 

๏                                                     sets internal line on-shell, positive energy mode 

๏                                                          dual propagator,

๏ LTD realised by modifying the customary +i0 prescription of the Feynman 
propagators, it compensates for the absence of multiple-cut contributions that 
appear in the Feynman Tree Theorem 

๏ Lorentz-covariant dual prescription with     a future-like vector; from now                                                                               
only the sign matters 

�̃(qi) = i 2⇡ ✓(qi,0) �(q
2
i �m2

i )

GD(qi; qj) =
1

q2j �m2
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LTD at two-loops and beyond
๏ Iterative application of LTD at higher orders 

๏ With a number of cuts equal to the number of loops the loop amplitude opens to a 
tree-level like object
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LTD at two-loops and beyond
๏ Iterative application of LTD at higher orders 

๏ With a number of cuts equal to the number of loops the loop amplitude opens to a 
tree-level like object 

๏ However, the on-shell loop momenta still unconstrained
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๏ LTD: equivalent to integrate along the forward 

on-shell hyperboloids / light-cones (positive 
energy modes) 

๏ The dual loop integrand becomes singular 
when subsets (>=2) of internal propagators 
go on-shell

๏ Cancellation of singularities among dual 
amplitudes at forward-forward intersections: 
dual +i0 prescription changes sign, proof of 
consistency

๏ Only backward (negative energy) with forward 
IR and threshold singularities remain: time-
like separated propagators with lower energy 
causally connected 

Buchta et al, arXiv:1405.7850

IR and threshold singularities are 
restricted to a compact region of the 

loop three-momentum
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Momentum mapping

δ̃ (qi)

q̃i−1

pi

p′r

p′i

p̃ir′

๏ Motivated by the factorization properties of QCD: assuming      on-shell, 
and close to collinear with       ,we define the momentum mapping  

๏ All the primed momenta (real process) on-shell and momentum conservation 
๏      is the emitter,       the spectator needed to absorb momentum recoil 

p0µr = qµi ,

p0µi = pµi � qµi + ↵i p
µ
j , ↵i =

(qi � pi)2

2pj · (qi � pi)
,

p0µj = (1� ↵i) p
µ
j , p0µk = pµk , k 6= i, j

qµi
pµi

pµj

qi,0 < pi,0

pµi
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Massive particles

๏ Rewrite emitter and spectator in terms of two massless momenta 

๏ Mapping and phase-space partition formally equal to the massless case: 
determine mapping parameters from on-shell conditions

pµi = �+ p̂µi + �� p̂µj

pµj = (1� �+) p̂
µ
i + (1� ��) p̂

µ
j p̂µi + p̂µj = pµi + pµj

p0µr = qµi ,

p0µi = (1� ↵i) p̂
µ
i + (1� �i) p̂

µ
j � qµi ,
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µ
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µ
j , p0µk = pµk , k 6= i, j
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๏ Quasi-collinear configurations are conveniently mapped such that the 
massless limit is smooth 
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UV renormalisation: local subtraction
๏ Expand propagators and numerators around a UV propagator [Weinzierl et al.]

๏ and adjust subleading terms to subtract only the pole (         scheme), or to 
define any other renormalisation scheme. For the scalar two point function

๏ Dual representation needs to deal with multiple poles [Bierenbaum et al.] 

GF (qi) =
1

q2UV � µ2
UV + i0

+ . . . qUV = `+ kUV

IcntUV =

Z

`

1

(q2UV � µ2
UV + i0)2

MS

IcntUV =

Z

`

�̃(qUV)

2
⇣
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UV,0

⌘2

q(+)
UV,0 =

q
q2
UV + µ2

UV � i0

Hernández-Pinto, Sborlini, GR, arXiv:1506.04617

๏ Integration on the UV on-shell hyperboloid: loop three-momentum 
unconstrained, but loop contributions suppressed for loop 
energies larger than µUV
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Self-energy corrections
๏ Wave function corrections usually ignored for massless partons, but they 

feature non-trivial IR/UV behaviour, required to disentangle both regions, 
indeed necessary to map the squares of the real amplitudes in the IR
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Z
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GF (q1)GF (q3)

✓
(d� 2)

q1 · p2
p1 · p2

+ 2

◆

๏ Unintegrated wave-function and mass renormalisation: e.g. quarks

๏ smooth massless limit

๏ and subtract the UV

�ZUV
2 (p1) = �(d� 2)g2SCF

Z

`
(GF (qUV))

2

✓
1 +

qUV · p2
p1 · p2

◆

⇥ (1�GF (qUV)(2qUV · p1 + µ2
UV))
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๏ The dual representation of the renormalised loop cross-section: one single 
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LTD unsubtraction: multi-leg
๏ The dual representation of the renormalised loop cross-section: one single 

integral in the loop three-momentum  

๏ A partition of the real phase-space 

๏ The real contribution mapped to the Born kinematics + loop three-momentum 

๏ with p0µr = qµi ,

p0µi = pµi � qµi + ↵i p
µ
j , ↵i =

(qi � pi)2

2pj · (qi � pi)
,

p0µj = (1� ↵i) p
µ
j , p0µk = pµk , k 6= i, j

Sborlini, Driencourt-Mangin, Hernández-Pinto, GR, arXiv:1604.06699
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X Y
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Benchmark application: A⇤ ! qq̄(g)

μUV=2 s12

μUV= s12 /2

μUV= s12

H→ q q

Analytical (DREG)

4D unsubtracted (LTD)
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๏ Excellent agreement with analytic DREG 
๏ Efficient numerical implementation 
๏ Smooth massless limit

Sborlini, Driencourt-Mangin,GR, arXiv:1608.01584



G. Rodrigo

Higgs boson interactions to      and 

๏ Golden channels for production and decay of the 
Higgs boson

��gg
Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581



G. Rodrigo

Higgs boson interactions to      and 

๏ Golden channels for production and decay of the 
Higgs boson

๏ One-loop corrections are UV and IR finite due to the 
absence of a direct interaction at tree-level in the SM

��gg
Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581



G. Rodrigo

Higgs boson interactions to      and 

๏ Golden channels for production and decay of the 
Higgs boson

๏ One-loop corrections are UV and IR finite due to the 
absence of a direct interaction at tree-level in the SM

๏ However, DREG or another regularisation/
renormalisation scheme still required for their 
correct evaluation

��gg
Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

            [Wilczek, 1977; Georgi, Glashow, Machacek,  
Nanopoulos, 1978; Rizzo, 1980]

            [Ellis, Gaillard, Nanopoulos, 1976; Ioffe, Khoze, 1978; 
Shifman, Vainshtein, Voloshin, Zakharov, 1979]

Summary Report of the Regularization Scheme Workstop/
Thinkstart, 13-16 Sep 2016, Zurich

Hgg

H��
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Universality of dual amplitude

๏ Universality and compactness of the dual representation 
Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581
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๏ Circumvent expansion by regions [Smirnov, Beneke]
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momentum. 

๏ Simultaneous generation of real and virtual corrections advantageous, 
particularly for multi-leg/multi-loop processes.

๏ Universality for EW corrections, and direct asymptotic expansions. 

Outlook: fully differential multi-leg at NNLO (and beyond)


