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Why one-loop Feynman integrals?
And why in D = 4 + 2n − 2ε dimensions? I

I began in 1980 to calculate Feynman integrals, and after several proceedings contributions, published an article,
Mann, Riemann, 1983 [1]: “Effective Flavor Changing Weak Neutral Current In The Standard Theory And Z
Boson Decay”

Basics
The seminal papers on 1-loop Feynman integrals:
’t Hooft, Veltman, 1978 [2]: “Scalar oneloop integrals”
Passarino, Veltman, 1978 [3]: “One Loop Corrections for e+e− Annihilation into µ+µ− in the Weinberg Model”

Interest in “modern” developments for the calculation of 1-loop
integrals from basically two sides
For many-particle calculations, there appear inverse Gram determinants from tensor reductions in the answers.

These 1/G(pi) may diverge, because Gram dets can exactly vanish: G(pi) ≡ 0.

One may perform tensor reductions so that no inverse Grams appear, but one has to buy 1-loop integrals in
higher dimensions, D = 4 + 2n− 2ε.
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Why one-loop Feynman integrals?
And why in D = 4 + 2n − 2ε dimensions? II

Key references for tensor reductions etc., , I give here no complete list
Davydychev, 1991 [4]: “A Simple formula for reducing Feynman diagrams to scalar integrals”
This paper explains how to write tensor integrals as scalar integrals with higher indices and in higher
dimensions. Lowering of indices and/or dimensions by recursive reductions were introduced:
Tkachov,Chetyrkin 1981 [5, 6]: Integration-by-parts identities
Tarasov 1996 [7], Fleischer, Jegerlehner, Tarasov 1999 [8]: plus dimensional shifts (downwards), they
introduce the inverse Gram dets 1/G(pi)
Fleischer, Riemann 2010–2013 [9, 10] and other papers: Ensure that inverse Gram dets 1/G(pi) do not
destabilize (Gram dets are avoided, or integrals are expanded) and that all indices are equal one:

Higher-order loop calculations need h.o. contributions from
ε-expansions of 1-loops:
1/(d − 4) = −1/(2ε) and Γ(ε) = a/ε+ c + ε+ · · ·
A Seminal paper was on ε-terms of 1-loop functions:
Nierste, Müller, Böhm, 1992 [11]: “Two loop relevant parts of D-dimensional massive scalar one loop integrals”
This was generalized in another 2 seminal papers:
Tarasov, 2000 [12] and Fleischer, Jegerlehner, Tarasov, 2003 [13]: “A New hypergeometric representation of
one loop scalar integrals in d dimensions”
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Why one-loop Feynman integrals?
And why in D = 4 + 2n − 2ε dimensions? III

I was wondering if the results of Fleischer/Jegerlehner/Tarasov (2003) are sufficiently general for practical,
black-box applications, and saw a need of creating a software solution in terms of contemporary mathematics.

So we decided to study the issue from scratch in 2 steps:

1st step: Re-derive analytical expressions for
scalar one-loop integrals as meromorphic functions of arbitrary space-time
dimension D
Approve or improve the results of Tarasov et al.
• 2-point functions: Gauss hypergeometric functions 2F1 [14]

3-point functions: plus Kamp’e de F’eriet functions F1; there are the Appell functions F1, . . . F4 [15]
4-point functions: plus Lauricella-Saran functions FS [16]

• 2nd step: Derive the Laurent expansions around the singular points of these functions.

• This talk:
Self-energies and vertices

• We have preliminary results also for boxes but want to perform more numerical checks.
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JN ≡ JN(d; {pipj}, {m2
i }) =

∫
ddk

iπd/2

1
Dν1

1 Dν2
2 · · ·D

νN
N

(1)

with

Di =
1

(k + qi)2 − m2
i + iε

. (2)
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νi = 1,
n∑

i=1

pi = 0 (3)

Jn = (−1)nΓ (n− d/2)

∫ 1

0

n∏
j=1

dxjδ

(
1−

n∑
i=1

xi

)
1

Fn(x)n−d/2
(4)

Here, the F-function is the second Symanzik polynomial.

It is derived from the propagators (2),

M2 = x1D1 + · · ·+ xNDN = k2 − 2Qk + J. (5)
Using δ(1−

∑
xi) under the integral in order to transform linear terms in x into quadratic ones, we

may obtain:

Fn(x) = −(
∑

i

xi) J + Q2 =
1
2

∑
i,j

xiYijxj − iε, (6)

The Yij are elements of the Cayley matrix, introduced for a systematic study of one-loop n-point
Feynman integrals e.g. in [17]

Yij = Yji = m2
i + m2

j − (qi − qj)
2. (7)
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One-point function, or tadpole

J1(d; m2) =

∫
ddk

iπd/2

1
k2 − m2 + iε

= −
Γ(1− d/2)

(m2 − iε)1−d/2
. (8)

The operator k− . . .
. . . will reduce an n-point Feynman integral Jn to an (n− 1)-point integral Jn−1 by shrinking the
propagator 1/Dk

k− Jn = k−
∫

ddk
iπd/2

1∏n
j=1 Dj

=

∫
ddk

iπd/2

1∏n
j 6=k,j=1Dj

. (9)

Mellin-Barnes representation

1
(1 + z)λ

=
1

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ(λ+ s)

Γ(λ)
zs = 2F1

[
λ, b ;

b ;
− z
]
. (10)

It is valid if |Arg(z)| < π and the integration contour has to be chosen such that the poles of
Γ(−s) and Γ(λ+ s) are well-separated. The right hand side of (10) is identified as Gauss’
hypergeometric function. For more details see [18]).
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F-function and Gram, Cayley, and modified Cayley determinants

Introduced by Melrose [17]. The Cayley determinant λ12...N is composed of the
Yij = m2

i + m2
j − (qi − qj)2 introduced in (7), and its determinant is:

λn ≡ λ12...n =

∣∣∣∣∣∣∣∣∣
Y11 Y12 . . . Y1n
Y12 Y22 . . . Y2n
...

...
. . .

...
Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣ . (11)

The modified Cayley determinant is

()n =

∣∣∣∣∣∣∣∣∣∣∣

0 1 . . . 1 1
1 Y11 Y12 . . . Y1n
1 Y12 Y22 . . . Y2n
...

...
. . .

...
1 Y1n Y2n . . . Ynn

∣∣∣∣∣∣∣∣∣∣∣
. (12)

Here, the additional definitions Y00 = 0, Y0j = Yj0 = 1, i, j = 1, . . . , n are introduced.
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We also define the (n− 1)× (n− 1) dimensional Gram determinant gn ≡ g12···n,

Gn ≡ G12···n = −

∣∣∣∣∣∣∣∣∣
(q1 − qn)2 (q1 − qn)(q2 − qn) . . . (q1 − qn)(qn−1 − qn)

(q1 − qn)(q2 − qn) (q2 − qn)2 . . . (q2 − qn)(qn−1 − qn)
...

...
. . .

...
(q1 − qn)(qn−1 − qn) (q2 − qn)(qn−1 − qn) . . . (qn−1 − qn)2

∣∣∣∣∣∣∣∣∣ . (13)

The determinants are independent of a common shifting of the momenta qi.
Further, the Gram det Gn and the modified Cayley determinant ()n are independent of the
propagator masses.
For the Gram determinant this is evident, and the following relation between both determinants
holds, for arbitrary qi:

()n = gn ≡ −2n−1Gn. (14)
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Co-factors of the Cayley matrix

One further notation will be introduced, namely that of co-factors of the Cayley matrix.
Also called signed minors in e.g. [17, 19]):

(
j1 j2 · · · jm
k1 k2 · · · km

)
n
. (15)

The signed minors are determinants, labeled by those rows j1, j2, · · · jm and columns k1, k2, · · · km
which have been discarded from the definition of the Cayley determinant ()n, with a sign
convention.

sign
(

j1 j2 · · · jm
k1 k2 · · · km

)
n

= (−1)j1+j2+···+jm+k1+k2+···+km × Signature[j1, j2, · · · jm] × Signature[k1, k2, · · · km].(16)

Here, Signature (defined like the Mathematica command) gives the sign of permutations needed to place the indices in increasing order.

Cayley matrix, by definition:

λn =

(
0
0

)
n
. (17)

Further, it is (see [8]):

−
1
2
∂iλn ≡ −

1
2
∂λn

∂m2
i

=

(
0
i

)
n
. (18)
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Rewriting the F-function further, exploring the xn = 1 −
∑

xi ...

The elimination of one of the xi creates linear terms in F(x).

Fn(x) = xT Gnx + 2HT
n x + Kn. (19)

The Fn(x) may be cast by shifts x→ (x− y) into the form

Fn(x) = (x− y)T Gn(x− y) + rn −iε = Λn(x) + rn −iε = Λn(x) + Rn, (20)

with

Λn(x) = (x− y)T Gn(x− y), (21)

and

rn = Kn − HT
n G−1

n Hn (22)

= − λn

gn

= −

(
0
0

)
n

()n
.
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The linear shifts yi

The (n− 1) components yi of the vector y appearing here in Fn(x) are:

yi = −
(

G−1
n Kn

)
i
, i 6= n (23)

The following relations are also valid:

yi =
∂rn

∂m2
i

= − 1
gn

∂λn

∂m2
i

= −∂iλn

gn
=

2
gn

(
0
i

)
n

, i = 1 · · · n. (24)

The auxiliary condition
∑n

i yi = 1 is fulfilled.

We see that the notations for the F-function are finally independent of the choice of
the variable which was eliminated by use of the δ-function in the integrand of (4). The
inhomogeneity Rn is the only variable carrying the causal iε-prescription, while e.g. Λ(x)
and the yi are by definition real quantities.
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The recursion relation for Jn I

One may use the Mellin-Barnes relation (10) in order to decompose the integrand of Jn

given in (4) as follows:

1

[F(x)]n− d
2
≡ 1

[Λn(x) + Rn]
n− d

2
≡ R

−(n− d
2 )

n

[1 + Λn(x)
Rn

]n− d
2

=
R
−(n− d

2 )
n

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ(n− d

2 + s)

Γ(n− d
2 )

[
Λn(x)

Rn

]s

, (25)

for |Arg(Λn/Rn)| < π. The condition always applies. Further, the integration path in the
complex s-plane separates the poles of Γ(−s) and Γ(n− d

2 + s). As a result of (25), the
Feynman parameter integral of Jn becomes homogeneous:

Kn =

n−1∏
j=1

∫ 1−
∑n−1

i=j+1 xi

0
dxj

[
Λn(x)

Rn

]s

≡
∫

dSn−1

[
Λn(x)

Rn

]s

. (26)
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The recursion relation for Jn II

In order to solve this integral, we consider the differential operator P̂n [20, 21],

P̂n

[
Λn(x)

Rn

]s

≡
n−1∑
i=1

1
2

(xi − yi)
∂

∂xi

[
Λn(x)

Rn

]s

= s
[

Λn(x)

Rn

]s

. (27)

This eigenvalue relation allows to introduce the operator P̂n into the integrand of (26):

Kn =
1
s

∫
dSn−1 P̂n

[
Λn(x)

Rn

]s

=
1
2s

n−1∑
i=1

n−1∏
k=1

uk∫
0

dx′k (xi − yi)
∂

∂xi

[
Λn(x)

Rn

]s

. (28)

After a series of manipulations in order to perform one of the x-integrations – by partial
integration, eating the corresponding differential – one arrives at:

Jn =
(−1)n

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ(n− d

2 + s)Γ(s + 1)

2 Γ(s + 2)

(
1
Rn

)n− d
2

×
n∑

i=1

{(
∂rn

∂m2
i

)∫
dS(i)

n−2

[
F(i)

n−1

Rn
− 1

]s

(29)
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The recursion relation for Jn III

We stress again that only the Rn carries an iε. Now it is important to eliminate the
term (−1) from the combination (F(i)

n−1/Rn− 1)s under the Mellin-Barnes integral over s,
because then we arrive at a sum over the n different (n−1)-point functions arising from
skipping a propagator from the original integral. In fact, this may be arranged using the
following relation for (−z) = F/R− 1 [22]:

+i∞∫
−i∞

ds
Γ(−s) Γ(a + s) Γ(b + s)

Γ(c + s)
(−z)s (30)

=

+i∞∫
−i∞

ds
Γ(−s) Γ(a + b− c− s)Γ(c− a + s)Γ(c− b + s)

Γ(c− a)Γ(c− b)
(1− z)c−a−b+s,

provided that |Arg(−z)| < 2π.
We arrive at the following recursion relation:
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The recursion relation for Jn IV

Jn(d, {qi,m2
i }) =

−1
2πi

+i∞∫
−i∞

ds
Γ(−s) Γ( d−n+1

2 + s)Γ(s + 1)

2Γ( d−n+1
2 )

R−s
n

×
n∑

k=1

(
1
rn

∂rn

∂m2
k

)
k−Jn(d + 2s; {qi,m2

i }). (31)

The cases Gn = 0 and λn = rn = 0 prevent the use of the Mellin-Barnes transformation.
They are simpler than what we have to do here. Details are given elsewhere.
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The 2-point function

From our recursion relation (36), taken at n = 2 and using the expression (8) with
d → d + 2s for the one-point functions under the integral, one gets the following
representation:

J2(D; q1,m2
1, q2,m2

2) =
eεγE

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ

(
D−1

2 + s
)

Γ(s + 1)

2 Γ
(

D−1
2

) Rs
2

×

[
1
r2

∂r2

∂m2
2

Γ
(
1− D+2s

2

)
(m2

1)
1− D+2s

2

+ (1↔ 2)

]
. (32)

One may close the integration contour of the MB-integral in (36) to the right, apply
the Cauchy theorem and collect the residua originating from two series of zeros of
arguments of Γ-functions at s = m and s = m− d/2− 1 for m ∈ N.

The first series stems from the MB-integration kernel, the other one from the dimensionally
shifted 1-point functions.

And then summing up in terms of Gauss’ hypergeometric functions.
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We get eqn. (53) of [13]:

J2(d; q1,m2
1, q2,m2

2) = J(1)
2 + J(2)

2 , (33)

and

J(1)
2 = −

Γ
(
2− d

2

)
Γ
(

d
2 − 1

)
2 Γ
(

d
2

)

(

1
r12

∂r12

∂m2
2

)
(m2

1)
d
2−1√

1− m2
1

R12

2F1

[ d
2 − 1, 1

2 ;
d
2 ;

m2
1

R12

]
+ (1↔ 2)

 ,

J(2)
2 =

√
π Γ(2− d

2 )Γ( d
2 − 1)

2 Γ( d−1
2 )

(R12)
d
2−1

λ12

 ∂2λ12√
1− m2

1
R12

+
∂1λ12√
1− m2

2
R12

 . (34)

The representation (33) is valid for
∣∣∣ m2

1
r12

∣∣∣ < 1,
∣∣∣ m2

2
r12

∣∣∣ < 1 and Re( d−2
2 ) > 0. It is in

agreement with Eqn. (53) of [13].
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The 3-point function I

According to the master formula (36), we can write the massive 3-point function as a
sum of three terms:

J3 = J123 + J231 + J312, (35)

using the representation for e.g. J123

J123(d, {qi,m2
i }) = − eεγE

2πi

+i∞∫
−i∞

ds
Γ(−s) Γ( d−2+2s

2 )Γ(s + 1)

2 Γ( d−2
2 )

R−s
3

× 1
r3

∂r3

∂m2
3

J2(d + 2s; q1,m2
1, q2,m2

2). (36)
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The 3-point function II

Here, J2(d+2s; q1,m2
1, q2,m2

2) is given by (33), taken at d+2s dimensions. By performing
the Mellin-Barnes integrals, one gets three terms, each consisting of eight series, from
taking the residues by closing the integration contours to the right; one of the three
terms is:

J123 = Γ

(
2− d

2

)
R

d
2−2
123 × b123

−
√
π Γ

(
2− d

2

)
Γ
(

d
2 − 1

)
Γ
(

d−1
2

) ∂3λ123

λ123

R
d
2−1
12

4λ12

 ∂2λ12√
1− m2

1
R12

+
∂1λ12√
1− m2

2
R12


× 2F1

[ d−2
2 , 1 ;
d−1

2 ;

R12

R123

]
+

2
d − 2

Γ

(
2− d

2

)
∂3λ123

λ123
(37)

×

 ∂2λ12√
1− m2

1
R12

(m2
1)

d
2−1

4λ12
F1

(
d − 2

2
; 1,

1
2

;
d
2

;
m2

1

R123
,

m2
1

R12

)
+ (1↔ 2)

 ,
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The 3-point function III

and

b123 = − 1
2g12

∂3λ123

λ123

 ∂2λ12√
1− m2

1
R12

+
∂1λ12√
1− m2

2
R12

 2F1

[
1, 1 ;

3
2 ;

R12

R123

]
(38)

−∂3λ123

λ123

 ∂2λ12√
1− m2

1
R12

m2
1

4λ12
F1

(
1; 1,

1
2

; 2;
m2

1

R123
,

m2
1

R12

)
+ (1↔ 2)

 ,

where ∂iλj··· is defined in (24). The representation (35) is valid for Re
(

d−2
2

)
> 0. The

conditions
∣∣∣m2

i
Rij

∣∣∣ < 1,
∣∣∣ Rij

Rijk

∣∣∣ < 1 had to be met during the derivation. The result may
be analytically continued in a straightforward way, however, in the complete complex
domain.
The functions 2F1 and F1 of the bijk-terms are met by setting d = 4 in the corresponding
functions Jijk of the general J3.
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For the 3-point function, we look at the expression J123 + J231 + J312.

We should agree with eqn. (74) to (76) of Tarasov 2003.

Our terms with d-dimensional F1 and 2F1 do agree exactly, but b123 + b231 + b312 looks
quite different.

Tarasov 2003 [13], eqns. (73) and (75)
Under the kinematic conditions that:

G3 < 0,
m2

i

r3
> 1, p2

ij < 0 : b3 6= 0 (39)

the “b”-term of Tarasov 2003 becomes:

J3(b3) =
Γ(2− d/2)

λ3

(
23/2 π

√
−G3 R3

d/2−1
)

(40)

Otherwise:

J3(b3) = b3 = 0. (41)
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Numerics for 3-point functions, table 1

[p2
i ], [m2

i ] [+100, +200, +300], [10, 20, 30]
G123 –160000
λ123 –8860000
m2

i /r123 –0.180587, –0.361174, –0.541761
m2

i /r12 –0.97561, –1.95122, –2.92683
m2

i /r23 –0.39801, –0.79602, –1.19403
m2

i /r31 –0.180723, –0.361446, –0.542169∑
J-terms (0.019223879 – 0.007987267 I)∑
b3-terms 0

J3(TR) (0.019223879 – 0.007987267 I)
b3-term (–0.089171509 + 0.069788641 I) + ( 0.022214414 )/eps
b3 +

∑
J-terms (–0.012307377 – 0.009301346 I)

J3(OT)
∑

J-terms, b3-term→ 0, OK
MB suite
(-1)*fiesta3 -(0.012307 + 0.009301 I) + (8*10-6 + 0.00001 I) pm4 )

LoopTools/FF, ε0 0.0192238790286244077-0.00798726725497102795 i

Table 1: Numerics for a vertex in space-time dimension d = 4 − 2ε. Causal ε = 10−20. Red input quantities
suggest that, according to eq. (73) in Tarasov2003 [13], one has to set b3 = 0. Although b3 of [13] deviates from
our vanishing value, it has to be set to zero, so that the results of both calculations for J3 agree for this case.
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Numerics for 3-point functions, table 2

[p2
i ], [m2

i ] [-100, +200, -300], [10, 20, 30]
G123 480000
λ3 -19300000
m2

i /r3 0.248705, 0.497409, 0.746114
m2

i /r12 0.248447, 0.496894, 0.745342
m2

i /r23 -0.39801, -0.79602, -1.19403
m2

i /r31 0.104895, 0.20979, 0.314685∑
J-terms (-0.012307377 - 0.056679689 I) + ( + 0.012825498 I)/eps∑
b3-terms ( + 0.047378343 I) - ( + 0.012825498 I)/eps

J3(TR) (-0.012307377 - 0.009301346 I)
b3-term ( + 0.047378343 I) - ( + 0.012825498 I)/eps
b3+
∑

J-terms (-0.012307377 - 0.009301346 I)
J3(OT)

∑
J-terms, b3-term→0, gets wrong

MB suite
(-1)*fiesta3 -(0.012307 + 0.009301 I) + (8*10-6 + 0.00001 I) pm4 )

LoopTools/FF, ε0 -0.0123073773677820630 - 0.0093013461700863289 i

Table 2: Numerics for a vertex in space-time dimension d = 4 − 2ε. Causal ε = 10−20. Red input quantities
suggest that, according to eq. (73) in Tarasov2003 [13], one has to set b3 = 0. Further, we have set in
the numerics for eq. (75) of Tarasov2003 [13] that Sqrt[-g123 + I*epsil], what looks counter-intuitive for a
“momentum”-like function.
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Numerics for 3-point functions, table 3

p2
i –100,–200,–300

m2
i 10,20,30

G123 –160000
λ123 15260000
m2

i /r123 0.104849, 0.209699, 0.314548
m2

i /r12 0.248447, 0.496894, 0.745342
m2

i /r23 0.133111, 0.266223, 0.399334
m2

i /r31 0.104895, 0.20979, 0.314685∑
J-terms (0.0933877 – 0 I) – (0.0222144 – 0 I)/eps∑
b-terms -0.101249 + 0.0222144/eps

J3(TR) (–0.00786155 – 0 I)
b3 (-0.101249 + 0 I) + (0.0222144 + 0 I)/eps
b3+J-terms (–0.007861546 + 0 I)
J3(OT) b3+J-terms→ OK
MB suite –0.007862014, 5.002549159*10-6, 0
(-1)*fiesta3 –(0.007862) + (6*10-6 + 6*10-6 I pm10)

LoopTools/FF, ε0 –0.00786154613229082290

Table 3: Numerics for a vertex in space-time dimension d = 4− 2ε. Causal ε = 10−20.
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Numerics for 3-point functions, table 4

p2
i +100, –200, +300

m2
i 10, 20, 30

G123 480000
λ123 4900000
m2

i /r123 –0.979592, –1.95918, –2.93878
m2

i /r12 –0.97561, –1.95122, –2.92683
m2

i /r23 0.133111, 0.266223, 0.399334
m2

i /r31 –0.180723, –0.361446, –0.542169∑
J-terms (0.006243624 - 0.018272524 I)∑
b3-terms 0

J3(TR) (0.006243624 - 0.018272524 I)
b3-term (0.040292491 + 0.029796253 I) + ( - 0.012825498 I)/eps
b3+
∑

J-terms (-0.012307377 - 0.009301346 I) + ( 4*-18 - 6*-18 I)/eps
J3(OT)

∑
J-terms, b3-term→0, OK

MB suite
(-1)*fiesta3 -(-0.006322 + 0.014701 I) + (0.000012 + 0.000014 I) pm2

LoopTools/FF, ε0 0.00624362477277410 - 0.01827252404872805 i

Table 4: Numerics for a vertex in space-time dimension d = 4 − 2ε. Causal ε = 10−20. Red input quantities
suggest that, according to eq. (73) in Tarasov2003 [13], one has to set b3 = 0.
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Summary

• We derived a new recursion relation for one-loop scalar Feynman integrals:
self-energies, vertices, boxes etc.

• The condition νi = 1 seems to be essential for that.
• A generalization to multiloops seems to be not straightforward or impossible.
• Solving the recursions for self-energies, vertices in terms of special functions

(and for boxes, not shown here) reproduces essential parts of the results of
Tarasov et al. from 2003.

• Concerning their b3-terms, we see a need of improvement compared to their
paper, if their result is not just wrong in some kinematical situations. Our
conclusions concerning that depend somewhat on an interpretation of their text.

• We derived a new series of Mellin-Barnes representations: 1-dimensional
for self-energies, 2-dim. for vertices, and 3-dimensional for box diagrams
for the most general kinematics. Compared to dim=3, 5, 9 respectively, in the
“conventional” Mellin-Barnes-approach.
This is not yet worked out. Again, we see no direct generalization to multi-loops.

• The special case of vanishing Gram determinant Gn = 0 is not covered. But
small Gram determinants are, and one has to take measures to get reasonable
numerics. → Small Gram dets are very interesting, but nothing is done.
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