New developments with the loop-tree duality

Germán Rodrigo

- S. Catani, T. Gleisberg, F. Krauss, G. Rodrigo and J. C. Winter, "From loops to trees by-passing Feynman's theorem," JHEP 0809 (2008) 065 [arXiv:0804.3170 [hep-ph]].
- I. Bierenbaum, S. Catani, P. Draggiotis and G. Rodrigo, "A Tree-Loop Duality Relation at Two Loops and Beyond," JHEP 1010 (2010) 073 [arXiv:1007.0194 [hep-ph]].
- I. Bierenbaum, S. Buchta, P. Draggiotis, I. Malamos and G. Rodrigo, "Tree-Loop Duality Relation beyond simple poles," JHEP 1303 (2013) 025 [arXiv:1211.5048 [hep-ph]].
- S. Buchta, G. Chachamis, P. Draggiotis, I. Malamos and G. Rodrigo, "On the singular behaviour of scattering amplitudes in quantum field theory," JHEP 1411 (2014) 014 [arXiv:1405.7850 [hep-ph]].
- S. Buchta, "Theoretical foundations and applications of the Loop-Tree Duality in Quantum Field Theories," PhD thesis, Universitat de València, 2015, arXiv:1509.07167 [hep-ph].
- S. Buchta, G. Chachamis, P. Draggiotis and G. Rodrigo, "Numerical implementation of the LoopTree Duality method," EPJC 77 (2017) 274 [arXiv:1510.00187 [hep-ph]].
- R. J. Hernández-Pinto, G. F. R. Sborlini and G. Rodrigo, "Towards gauge theories in four dimensions," JHEP 1602 (2016) 044 [arXiv:1506.04617 [hep-ph]].
- G. F. R. Sborlini, F. Driencourt-Mangin, J. Hernández-Pinto and G. Rodrigo, "Four dimensional unsubtraction from the loop-tree duality,"JHEP 1608 (2016) 160 [arXiv:1604.06699 [hep-ph]].
- G. F. R. Sborlini, F. Driencourt-Mangin and G. Rodrigo, "Four dimensional unsubtraction with massive particles," JHEP 1610 (2016) 162 [arXiv:1608.01584 [hep-ph]].
- F. Driencourt-Mangin, G. Rodrigo and G.F.R. Sborlini, "Universal dual amplitudes and asymptotic expansions for $\boldsymbol{g} \boldsymbol{g}->\boldsymbol{H}$ and $\boldsymbol{H}->$ gamma gamma," arXiv:1702.07581 [hep-ph].

QFT is poorly defined

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission
3. Parallel particles look like one single particle

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission
3. Parallel particles look like one single particle

in four space-time dimensions

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission Parallel particles look like one single particle

Ultraviolet singularities (UV)

in four space-time dimensions

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission Parallel particles look like one single particle soft singularities (IR)

Ultraviolet singularities (UV)

in four space-time dimensions

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission Parallel particles look like one single particle

soft singularities (IR)
collinear singularities (IR)
Ultraviolet singularities (UV)

in four space-time dimensions

QFT is poorly defined

1. QFT extrapolated to infinite energy in loop corrections
2. particles with zero energy \neq zero emission Parallel particles look like one single particle

soft singularities (IR)

collinear singularities (IR)

Ultraviolet singularities (UV)
and threshold singularities, integrable but numerically unstable

in four space-time dimensions

DREG
 LTD / FDU

- Modify the dimensions of the spacetime to $d=4-2 e$

DREG

- Modify the dimensions of the spacetime to $d=4-2 e$

LTD / FDU

- Computations without altering the d=4 space-time dimensions ${ }^{1}$
${ }^{1}$ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

DREG

- Modify the dimensions of the spacetime to $d=4-2 e$
- Singularities manifest after integration as 1/e poles:
- IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space
- UV renormalized

LTD / FDU

- Computations without altering the d=4 space-time dimensions ${ }^{1}$
${ }^{1}$ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

DREG
 LTD / FDU

- Modify the dimensions of the spacetime to $\mathbf{d}=4-2 e$
- Singularities manifest after integration as $1 / \mathrm{e}$ poles:
- IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space
- UV renormalized
- Computations without altering the d=4 space-time dimensions ${ }^{1}$
- Singularities killed before integration:
- Unsubtracted summation over degenerate IR states at integrand level through a suitable momentum mapping
- UV through local counter-terms
${ }^{1}$ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

DREG
 LTD / FDU

- Modify the dimensions of the spacetime to $\mathbf{d}=4-2 e$
- Singularities manifest after integration as $1 / \mathrm{e}$ poles:
- IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space
- UV renormalized
- Virtual and real contributions are considered separately: phase-space with different number of final-state particles
- Computations without altering the d=4 space-time dimensions ${ }^{1}$
- Singularities killed before integration:
- Unsubtracted summation over degenerate IR states at integrand level through a suitable momentum mapping
- UV through local counter-terms
${ }^{1}$ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

DREG

- Modify the dimensions of the spacetime to $\mathbf{d}=4-2 e$
- Singularities manifest after integration as $1 / \mathrm{e}$ poles:
- IR cancelled through suitable subtraction terms, which need to be integrated over the unresolved phase-space
- UV renormalized
- Virtual and real contributions are considered separately: phase-space with different number of final-state particles

LTD / FDU

- Computations without altering the d=4 space-time dimensions ${ }^{1}$
- Singularities killed before integration:
- Unsubtracted summation over degenerate IR states at integrand level through a suitable momentum mapping
- UV through local counter-terms
- Virtual and real contributions are considered simultaneously: more efficient Monte Carlo implementation and fully differential
${ }^{1}$ Gnendiger et al., To d, or not to d: Recent developments and comparisons of regularization schemes, arXiv:1705.01827

The loop-tree duality theorem

Cauchy residue theorem

in the loop energy complex plane

Feynman Propagator +i0: positive frequencies are propagated forward in time, and negative backward
selects residues with definite positive energy and negative imaginary part (indeed in any coordinate system)

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{i}^{2}-m_{i}^{2}+i 0}
$$

The loop-tree duality theorem

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary QFT) represented as a linear combination of N single-cut phase-space integrals

$$
\int_{e} \Pi_{F} G_{F}\left(q_{i}\right)=-\sum \int_{e} \tilde{\tilde{s}\left(q_{i}\right)} \prod_{j \neq}^{G_{D}\left(q ; q_{j}\right)}
$$

- $\tilde{\delta}\left(q_{i}\right)=i 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
- $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-i 0 \eta k_{j i}}$ dual propagator, $k_{j i}=q_{j}-q_{i}$

The loop-tree duality theorem

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary QFT) represented as a linear combination of N single-cut phase-space integrals

$$
\int_{\ell} \prod G_{F}\left(q_{i}\right)=-\sum \int_{\ell} \tilde{\delta}\left(q_{i}\right) \prod_{j \neq i} G_{D}\left(q_{i} ; q_{j}\right)
$$

- $\tilde{\delta}\left(q_{i}\right)=i 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
- $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-i 0 \eta k_{j i}}$ dual propagator, $k_{j i}=q_{j}-q_{i}$
- LTD realised by modifying the customary +i0 prescription of the Feynman propagators, it compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem

The loop-tree duality theorem

One-loop integrals (or scattering amplitudes in any relativistic, local and unitary QFT) represented as a linear combination of N single-cut phase-space integrals

$$
\int_{\ell} \prod G_{F}\left(q_{i}\right)=-\sum \int_{\ell} \tilde{\delta}\left(q_{i}\right) \prod_{j \neq i} G_{D}\left(q_{i} ; q_{j}\right)
$$

- $\tilde{\delta}\left(q_{i}\right)=i 2 \pi \theta\left(q_{i, 0}\right) \delta\left(q_{i}^{2}-m_{i}^{2}\right)$ sets internal line on-shell, positive energy mode
- $G_{D}\left(q_{i} ; q_{j}\right)=\frac{1}{q_{j}^{2}-m_{j}^{2}-i 0 \eta k_{j i}}$ dual propagator, $k_{j i}=q_{j}-q_{i}$
- LTD realised by modifying the customary +i0 prescription of the Feynman propagators, it compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem
- Lorentz-covariant dual prescription with η a future-like vector; from now $\eta^{\mu}=(1, \mathbf{0})$ only the sign matters

LTD at two-loops and beyond

- Iterative application of LTD at higher orders

$$
\begin{aligned}
\int_{\ell_{1}} \int_{\ell_{2}} G_{F}\left(\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}\right) & =\int_{\ell_{1}} \int_{\ell_{2}}\left[G_{D}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2} \cup \alpha_{3}\right)\right. \\
& \left.+G_{D}\left(-\alpha_{1} \cup \alpha_{2}\right) G_{D}\left(\alpha_{3}\right)-G_{D}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]
\end{aligned}
$$

$$
G_{F}\left(\alpha_{k}\right)=\sum_{i \in \alpha_{k}} G_{F}\left(q_{i}\right), \quad G_{D}\left(\alpha_{k}\right)=\sum_{i \in \alpha_{k}} \tilde{\delta}\left(q_{i}\right) \prod_{j \neq i} G_{D}\left(q_{i} ; q_{j}\right),
$$

- With a number of cuts equal to the number of loops the loop amplitude opens to a tree-level like object

LTD at two-loops and beyond

- Iterative application of LTD at higher orders

$$
\begin{aligned}
\int_{\ell_{1}} \int_{\ell_{2}} G_{F}\left(\alpha_{1} \cup \alpha_{2} \cup \alpha_{3}\right) & =\int_{\ell_{1}} \int_{\ell_{2}}\left[G_{D}\left(\alpha_{1}\right) G_{D}\left(\alpha_{2} \cup \alpha_{3}\right)\right. \\
& \left.+G_{D}\left(-\alpha_{1} \cup \alpha_{2}\right) G_{D}\left(\alpha_{3}\right)-G_{D}\left(\alpha_{1}\right) G_{F}\left(\alpha_{2}\right) G_{D}\left(\alpha_{3}\right)\right]
\end{aligned}
$$

$$
G_{F}\left(\alpha_{k}\right)=\sum_{i \in \alpha_{k}} G_{F}\left(q_{i}\right), \quad G_{D}\left(\alpha_{k}\right)=\sum_{i \in \alpha_{k}} \tilde{\delta}\left(q_{i}\right) \prod_{j \neq i} G_{D}\left(q_{i} ; q_{j}\right),
$$

- With a number of cuts equal to the number of loops the loop amplitude opens to a tree-level like object
- However, the on-shell loop momenta still unconstrained

Singularities of the loop integrand

Singularities of the loop integrand

- LTD: equivalent to integrate along the forward on-shell hyperboloids / light-cones (positive energy modes)
- The dual loop integrand becomes singular when subsets (>=2) of internal propagators go on-shell

Singularities of the loop integrand

- LTD: equivalent to integrate along the forward on-shell hyperboloids / light-cones (positive energy modes)
- The dual loop integrand becomes singular when subsets (>=2) of internal propagators go on-shell
- Cancellation of singularities among dual amplitudes at forward-forward intersections: dual +i0 prescription changes sign, proof of consistency

Singularities of the loop integrand

- LTD: equivalent to integrate along the forward on-shell hyperboloids / light-cones (positive energy modes)
- The dual loop integrand becomes singular when subsets (>=2) of internal propagators go on-shell
- Cancellation of singularities among dual amplitudes at forward-forward intersections: dual +i0 prescription changes sign, proof of consistency
- Only backward (negative energy) with forward IR and threshold singularities remain: timelike separated propagators with lower energy causally connected

Singularities of the loop integrand

G. Rodrigo

- LTD: equivalent to integrate along the forward on-shell hyperboloids / light-cones (positive energy modes)
- The dual loop integrand becomes singular when subsets (>=2) of internal propagators go on-shell
- Cancellation of singularities among dual amplitudes at forward-forward intersections: dual +i0 prescription changes sign, proof of consistency
- Only backward (negative energy) with forward IR and threshold singularities remain: timelike separated propagators with lower energy causally connected

IR and threshold singularities are restricted to a compact region of the loop three-momentum

Momentum mapping

- Motivated by the factorization properties of QCD: assuming q_{i}^{μ} on-shell, and close to collinear with p_{i}^{μ}, we define the momentum mapping

$$
\begin{array}{ll}
p_{r}^{\prime \mu}=q_{i}^{\mu}, & q_{i, 0}<p_{i, 0} \\
p_{i}^{\prime \mu}=p_{i}^{\mu}-q_{i}^{\mu}+\alpha_{i} p_{j}^{\mu}, & \alpha_{i}=\frac{\left(q_{i}-p_{i}\right)^{2}}{2 p_{j} \cdot\left(q_{i}-p_{i}\right)}, \\
p_{j}^{\prime \mu}=\left(1-\alpha_{i}\right) p_{j}^{\mu}, & p_{k}^{\prime \mu}=p_{k}^{\mu}, \quad k \neq i, j
\end{array}
$$

- All the primed momenta (real process) on-shell and momentum conservation
- p_{i}^{μ} is the emitter, p_{j}^{μ} the spectator needed to absorb momentum recoil

Massive particles

Sborlini, Driencourt-Mangin,GR, arXiv:1608.01584

- Rewrite emitter and spectator in terms of two massless momenta

$$
\begin{aligned}
& p_{i}^{\mu}=\beta_{+} \hat{p}_{i}^{\mu}+\beta_{-} \hat{p}_{j}^{\mu} \\
& p_{j}^{\mu}=\left(1-\beta_{+}\right) \hat{p}_{i}^{\mu}+\left(1-\beta_{-}\right) \hat{p}_{j}^{\mu} \quad \hat{p}_{i}^{\mu}+\hat{p}_{j}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}
\end{aligned}
$$

- Mapping and phase-space partition formally equal to the massless case: determine mapping parameters from on-shell conditions

$$
\begin{aligned}
p_{r}^{\prime \mu} & =q_{i}^{\mu} \\
p_{i}^{\prime \mu} & =\left(1-\alpha_{i}\right) \hat{p}_{i}^{\mu}+\left(1-\gamma_{i}\right) \hat{p}_{j}^{\mu}-q_{i}^{\mu} \\
p_{j}^{\prime \mu} & =\alpha_{i} \hat{p}_{i}^{\mu}+\gamma_{i} \hat{p}_{j}^{\mu}, \quad p_{k}^{\prime \mu}=p_{k}^{\mu}, \quad k \neq i, j
\end{aligned}
$$

Massive particles

- Rewrite emitter and spectator in terms of two massless momenta

$$
\begin{aligned}
& p_{i}^{\mu}=\beta_{+} \hat{p}_{i}^{\mu}+\beta_{-} \hat{p}_{j}^{\mu} \\
& p_{j}^{\mu}=\left(1-\beta_{+}\right) \hat{p}_{i}^{\mu}+\left(1-\beta_{-}\right) \hat{p}_{j}^{\mu} \quad \hat{p}_{i}^{\mu}+\hat{p}_{j}^{\mu}=p_{i}^{\mu}+p_{j}^{\mu}
\end{aligned}
$$

- Mapping and phase-space partition formally equal to the massless case: determine mapping parameters from on-shell conditions

$$
\begin{aligned}
p_{r}^{\prime \mu} & =q_{i}^{\mu} \\
p_{i}^{\prime \mu} & =\left(1-\alpha_{i}\right) \hat{p}_{i}^{\mu}+\left(1-\gamma_{i}\right) \hat{p}_{j}^{\mu}-q_{i}^{\mu}, \\
p_{j}^{\mu} & =\alpha_{i} \hat{p}_{i}^{\mu}+\gamma_{i} \hat{p}_{j}^{\mu}, \quad p_{k}^{\mu}=p_{k}^{\mu}, \quad k \neq i, j
\end{aligned}
$$

- Quasi-collinear configurations are conveniently mapped such that the massless limit is smooth

UV renormalisation: local subtraction

- Expand propagators and numerators around a UV propagator [Weinzierl et al.]

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0}+\ldots \quad q_{\mathrm{UV}}=\ell+k_{\mathrm{UV}}
$$

- and adjust subleading terms to subtract only the pole ($\overline{\mathrm{MS}}$ scheme), or to define any other renormalisation scheme. For the scalar two point function

$$
I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{1}{\left(q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0\right)^{2}}
$$

UV renormalisation: local subtraction

- Expand propagators and numerators around a UV propagator [Weinzierl et al.]

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0}+\ldots \quad q_{\mathrm{UV}}=\ell+k_{\mathrm{UV}}
$$

- and adjust subleading terms to subtract only the pole ($\overline{\mathrm{MS}}$ scheme), or to define any other renormalisation scheme. For the scalar two point function

$$
I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{1}{\left(q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0\right)^{2}}
$$

- Dual representation needs to deal with multiple poles [Bierenbaum et al.]

$$
\begin{aligned}
& I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{\tilde{\delta}\left(q_{\mathrm{UV}}\right)}{2\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{2}} \\
& q_{\mathrm{UV}, 0}^{(+)}=\sqrt{\mathbf{q}_{\mathrm{UV}}^{2}+\mu_{\mathrm{UV}}^{2}-i 0}
\end{aligned}
$$

Hernández-Pinto, Sborlini, GR, arXiv:1506.04617

UV renormalisation: local subtraction

- Expand propagators and numerators around a UV propagator [Weinzierl et al.]

$$
G_{F}\left(q_{i}\right)=\frac{1}{q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0}+\ldots \quad q_{\mathrm{UV}}=\ell+k_{\mathrm{UV}}
$$

- and adjust subleading terms to subtract only the pole ($\overline{\mathrm{MS}}$ scheme), or to define any other renormalisation scheme. For the scalar two point function

$$
I_{\mathrm{UV}}^{\mathrm{cnt}}=\int_{\ell} \frac{1}{\left(q_{\mathrm{UV}}^{2}-\mu_{\mathrm{UV}}^{2}+i 0\right)^{2}}
$$

- Dual representation needs to deal with multiple poles [Bierenbaum et al.]

$$
\begin{aligned}
& I_{\mathrm{UV}}^{\mathrm{nt}}=\int_{\ell} \frac{\tilde{\delta}\left(q_{\mathrm{UV}}\right)}{2\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{2}} \\
& q_{\mathrm{UV}, 0}^{(+)}=\sqrt{\mathbf{q}_{\mathrm{UV}}^{2}+\mu_{\mathrm{UV}}^{2}-i 0}
\end{aligned}
$$

Hernández-Pinto, Sborlini, GR, arXiv:1506.04617

- Integration on the UV on-shell hyperboloid: loop three-momentum unconstrained, but loop contributions suppressed for loop energies larger than μ_{UV}

Self-energy corrections

- Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behaviour, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR

Self-energy corrections

- Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behaviour, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR
© Unintegrated wave-function and mass renormalisation: e.g. quarks

$$
\begin{aligned}
& \Delta Z_{2}\left(p_{1}\right)=-g_{\mathrm{S}}^{2} C_{F} \int_{\ell} G_{F}\left(q_{1}\right) G_{F}\left(q_{3}\right)\left((d-2) \frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}+4 M^{2}\left(1-\frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}\right) G_{F}\left(q_{3}\right)\right) \\
& \Delta Z_{M}^{\mathrm{OS}}\left(p_{1}\right)=-g_{\mathrm{S}}^{2} C_{F} \int_{\ell} G_{F}\left(q_{1}\right) G_{F}\left(q_{3}\right)\left((d-2) \frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}+2\right)
\end{aligned}
$$

- smooth massless limit

Self-energy corrections

- Wave function corrections usually ignored for massless partons, but they feature non-trivial IR/UV behaviour, required to disentangle both regions, indeed necessary to map the squares of the real amplitudes in the IR
- Unintegrated wave-function and mass renormalisation: e.g. quarks

$$
\begin{aligned}
& \Delta Z_{2}\left(p_{1}\right)=-g_{\mathrm{S}}^{2} C_{F} \int_{\ell} G_{F}\left(q_{1}\right) G_{F}\left(q_{3}\right)\left((d-2) \frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}+4 M^{2}\left(1-\frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}\right) G_{F}\left(q_{3}\right)\right) \\
& \Delta Z_{M}^{\mathrm{OS}}\left(p_{1}\right)=-g_{\mathrm{S}}^{2} C_{F} \int_{\ell} G_{F}\left(q_{1}\right) G_{F}\left(q_{3}\right)\left((d-2) \frac{q_{1} \cdot p_{2}}{p_{1} \cdot p_{2}}+2\right)
\end{aligned}
$$

- smooth massless limit
- and subtract the UV

$$
\begin{aligned}
\Delta Z_{2}^{\mathrm{UV}}\left(p_{1}\right) & =-(d-2) g_{\mathrm{S}}^{2} C_{F} \int_{\ell}\left(G_{F}\left(q_{\mathrm{UV}}\right)\right)^{2}\left(1+\frac{q_{\mathrm{UV}} \cdot p_{2}}{p_{1} \cdot p_{2}}\right) \\
& \times\left(1-G_{F}\left(q_{\mathrm{UV}}\right)\left(2 q_{\mathrm{UV}} \cdot p_{1}+\mu_{\mathrm{UV}}^{2}\right)\right)
\end{aligned}
$$

LTD unsubtraction: multi-leg

Sborlini, Driencourt-Mangin, Hernández-Pinto, GR, arXiv:1604.06699

- The dual representation of the renormalised loop cross-section: one single integral in the loop three-momentum

$$
\int_{m} d \sigma_{\mathrm{V}}^{(1, R)}=\sum_{i=1}^{N} \int_{m} \int_{\ell} 2 \operatorname{Re}\left\langle\mathcal{M}_{N}^{(0)} \mid \mathcal{M}_{N}^{(1, R)}\left(\tilde{\delta}\left(q_{i}\right)\right\rangle\right\rangle \mathcal{O}_{N}\left(\left\{p_{j}\right\}\right)
$$

LTD unsubtraction: multi-leg

Sborlini, Driencourt-Mangin, Hernández-Pinto, GR, arXiv:1604.06699

- The dual representation of the renormalised loop cross-section: one single integral in the loop three-momentum

$$
\int_{m} d \sigma_{\mathrm{V}}^{(1, R)}=\sum_{i=1}^{N} \int_{m} \int_{\ell} 2 \operatorname{Re}\left\langle\mathcal{M}_{N}^{(0)} \mid \mathcal{M}_{N}^{(1, R)}\left(\tilde{\delta}\left(q_{i}\right)\right)\right\rangle \mathcal{O}_{N}\left(\left\{p_{j}\right\}\right)
$$

- A partition of the real phase-space

$$
\sum \mathcal{R}_{i}\left(q_{i}, p_{i}\right)=\sum \prod_{j k \neq i r} \theta\left(y_{j k}^{\prime}-y_{i r}^{\prime}\right)=1
$$

LTD unsubtraction: multi-leg

Sborlini, Driencourt-Mangin, Hernández-Pinto, GR, arXiv:1604.06699

- The dual representation of the renormalised loop cross-section: one single integral in the loop three-momentum

$$
\int_{m} d \sigma_{\mathrm{V}}^{(1, R)}=\sum_{i=1}^{N} \int_{m} \int_{\ell} 2 \operatorname{Re}\left\langle\mathcal{M}_{N}^{(0)} \mid \mathcal{M}_{N}^{(1, R)}\left(\tilde{\delta}\left(q_{i}\right)\right\rangle\right\rangle \mathcal{O}_{N}\left(\left\{p_{j}\right\}\right)
$$

- A partition of the real phase-space

$$
\sum \mathcal{R}_{i}\left(q_{i}, p_{i}\right)=\sum \prod_{j k \neq i r} \theta\left(y_{j k}^{\prime}-y_{i r}^{\prime}\right)=1
$$

- The real contribution mapped to the Born kinematics + loop three-momentum

$$
\int_{m+1} d \sigma_{\mathrm{R}}^{(1)}=\sum_{i=1}^{N} \int_{m+1}\left|\mathcal{M}_{N+1}^{(0)}\left(q_{i}, p_{i}\right)\right|^{2} \mathcal{R}_{i}\left(q_{i}, p_{i}\right) \mathcal{O}_{N+1}\left(\left\{p_{j}^{\prime}\right\}\right)
$$

- with

$$
\begin{array}{ll}
p_{r}^{\prime \mu}=q_{i}^{\mu}, & \\
p_{i}^{\prime \mu}=p_{i}^{\mu}-q_{i}^{\mu}+\alpha_{i} p_{j}^{\mu}, & \alpha_{i}=\frac{\left(q_{i}-p_{i}\right)^{2}}{2 p_{j} \cdot\left(q_{i}-p_{i}\right)}, \\
p_{j}^{\prime \mu}=\left(1-\alpha_{i}\right) p_{j}^{\mu}, & p_{k}^{\prime \mu}=p_{k}^{\mu}, \quad k \neq i, j
\end{array}
$$

Benchmark application: $A^{*} \rightarrow q \bar{q}(g)$

Sborlini, Driencourt-Mangin,GR, arXiv:1608.01584

G. Rodrigo

- Excellent agreement with analytic DREG
- Efficient numerical implementation
- Smooth massless limit

Higgs boson interactions to $g g$ and $\gamma \gamma$

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Golden channels for production and decay of the Higgs boson

Higgs boson interactions to $g g$ and $\gamma \gamma$

- Golden channels for production and decay of the Higgs boson
- One-loop corrections are UV and IR finite due to the absence of a direct interaction at tree-level in the SM

Higgs boson interactions to $g g$ and $\gamma \gamma$

- Golden channels for production and decay of the Higgs boson
- One-loop corrections are UV and IR finite due to the absence of a direct interaction at tree-level in the SM
- However, DREG or another regularisation/ renormalisation scheme still required for their correct evaluation
$H g g \quad$ [Wilczek, 1977; Georgi, Glashow, Machacek, Nanopoulos, 1978; Rizzo, 1980]
$H \gamma \gamma$ [Ellis, Gaillard, Nanopoulos, 1976; loffe, Khoze, 1978; Shifman, Vainshtein, Voloshin, Zakharov, 1979]

Summary Report of the Regularization Scheme Workstop/ Thinkstart, 13-16 Sep 2016, Zurich

Universality of dual amplitude

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Universality and compactness of the dual representation

$$
\begin{array}{r}
\mathcal{A}_{1}^{(1, f)}=g_{f} \int_{\ell} \tilde{\delta}(\ell)\left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}}\right) \frac{s_{12} M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}\right. \\
\left.+\frac{2 s_{12}^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}} c_{23}^{(f)}\right], \quad q_{i, 0}^{(+)}=\sqrt{\boldsymbol{q}_{i}^{2}+M_{f}^{2}}, \quad f=\phi, t, W \\
c_{23}^{(f)}=\frac{d-4}{d-2}\left(2,-4,2(d-1)+\frac{s_{12}}{M_{W}^{2}}\right) \\
c_{1}^{(f)}=\left(\frac{4}{d-2},-\frac{8}{d-2}+\frac{s_{12}}{M_{t}^{2}}, \frac{4(d-1)}{d-2}+\frac{2(5-2 d)}{d-2} \frac{s_{12}}{M_{W}^{2}}\right)
\end{array}
$$

Universality of dual amplitude

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Universality and compactness of the dual representation

$$
\begin{array}{r}
\mathcal{A}_{1}^{(1, f)}=g_{f} \int_{\ell} \tilde{\delta}(\ell)\left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}}\right) \frac{s_{12} M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}\right. \\
\left.+\frac{2 s_{12}^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}} c_{23}^{(f)}\right], \quad q_{i, 0}^{(+)}=\sqrt{\boldsymbol{q}_{i}^{2}+M_{f}^{2}}, \quad f=\phi, t, W \\
c_{23}^{(f)}=\frac{d-4}{d-2}\left(2,-4,2(d-1)+\frac{s_{12}}{M_{W}^{2}}\right) \\
c_{1}^{(f)}=\left(\frac{4}{d-2},-\frac{8}{d-2}+\frac{s_{12}}{M_{t}^{2}}, \frac{4(d-1)}{d-2}+\frac{2(5-2 d)}{d-2} \frac{s_{12}^{2}}{M_{W}^{2}}\right)
\end{array}
$$

- Naïve power counting: unintegrated W amplitude much more singular in the UV than quark and scalar amplitudes

Universality of dual amplitude

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Universality and compactness of the dual representation

$$
\begin{array}{r}
\mathcal{A}_{1}^{(1, f)}=g_{f} \int_{\ell} \tilde{\delta}(\ell)\left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}}\right) \frac{s_{12} M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}\right. \\
\left.+\frac{2 s_{12}^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}} c_{23}^{(f)}\right], \quad q_{i, 0}^{(+)}=\sqrt{\boldsymbol{q}_{i}^{2}+M_{f}^{2}}, \quad f=\phi, t, W \\
c_{23}^{(f)}=\frac{d-4}{d-2}\left(2,-4,2(d-1)+\frac{s_{12}}{M_{W}^{2}}\right) \\
c_{1}^{(f)}=\left(\frac{4}{d-2},-\frac{8}{d-2}+\frac{s_{12}}{M_{t}^{2}}, \frac{4(d-1)}{d-2}+\frac{2(5-2 d)}{d-2} \frac{s_{12}}{M_{W}^{2}}\right)
\end{array}
$$

- Naïve power counting: unintegrated W amplitude much more singular in the UV than quark and scalar amplitudes
- Local renormalization:

$$
\begin{gathered}
\mathcal{A}_{1, \mathrm{UV}}^{(1, f)}=-g_{f} \int_{\ell} \frac{s_{12}}{4\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{3}}\left(1+\frac{1}{\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{2}} \frac{3 \mu_{\mathrm{UV}}^{2}}{d-4}\right) c_{23}^{(f)}=0 \\
q_{\mathrm{UV}, 0}^{(+)}=\sqrt{\ell^{2}+\mu_{\mathrm{UV}}^{2}}
\end{gathered}
$$

Universality of dual amplitude

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Universality and compactness of the dual representation

$$
\begin{array}{r}
\mathcal{A}_{1}^{(1, f)}=g_{f} \int_{\ell} \tilde{\delta}(\ell)\left[\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}}\right) \frac{s_{12} M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}\right. \\
\left.+\frac{2 s_{12}^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-i 0\right)^{2}} c_{23}^{(f)}\right], \quad q_{i, 0}^{(+)}=\sqrt{\boldsymbol{q}_{i}^{2}+M_{f}^{2}}, \quad f=\phi, t, W \\
c_{23}^{(f)}=\frac{d-4}{d-2}\left(2,-4,2(d-1)+\frac{s_{12}}{M_{W}^{2}}\right) \\
c_{1}^{(f)}=\left(\frac{4}{d-2},-\frac{8}{d-2}+\frac{s_{12}}{M_{t}^{2}}, \frac{4(d-1)}{d-2}+\frac{2(5-2 d)}{d-2} \frac{s_{12}}{M_{W}^{2}}\right)
\end{array}
$$

- Naïve power counting: unintegrated W amplitude much more singular in the UV than quark and scalar amplitudes
- Local renormalization: smooth four dimensional limit

$$
\begin{aligned}
& \mathcal{A}_{1, \mathrm{UV}}^{(1, f)}=-g_{f} \int_{\ell} \frac{s_{12}}{4\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{3}}\left(1+\frac{1}{\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{2}} \frac{3 \mu_{\mathrm{UV}}^{2}}{d-4}\right) c_{23}^{(f)}=0 \\
& q_{\mathrm{UV}, 0}^{(+)}=\sqrt{\ell^{2}+\mu_{\mathrm{UV}}^{2}} \quad\left|\mathcal{A}_{1, R}^{(1, f)}\right|_{d=4}=\left(\mathcal{A}_{1}^{(1, f)}-\mathcal{A}_{1, \mathrm{UV}}^{(1, f)}\right)_{d=4}
\end{aligned}
$$

Dual amplitude in four space-time dimensions

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- The dual amplitude in four space-time dimensions

$$
\begin{aligned}
\left.\mathcal{A}_{1, R}^{(1, f)}\right|_{d=4} & =g_{f} s_{12} \int_{\ell}\left[\frac{1}{2 \ell_{0}^{(+)}}\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-\imath 0\right)^{2}}\right)\right. \\
& \left.\times \frac{M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}+\frac{3 \mu_{\mathrm{UV}}^{2}}{4\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{5}} \hat{c}_{23}^{(f)}\right]
\end{aligned}
$$

integration measure and coefficients at $d=4$

$$
\begin{gathered}
c_{1}^{(f)}=\left(2,-4+\frac{s_{12}}{M_{t}^{2}}, 6-\frac{3 s_{12}}{M_{W}^{2}}\right) \\
\hat{c}_{23}^{(f)}=\frac{c_{23}^{(f)}}{d-4}=\left(1,-2,3+\frac{s_{12}}{2 M_{W}^{2}}\right)
\end{gathered}
$$

Dual amplitude in four space-time dimensions

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- The dual amplitude in four space-time dimensions

$$
\begin{aligned}
\left.\mathcal{A}_{1, R}^{(1, f)}\right|_{d=4} & =g_{f} s_{12} \int_{\ell}\left[\frac{1}{2 \ell_{0}^{(+)}}\left(\frac{\ell_{0}^{(+)}}{q_{1,0}^{(+)}}+\frac{\ell_{0}^{(+)}}{q_{2,0}^{(+)}}+\frac{2\left(2 \ell \cdot p_{12}\right)^{2}}{s_{12}^{2}-\left(2 \ell \cdot p_{12}-\imath 0\right)^{2}}\right)\right. \\
& \left.\times \frac{M_{f}^{2}}{\left(2 \ell \cdot p_{1}\right)\left(2 \ell \cdot p_{2}\right)} c_{1}^{(f)}+\frac{3 \mu_{\mathrm{UV}}^{2}}{4\left(q_{\mathrm{UV}, 0}^{(+)}\right)^{5}} \hat{c}_{23}^{(f)}\right]
\end{aligned}
$$

integration measure and coefficients at $d=4$

$$
\begin{gathered}
c_{1}^{(f)}=\left(2,-4+\frac{s_{12}}{M_{t}^{2}}, 6-\frac{3 s_{12}}{M_{W}^{2}}\right) \\
\hat{c}_{23}^{(f)}=\frac{c_{23}^{(f)}}{d-4}=\left(1,-2,3+\frac{s_{12}}{2 M_{W}^{2}}\right)
\end{gathered}
$$

- Dyson prescription would fail for W

Direct asymptotic expansion

Driencourt-Mangin,GR, Sborlini, arXiv:1702.07581

- Integration domain is an Euclidean space (loop three-momentum)

Direct asymptotic expansion

- Integration domain is an Euclidean space (loop three-momentum)
- Asymptotic expansions (heavy or light internal mass) more direct at integrand level than Minkowsky

$$
\frac{\delta\left(\ell^{2}-M^{2}\right)}{s_{12}+2 \ell \cdot p_{12}}=\frac{\delta\left(\ell^{2}-M^{2}\right)}{2 \ell \cdot p_{12}} \sum_{n=0}\left(\frac{-s_{12}}{2 \ell \cdot p_{12}}\right)^{n}
$$

Direct asymptotic expansion

- Integration domain is an Euclidean space (loop three-momentum)
- Asymptotic expansions (heavy or light internal mass) more direct at integrand level than Minkowsky

$$
\frac{\delta\left(\ell^{2}-M^{2}\right)}{s_{12}+2 \ell \cdot p_{12}}=\frac{\delta\left(\ell^{2}-M^{2}\right)}{2 \ell \cdot p_{12}} \sum_{n=0}\left(\frac{-s_{12}}{2 \ell \cdot p_{12}}\right)^{n}
$$

- Each term of the integrand expansion less UV singular than the previous one

Direct asymptotic expansion

- Integration domain is an Euclidean space (loop three-momentum)
- Asymptotic expansions (heavy or light internal mass) more direct at integrand level than Minkowsky

$$
\frac{\delta\left(\ell^{2}-M^{2}\right)}{s_{12}+2 \ell \cdot p_{12}}=\frac{\delta\left(\ell^{2}-M^{2}\right)}{2 \ell \cdot p_{12}} \sum_{n=0}\left(\frac{-s_{12}}{2 \ell \cdot p_{12}}\right)^{n}
$$

- Each term of the integrand expansion less UV singular than the previous one
- Circumvent expansion by regions [Smirnov, Beneke]

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.
- Smooth massless limit due to proper treatment of quasi-collinear configurations

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.
- Smooth massless limit due to proper treatment of quasi-collinear configurations
- Threshold singularities through contour deformation in the loop threemomentum.

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.
- Smooth massless limit due to proper treatment of quasi-collinear configurations
- Threshold singularities through contour deformation in the loop threemomentum.
- Simultaneous generation of real and virtual corrections advantageous, particularly for multi-leg/multi-loop processes.

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.
- Smooth massless limit due to proper treatment of quasi-collinear configurations
- Threshold singularities through contour deformation in the loop threemomentum.
- Simultaneous generation of real and virtual corrections advantageous, particularly for multi-leg/multi-loop processes.
- Universality for EW corrections, and direct asymptotic expansions.

Conclusions

- New algorithm/regularization scheme for higher-orders in perturbative QFT based on LTD: summation over degenerate soft, final-state collinear singularities and quasi-collinear configurations achieved through a mapping of momenta between real and virtual kinematics.
- IR unsubtracted and four-dimensional: fully local cancellation of IR and UV singularities.
- Smooth massless limit due to proper treatment of quasi-collinear configurations
- Threshold singularities through contour deformation in the loop threemomentum.
- Simultaneous generation of real and virtual corrections advantageous, particularly for multi-leg/multi-loop processes.
- Universality for EW corrections, and direct asymptotic expansions.

Outlook: fully differential multi-leg at NNLO (and beyond)

