Scalar one-loop integrals as meromorphic functions of space-time dimension d

Tord Riemann, DESY Work done together with: J. Blïmleín and Dr. Phan

talk held at workshop "Matter To The Deepest"
XLI International Conference on Recent Developments In Physics Of Fundamental Interactions MTTD 2017, September 3-8, 2017, Podlesice, Poland
http://indico.if.us.edu.pl/event/4/overview
Participation and part of work of T.R. supported by FNP, Polish Foundation for Science

Why one-loop Feynman integrals? And why in $D=4+2 n-2 \epsilon$ dimensions? ।

I began in 1980 to calculate Feynman integrals, and after several proceedings contributions, published an article, Mann, Riemann, 1983 [1]: "Effective Flavor Changing Weak Neutral Current In The Standard Theory And Z Boson Decay"

Basics

The seminal papers on 1-loop Feynman integrals:
't Hooft, Veltman, 1978 [2]: "Scalar oneloop integrals"
Passarino, Veltman, 1978 [3]: "One Loop Corrections for $e^{+} e^{-}$Annihilation into $\mu^{+} \mu^{-}$in the Weinberg Model"

Interest in "modern" developments for the calculation of 1-loop integrals from basically two sides

For many-particle calculations, there appear inverse Gram determinants from tensor reductions in the answers.
These $1 / G\left(p_{i}\right)$ may diverge, because Gram dets can exactly vanish: $G\left(p_{i}\right) \equiv 0$.
One may perform tensor reductions so that no inverse Grams appear, but one has to buy 1-loop integrals in higher dimensions, $D=4+2 n-2 \epsilon$.

Why one-loop Feynman integrals? And why in $D=4+2 n-2 \epsilon$ dimensions? II

Key references for tensor reductions etc., , I give here no complete list

Davydychev, 1991 [4]: "A Simple formula for reducing Feynman diagrams to scalar integrals"
This paper explains how to write tensor integrals as scalar integrals with higher indices and in higher dimensions. Lowering of indices and/or dimensions by recursive reductions were introduced:
Tkachov,Chetyrkin 1981 [5, 6]: Integration-by-parts identities
Tarasov 1996 [7], Fleischer, Jegerlehner, Tarasov 1999 [8]: plus dimensional shifts (downwards), they introduce the inverse Gram dets $1 / G\left(p_{i}\right)$
Fleischer, Riemann 2010-2013 [9, 10] and other papers: Ensure that inverse Gram dets $1 / G\left(p_{i}\right)$ do not destabilize (Gram dets are avoided, or integrals are expanded) and that all indices are equal one:

Higher-order loop calculations need h.o. contributions from ϵ-expansions of 1-loops:
 $1 /(d-4)=-1 /(2 \epsilon)$ and $\Gamma(\epsilon)=a / \epsilon+c+\epsilon+\cdots$

A Seminal paper was on ϵ-terms of 1 -loop functions:
Nierste, Müller, Böhm, 1992 [11]: "Two loop relevant parts of D-dimensional massive scalar one loop integrals" This was generalized in another 2 seminal papers:
Tarasov, 2000 [12] and Fleischer, Jegerlehner, Tarasov, 2003 [13]: "A New hypergeometric representation of one loop scalar integrals in d dimensions"

Why one-loop Feynman integrals? And why in $D=4+2 n-2 \epsilon$ dimensions? III

I was wondering if the results of Fleischer/Jegerlehner/Tarasov (2003) are sufficiently general for practical, black-box applications, and saw a need of creating a software solution in terms of contemporary mathematics.

So we decided to study the issue from scratch in 2 steps:

1st step: Re-derive analytical expressions for

scalar one-loop integrals as meromorphic functions of arbitrary space-time dimension D
Approve or improve the results of Tarasov et al.

- 2-point functions: Gauss hypergeometric functions ${ }_{2} F_{1}$ [14] 3-point functions: plus Kamp'e de F'eriet functions F_{1}; there are the Appell functions F_{1}, \ldots, F_{4} [15] 4-point functions: plus Lauricella-Saran functions F_{S} [16]
- 2nd step: Derive the Laurent expansions around the singular points of these functions.
- This talk:

Self-energies and vertices

- We have preliminary results also for boxes but want to perform more numerical checks.

$$
\begin{equation*}
J_{N} \equiv J_{N}\left(d ;\left\{p_{i} p_{j}\right\},\left\{m_{i}^{2}\right\}\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{D_{1}^{\nu_{1}} D_{2}^{\nu_{2}} \cdots D_{N}^{\nu_{N}}} \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
D_{i}=\frac{1}{\left(k+q_{i}\right)^{2}-m_{i}^{2}+i \epsilon} \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
\nu_{i}=1, \sum_{i=1}^{n} p_{i}=0 \tag{3}\\
J_{n}=(-1)^{n} \Gamma(n-d / 2) \int_{0}^{1} \prod_{j=1}^{n} d x_{j} \delta\left(1-\sum_{i=1}^{n} x_{i}\right) \frac{1}{F_{n}(x)^{n-d / 2}} \tag{4}
\end{gather*}
$$

Here, the F-function is the second Symanzik polynomial.
It is derived from the propagators (2),

$$
\begin{equation*}
M^{2}=x_{1} D_{1}+\cdots+x_{N} D_{N}=k^{2}-2 Q k+J \tag{5}
\end{equation*}
$$

Using $\delta\left(1-\sum x_{i}\right)$ under the integral in order to transform linear terms in x into quadratic ones, we may obtain:

$$
\begin{equation*}
F_{n}(x)=-\left(\sum_{i} x_{i}\right) J+Q^{2}=\frac{1}{2} \sum_{i, j} x_{i} Y_{i j} x_{j}-i \epsilon \tag{6}
\end{equation*}
$$

The $Y_{i j}$ are elements of the Cayley matrix, introduced for a systematic study of one-loop n-point Feynman integrals e.g. in [17]

$$
\begin{equation*}
Y_{i j}=Y_{j i}=m_{i}^{2}+m_{j}^{2}-\left(q_{i}-q_{j}\right)^{2} . \tag{7}
\end{equation*}
$$

One-point function, or tadpole

$$
\begin{equation*}
J_{1}\left(d ; m^{2}\right)=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{k^{2}-m^{2}+i \epsilon}=-\frac{\Gamma(1-d / 2)}{\left(m^{2}-i \epsilon\right)^{1-d / 2}} . \tag{8}
\end{equation*}
$$

The operator \mathbf{k}^{-}...

\ldots will reduce an n-point Feynman integral J_{n} to an $(n-1)$-point integral J_{n-1} by shrinking the propagator $1 / D_{k}$

$$
\begin{equation*}
\mathbf{k}^{-} J_{n}=\mathbf{k}^{-} \int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{\prod_{j=1}^{n} D_{j}}=\int \frac{d^{d} k}{i \pi^{d / 2}} \frac{1}{\prod_{j \neq k, j=1}^{n} D_{j}} . \tag{9}
\end{equation*}
$$

Mellin-Barnes representation

$$
\frac{1}{(1+z)^{\lambda}}=\frac{1}{2 \pi i} \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma(\lambda+s)}{\Gamma(\lambda)} z^{s}={ }_{2} F_{1}\left[\begin{array}{cc}
\lambda, b ; & -z \tag{10}\\
b ; &
\end{array}\right] .
$$

It is valid if $|\operatorname{Arg}(z)|<\pi$ and the integration contour has to be chosen such that the poles of $\Gamma(-s)$ and $\Gamma(\lambda+s)$ are well-separated. The right hand side of (10) is identified as Gauss' hypergeometric function. For more details see [18]).

F-function and Gram, Cayley, and modified Cayley determinants

Introduced by Melrose [17]. The Cayley determinant $\lambda_{12 \ldots N}$ is composed of the $Y_{i j}=m_{i}^{2}+m_{j}^{2}-\left(q_{i}-q_{j}\right)^{2}$ introduced in (7), and its determinant is:

$$
\lambda_{n} \equiv \lambda_{12 \ldots n}=\left|\begin{array}{cccc}
Y_{11} & Y_{12} & \ldots & Y_{1 n} \tag{11}\\
Y_{12} & Y_{22} & \ldots & Y_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
Y_{1 n} & Y_{2 n} & \ldots & Y_{n n}
\end{array}\right|
$$

The modified Cayley determinant is

$$
()_{n}=\left|\begin{array}{ccccc}
0 & 1 & \ldots & 1 & 1 \tag{12}\\
1 & Y_{11} & Y_{12} & \ldots & Y_{1 n} \\
1 & Y_{12} & Y_{22} & \ldots & Y_{2 n} \\
\vdots & \vdots & \ddots & \vdots & \\
1 & Y_{1 n} & Y_{2 n} & \ldots & Y_{n n}
\end{array}\right| .
$$

Here, the additional definitions $Y_{00}=0, \quad Y_{0 j}=Y_{j 0}=1, i, j=1, \ldots, n$ are introduced.

We also define the $(n-1) \times(n-1)$ dimensional Gram determinant $g_{n} \equiv g_{12 \cdots n}$,
$G_{n} \equiv G_{12 \cdots n}=-\left|\begin{array}{cccc}\left(q_{1}-q_{n}\right)^{2} & \left(q_{1}-q_{n}\right)\left(q_{2}-q_{n}\right) & \ldots & \left(q_{1}-q_{n}\right)\left(q_{n-1}-q_{n}\right) \\ \left(q_{1}-q_{n}\right)\left(q_{2}-q_{n}\right) & \left(q_{2}-q_{n}\right)^{2} & \cdots & \left(q_{2}-q_{n}\right)\left(q_{n-1}-q_{n}\right) \\ \vdots & \vdots & \ddots & \vdots \\ \left(q_{1}-q_{n}\right)\left(q_{n-1}-q_{n}\right) & \left(q_{2}-q_{n}\right)\left(q_{n-1}-q_{n}\right) & \cdots & \left(q_{n-1}-q_{n}\right)^{2}\end{array}\right|$

The determinants are independent of a common shifting of the momenta q_{i}.
Further, the Gram det G_{n} and the modified Cayley determinant ()$_{n}$ are independent of the propagator masses.
For the Gram determinant this is evident, and the following relation between both determinants holds, for arbitrary q_{i} :

$$
\begin{equation*}
()_{n}=g_{n} \equiv-2^{n-1} G_{n} \tag{14}
\end{equation*}
$$

Co-factors of the Cayley matrix

One further notation will be introduced, namely that of co-factors of the Cayley matrix. Also called signed minors in e.g. [17, 19]):

$$
\left(\begin{array}{ccc}
j_{1} & j_{2} & \cdots j_{m} \tag{15}\\
k_{1} & k_{2} & \cdots k_{m}
\end{array}\right)_{n} .
$$

The signed minors are determinants, labeled by those rows $j_{1}, j_{2}, \cdots j_{m}$ and columns $k_{1}, k_{2}, \cdots k_{m}$ which have been discarded from the definition of the Cayley determinant ()$_{n}$, with a sign convention.
$\operatorname{sign}\left(\begin{array}{lll}j_{1} & j_{2} & \cdots j_{m} \\ k_{1} & k_{2} & \cdots k_{m}\end{array}\right)_{n}=(-1)^{j_{1}+j_{2}+\cdots+j_{m}+k_{1}+k_{2}+\cdots+k_{m} \times \text { Signature }\left[j_{1}, j_{2}, \cdots j_{m}\right] \times \text { Signature }\left[k_{1}, k_{2}, \cdots k_{k}(\bar{\phi}), ~(1)\right.}$ Here, Signature (defined like the Mathematica command) gives the sign of permutations needed to place the indices in increasing order.

Cayley matrix, by definition:

$$
\begin{equation*}
\lambda_{n}=\binom{0}{0}_{n} . \tag{17}
\end{equation*}
$$

Further, it is (see [8]):

$$
\begin{equation*}
-\frac{1}{2} \partial_{i} \lambda_{n} \equiv-\frac{1}{2} \frac{\partial \lambda_{n}}{\partial m_{i}^{2}}=\binom{0}{i}_{n} . \tag{18}
\end{equation*}
$$

Rewriting the F-function further, exploring the $x_{n}=1-\sum x_{i} \ldots$

The elimination of one of the x_{i} creates linear terms in $F(x)$.

$$
\begin{equation*}
F_{n}(x)=x^{T} G_{n} x+2 H_{n}^{T} x+K_{n} . \tag{19}
\end{equation*}
$$

The $F_{n}(x)$ may be cast by shifts $x \rightarrow(x-y)$ into the form

$$
\begin{equation*}
F_{n}(x)=(x-y)^{T} G_{n}(x-y)+r_{n}-i \varepsilon=\Lambda_{n}(x)+r_{n}-i \varepsilon=\Lambda_{n}(x)+R_{n}, \tag{20}
\end{equation*}
$$

with

$$
\begin{equation*}
\Lambda_{n}(x)=(x-y)^{T} G_{n}(x-y), \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
r_{n} & =K_{n}-H_{n}^{T} G_{n}^{-1} H_{n} \tag{22}\\
& =-\frac{\lambda_{n}}{g_{n}} \\
& =-\frac{\binom{0}{0}_{n}}{()_{n}} .
\end{align*}
$$

The linear shifts y_{i}

The $(n-1)$ components y_{i} of the vector y appearing here in $F_{n}(x)$ are:

$$
\begin{equation*}
y_{i}=-\left(G_{n}^{-1} K_{n}\right)_{i}, \quad i \neq n \tag{23}
\end{equation*}
$$

The following relations are also valid:

$$
\begin{equation*}
y_{i}=\frac{\partial r_{n}}{\partial m_{i}^{2}}=-\frac{1}{g_{n}} \frac{\partial \lambda_{n}}{\partial m_{i}^{2}}=-\frac{\partial_{i} \lambda_{n}}{g_{n}}=\frac{2}{g_{n}}\binom{0}{i}_{n}, \quad i=1 \cdots n \tag{24}
\end{equation*}
$$

The auxiliary condition $\sum_{i}^{n} y_{i}=1$ is fulfilled.
We see that the notations for the F-function are finally independent of the choice of the variable which was eliminated by use of the δ-function in the integrand of (4). The inhomogeneity R_{n} is the only variable carrying the causal $i \epsilon$-prescription, while e.g. $\Lambda(x)$ and the y_{i} are by definition real quantities.

The recursion relation for J_{n} I

One may use the Mellin-Barnes relation (10) in order to decompose the integrand of J_{n} given in (4) as follows:

$$
\begin{align*}
\frac{1}{[F(x)]^{n-\frac{d}{2}}} & \equiv \frac{1}{\left[\Lambda_{n}(x)+R_{n}\right]^{n-\frac{d}{2}}} \equiv \frac{R_{n}^{-\left(n-\frac{d}{2}\right)}}{\left[1+\frac{\Lambda_{n}(x)}{R_{n}}\right]^{n-\frac{d}{2}}} \\
& =\frac{R_{n}^{-\left(n-\frac{d}{2}\right)}}{2 \pi i} \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma\left(n-\frac{d}{2}+s\right)}{\Gamma\left(n-\frac{d}{2}\right)}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} \tag{25}
\end{align*}
$$

for $\left|\operatorname{Arg}\left(\Lambda_{n} / R_{n}\right)\right|<\pi$. The condition always applies. Further, the integration path in the complex s-plane separates the poles of $\Gamma(-s)$ and $\Gamma\left(n-\frac{d}{2}+s\right)$. As a result of (25), the Feynman parameter integral of J_{n} becomes homogeneous:

$$
\begin{equation*}
K_{n}=\prod_{j=1}^{n-1} \int_{0}^{1-\sum_{i=j+1}^{n-1} x_{i}} d x_{j}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} \equiv \int d S_{n-1}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} \tag{26}
\end{equation*}
$$

The recursion relation for $J_{n} \|$

In order to solve this integral, we consider the differential operator $\hat{P}_{n}[20,21]$,

$$
\begin{equation*}
\hat{P}_{n}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} \equiv \sum_{i=1}^{n-1} \frac{1}{2}\left(x_{i}-y_{i}\right) \frac{\partial}{\partial x_{i}}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s}=s\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} . \tag{27}
\end{equation*}
$$

This eigenvalue relation allows to introduce the operator \hat{P}_{n} into the integrand of (26):

$$
\begin{equation*}
K_{n}=\frac{1}{s} \int d S_{n-1} \hat{P}_{n}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s}=\frac{1}{2 s} \sum_{i=1}^{n-1} \prod_{k=1}^{n-1} \int_{0}^{u_{k}} d x_{k}^{\prime}\left(x_{i}-y_{i}\right) \frac{\partial}{\partial x_{i}}\left[\frac{\Lambda_{n}(x)}{R_{n}}\right]^{s} . \tag{28}
\end{equation*}
$$

After a series of manipulations in order to perform one of the x-integrations - by partial integration, eating the corresponding differential - one arrives at:

$$
\begin{align*}
J_{n}= & \frac{(-1)^{n}}{2 \pi i} \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma\left(n-\frac{d}{2}+s\right) \Gamma(s+1)}{2 \Gamma(s+2)}\left(\frac{1}{R_{n}}\right)^{n-\frac{d}{2}} \\
& \times \sum_{i=1}^{n}\left\{\left(\frac{\partial r_{n}}{\partial m_{i}^{2}}\right) \int d S_{n-2}^{(i)}\left[\frac{F_{n-1}^{(i)}}{R_{n}}-1\right]^{s}\right. \tag{29}
\end{align*}
$$

The recursion relation for J_{n} III

We stress again that only the R_{n} carries an $i \epsilon$. Now it is important to eliminate the term (-1) from the combination $\left(F_{n-1}^{(i)} / R_{n}-1\right)^{s}$ under the Mellin-Barnes integral over s, because then we arrive at a sum over the n different ($n-1$)-point functions arising from skipping a propagator from the original integral. In fact, this may be arranged using the following relation for $(-z)=F / R-1$ [22]:

$$
\begin{align*}
& \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma(a+s) \Gamma(b+s)}{\Gamma(c+s)}(-z)^{s} \tag{30}\\
& \quad=\int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma(a+b-c-s) \Gamma(c-a+s) \Gamma(c-b+s)}{\Gamma(c-a) \Gamma(c-b)}(1-z)^{c-a-b+s},
\end{align*}
$$

provided that $|\operatorname{Arg}(-z)|<2 \pi$.
We arrive at the following recursion relation:

The recursion relation for J_{n} IV

$$
\begin{align*}
J_{n}\left(d,\left\{q_{i}, m_{i}^{2}\right\}\right)=\frac{-1}{2 \pi i} \int_{-i \infty}^{+i \infty} d s & \frac{\Gamma(-s) \Gamma\left(\frac{d-n+1}{2}+s\right) \Gamma(s+1)}{2 \Gamma\left(\frac{d-n+1}{2}\right)} R_{n}^{-s} \\
& \times \sum_{k=1}^{n}\left(\frac{1}{r_{n}} \frac{\partial r_{n}}{\partial m_{k}^{2}}\right) \mathbf{k}^{-} J_{n}\left(d+2 s ;\left\{q_{i}, m_{i}^{2}\right\}\right) \tag{31}
\end{align*}
$$

The cases $G_{n}=0$ and $\lambda_{n}=r_{n}=0$ prevent the use of the Mellin-Barnes transformation. They are simpler than what we have to do here. Details are given elsewhere.

The 2-point function

From our recursion relation (36), taken at $n=2$ and using the expression (8) with $d \rightarrow d+2 s$ for the one-point functions under the integral, one gets the following representation:

$$
\begin{align*}
J_{2}\left(D ; q_{1}, m_{1}^{2}, q_{2}, m_{2}^{2}\right)= & \frac{e^{\epsilon \gamma_{E}}}{2 \pi i} \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma\left(\frac{D-1}{2}+s\right) \Gamma(s+1)}{2 \Gamma\left(\frac{D-1}{2}\right)} R_{2}^{s} \\
& \times\left[\frac{1}{r_{2}} \frac{\partial r_{2}}{\partial m_{2}^{2}} \frac{\Gamma\left(1-\frac{D+2 s}{2}\right)}{\left(m_{1}^{2}\right)^{1-\frac{D+2 s}{2}}}+(1 \leftrightarrow 2)\right] . \tag{32}
\end{align*}
$$

One may close the integration contour of the MB-integral in (36) to the right, apply the Cauchy theorem and collect the residua originating from two series of zeros of arguments of Γ-functions at $s=m$ and $s=m-d / 2-1$ for $m \in \mathbb{N}$.
The first series stems from the MB-integration kernel, the other one from the dimensionally shifted 1 -point functions.
And then summing up in terms of Gauss' hypergeometric functions.

We get eqn. (53) of [13]:

$$
\begin{equation*}
J_{2}\left(d ; q_{1}, m_{1}^{2}, q_{2}, m_{2}^{2}\right)=J_{2}^{(1)}+J_{2}^{(2)} \tag{33}
\end{equation*}
$$

and

$$
\left.\begin{array}{l}
J_{2}^{(1)}=-\frac{\Gamma\left(2-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}-1\right)}{2 \Gamma\left(\frac{d}{2}\right)}\left\{\left(\frac{1}{r_{12}} \frac{\partial r_{12}}{\partial m_{2}^{2}}\right) \frac{\left(m_{1}^{2}\right)^{\frac{d}{2}-1}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}} 2 F_{1}\left[\begin{array}{c}
\frac{d}{2}-1, \frac{1}{2} ; \frac{m_{1}^{2}}{\frac{d}{2} ;}
\end{array}\right]+(1 \leftrightarrow 2)\right. \\
R_{12}
\end{array}\right]\left(\frac{\partial_{2}^{(2)}}{J_{12}}=\frac{\sqrt{\pi} \Gamma\left(2-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}-1\right)}{2 \Gamma\left(\frac{d-1}{2}\right)} \frac{\left(R_{12}\right)^{\frac{d}{2}-1}}{\lambda_{12}}\left[\frac{\partial_{12}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}}+\frac{\partial_{1} \lambda_{12}}{\sqrt{1-\frac{m_{2}^{2}}{R_{12}}}}\right] . \quad l\right.
$$

The representation (33) is valid for $\left|\frac{\frac{m_{1}^{2}}{r_{12}}}{}\right|<1,\left|\frac{m_{2}^{2}}{r_{12}}\right|<1$ and $\mathcal{R e}\left(\frac{d-2}{2}\right)>0$. It is in agreement with Eqn. (53) of [13].

The 3-point function I

According to the master formula (36), we can write the massive 3-point function as a sum of three terms:

$$
\begin{equation*}
J_{3}=J_{123}+J_{231}+J_{312} \tag{35}
\end{equation*}
$$

using the representation for e.g. J_{123}

$$
\begin{align*}
J_{123}\left(d,\left\{q_{i}, m_{i}^{2}\right\}\right)= & -\frac{e^{\epsilon \gamma_{E}}}{2 \pi i} \int_{-i \infty}^{+i \infty} d s \frac{\Gamma(-s) \Gamma\left(\frac{d-2+2 s}{2}\right) \Gamma(s+1)}{2 \Gamma\left(\frac{d-2}{2}\right)} R_{3}^{-s} \\
& \times \frac{1}{r_{3}} \frac{\partial r_{3}}{\partial m_{3}^{2}} J_{2}\left(d+2 s ; q_{1}, m_{1}^{2}, q_{2}, m_{2}^{2}\right) . \tag{36}
\end{align*}
$$

The 3-point function II

Here, $J_{2}\left(d+2 s ; q_{1}, m_{1}^{2}, q_{2}, m_{2}^{2}\right)$ is given by (33), taken at $d+2 s$ dimensions. By performing the Mellin-Barnes integrals, one gets three terms, each consisting of eight series, from taking the residues by closing the integration contours to the right; one of the three terms is:

$$
\begin{align*}
J_{123}= & \Gamma\left(2-\frac{d}{2}\right) R_{123}^{\frac{d}{2}-2} \times b_{123} \\
& -\frac{\sqrt{\pi} \Gamma\left(2-\frac{d}{2}\right) \Gamma\left(\frac{d}{2}-1\right)}{\Gamma\left(\frac{d-1}{2}\right)} \frac{\partial_{3} \lambda_{123}}{\lambda_{123}} \frac{R_{12}^{\frac{d}{2}-1}}{4 \lambda_{12}}\left[\frac{\partial_{2} \lambda_{12}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}}+\frac{\partial_{1} \lambda_{12}}{\sqrt{1-\frac{m_{2}^{2}}{R_{12}}}}\right] \\
& \times{ }_{2} F_{1}\left[\frac{d-2}{2}, 1 ; \frac{R_{12}}{\frac{d-1}{2}} ; \frac{2}{R_{123}}\right]+\frac{2}{d-2} \Gamma\left(2-\frac{d}{2}\right) \frac{\partial_{3} \lambda_{123}}{\lambda_{123}} \tag{37}\\
& \times\left[\frac{\partial_{2} \lambda_{12}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}} \frac{\left(m_{1}^{2}\right.}{4 \lambda_{12}} F_{1}^{\frac{d}{2}-1}\left(\frac{d-2}{2} ; 1, \frac{1}{2} ; \frac{d}{2} ; \frac{m_{1}^{2}}{R_{123}}, \frac{m_{1}^{2}}{R_{12}}\right)+(1 \leftrightarrow 2)\right]
\end{align*}
$$

The 3-point function III

and

$$
\begin{align*}
b_{123}= & -\frac{1}{2 g_{12}} \frac{\partial_{3} \lambda_{123}}{\lambda_{123}}\left(\frac{\partial_{2} \lambda_{12}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}}+\frac{\partial_{1} \lambda_{12}}{\sqrt{1-\frac{m_{2}^{2}}{R_{12}}}}\right){ }_{2} F_{1}\left[\begin{array}{cc}
1,1 ; & \left.\frac{R_{12}}{R_{123}}\right] \\
& -\frac{\partial_{3} \lambda_{123}}{\lambda_{123}}\left\{\frac{\partial_{2} \lambda_{12}}{\sqrt{1-\frac{m_{1}^{2}}{R_{12}}}} \frac{m_{1}^{2}}{4 \lambda_{12}} F_{1}\left(1 ; 1, \frac{1}{2} ; 2 ; \frac{m_{1}^{2}}{R_{123}}, \frac{m_{1}^{2}}{R_{12}}\right)+(1 \leftrightarrow 2)\right\}
\end{array},\right. \tag{38}
\end{align*}
$$

where $\partial_{i} \lambda_{j \ldots}$ is defined in (24). The representation (35) is valid for $\operatorname{Re}\left(\frac{d-2}{2}\right)>0$. The conditions $\left|\frac{m_{i}^{2}}{R_{i j}}\right|<1,\left|\frac{R_{i j}}{R_{i j k}}\right|<1$ had to be met during the derivation. The result may be analytically continued in a straightforward way, however, in the complete complex domain.
The functions ${ }_{2} F_{1}$ and F_{1} of the $b_{i j k}$-terms are met by setting $d=4$ in the corresponding functions $J_{i j k}$ of the general J_{3}.

For the 3-point function, we look at the expression $J_{123}+J_{231}+J_{312}$.
We should agree with eqn. (74) to (76) of Tarasov 2003.
Our terms with d-dimensional F_{1} and ${ }_{2} F_{1}$ do agree exactly, but $b_{123}+b_{231}+b_{312}$ looks quite different.

Tarasov 2003 [13], eqns. (73) and (75)
Under the kinematic conditions that:

$$
\begin{equation*}
G_{3}<0, \quad \frac{m_{i}^{2}}{r_{3}}>1, \quad p_{i j}^{2}<0: \quad b_{3} \neq 0 \tag{39}
\end{equation*}
$$

the "b"-term of Tarasov 2003 becomes:

$$
\begin{equation*}
J_{3}\left(b_{3}\right)=\frac{\Gamma(2-d / 2)}{\lambda_{3}}\left(2^{3 / 2} \pi \sqrt{-G_{3}} R_{3}^{d / 2-1}\right) \tag{40}
\end{equation*}
$$

Otherwise:

$$
\begin{equation*}
J_{3}\left(b_{3}\right)=b_{3}=0 \tag{41}
\end{equation*}
$$

Numerics for 3-point functions, table 1

$\left[p_{i}^{2}\right],\left[m_{i}^{2}\right]$	$[+100,+200,+300], \quad[10,20,30]$	
G_{123}	-160000	
λ_{123}^{2}	-8860000	
m_{i}^{2} / r_{123}	$-0.180587,-0.361174,-0.541761$	
m_{i}^{2} / r_{12}	$-0.97561,-1.95122,-2.92683$	
m_{i}^{2} / r_{23}	$-0.39801,-0.79602,-1.19403$	
m_{i}^{2} / r_{31}	$-0.180723,-0.361446,-0.542169$	
$\sum \sum^{J}$-terms	$(0.019223879-0.007987267 \mathrm{I})$	
$\sum_{3} b_{3}$-terms	0	$+(0.022214414) / \mathrm{eps}$
b_{3}-term	$(0.019223879-0.007987267 \mathrm{I})$	
$b_{3}+\sum$-terms	$(-0.089171509+0.069788641 \mathrm{I})$	
J_{3} (OT)	$(-0.012307377-0.009301346 \mathrm{I})$	
MB suite	$\sum J$-terms, b_{3}-term $\rightarrow 0,0 \mathrm{~K}$	$\left.+\left(8^{*} 10-6+0.00001 \mathrm{I}\right) \mathrm{pm} 4\right)$
$(-1)^{\star}$ fiesta3	$-(0.012307+0.009301 \mathrm{I})$	
LoopTools/FF, ϵ^{0}	$0.0192238790286244077-0.00798726725497102795 \mathrm{i}$	

Table 1: Numerics for a vertex in space-time dimension $d=4-2 \epsilon$. Causal $\varepsilon=10^{-20}$. Red input quantities suggest that, according to eq. (73) in Tarasov2003 [13], one has to set $b_{3}=0$. Although b_{3} of [13] deviates from our vanishing value, it has to be set to zero, so that the results of both calculations for J_{3} agree for this case.

Numerics for 3-point functions, table 2

$\left[p_{i}^{2}\right],\left[m_{i}^{2}\right]$	$[-100,+200,-300],[10,20,30]$	
G_{123}	480000	
λ_{3}	-19300000	
m_{i}^{2} / r_{3}	$0.248705,0.497409,0.746114$	
m_{i}^{2} / r_{12}	$0.248447,0.496894,0.745342$	
m_{i}^{2} / r_{23}	$-0.39801,-0.79602,-1.19403$	
m_{i}^{2} / r_{31}	$0.104895,0.20979,0.314685$	$+(+0.012825498 \mathrm{I}) / \mathrm{eps}$
J^{J}-terms	$(-0.012307377-0.056679689 \mathrm{I})$	$-(+0.012825498 \mathrm{I}) / \mathrm{eps}$
$\sum_{3} b_{3}$-terms	$(+0.047378343 \mathrm{I})$	$-(+0.012825498 \mathrm{I}) / \mathrm{eps}$
J_{3} (TR)	$(-0.012307377-0.009301346 \mathrm{I})$	
b_{3}-term	$(+0.047378343 \mathrm{I})$	
$b_{3}+\sum J$-terms	$(-0.012307377-0.009301346 \mathrm{I})$	
J_{3} (OT)	$\sum J$-terms, b_{3}-term $\rightarrow 0$, gets wrong	
MB suite		$\left.\left.+8^{*} 10-6+0.00001 \mathrm{I}\right) \mathrm{pm4}\right)$
$(-1)^{\star}$ fiesta3	$-(0.012307+0.009301 \mathrm{I})$	
LoopTools/FF, ϵ^{0}	$-0.0123073773677820630-0.0093013461700863289 \mathrm{i}$	

Table 2: Numerics for a vertex in space-time dimension $d=4-2 \epsilon$. Causal $\varepsilon=10^{-20}$. Red input quantities suggest that, according to eq. (73) in Tarasov2003 [13], one has to set $b_{3}=0$. Further, we have set in the numerics for eq. (75) of Tarasov2003 [13] that Sqrt[-g123 + I*epsil], what looks counter-intuitive for a "momentum"-like function.

Numerics for 3-point functions, table 3

p_{i}^{2}	$-100,-200,-300$	
m_{i}^{2}	$10,20,30$	-160000
G_{123}	15260000	
λ_{123}	$0.104849,0.209699,0.314548$	
m_{i}^{2} / r_{123}	$0.248447,0.496894,0.745342$	
m_{i}^{2} / r_{12}	$0.133111,0.266223,0.399334$	
m_{i}^{2} / r_{23}	$0.104895,0.20979,0.314685$	$-(0.0222144-0 \mathrm{I}) / \mathrm{eps}$
m_{i}^{2} / r_{31}	$(0.0933877-0 \mathrm{I})$	$+0.0222144 / \mathrm{eps}$
$\sum^{J} J$-terms	-0.101249	$+(0.0222144+0$ I)/eps
$\sum_{J_{3}(\text { TR })} b$-terms	$(-0.00786155-0$ I)	
b_{3}	$(-0.101249+0 \mathrm{I})$	
$b_{3}+J$-terms	$(-0.007861546+0 \mathrm{I})$	
$J_{3}(\mathrm{OT})$	$b_{3}+J$-terms \rightarrow OK	
MB suite	$-0.007862014,5.002549159^{\star} 10-6,0$	
$(-1)^{\star} \mathrm{fiesta3}$	$-(0.007862)$	
LoopTools/FF, ϵ^{0}	-0.00786154613229082290	

Table 3: Numerics for a vertex in space-time dimension $d=4-2 \epsilon$. Causal $\varepsilon=10^{-20}$.

Numerics for 3-point functions, table 4

p_{i}^{2} m_{i}^{2}	$\begin{aligned} & +100,-200,+300 \\ & 10,20,30 \end{aligned}$	
G_{123}	480000	
λ_{123}	4900000	
m_{i}^{2} / r_{123}	-0.979592, -1.95918, -2.93878	
m_{i}^{2} / r_{12}	-0.97561, -1.95122, -2.92683	
m_{i}^{2} / r_{23}	0.133111, 0.266223, 0.399334	
m_{i}^{2} / r_{31}	-0.180723, -0.361446, -0.542169	
$\sum J$-terms	(0.006243624-0.018272524 I)	
$\sum b_{3}$-terms	0	
J_{3} (TR)	(0.006243624-0.018272524 I)	
b_{3}-term	(0.040292491 + 0.029796253 I)	+ (-0.012825498 I)/eps
$b_{3}+\sum J$-terms	(-0.012307377-0.009301346 I)	+ (4*-18-6*-18 I)/eps
J_{3} (OT)	$\sum J$-terms, b_{3}-term $\rightarrow 0, \mathrm{OK}$	
MB suite		
(-1)*fiesta3	-(-0.006322 + 0.014701 I)	$+(0.000012+0.000014 \mathrm{I}) \mathrm{pm}$
LoopTools/FF, ϵ^{0}	0.00624362477277410-0.01827252404872805 i	

Table 4: Numerics for a vertex in space-time dimension $d=4-2 \epsilon$. Causal $\varepsilon=10^{-20}$. Red input quantities suggest that, according to eq. (73) in Tarasov2003 [13], one has to set $b_{3}=0$.

Summary

- We derived a new recursion relation for one-loop scalar Feynman integrals: self-energies, vertices, boxes etc.
- The condition $\nu_{i}=1$ seems to be essential for that.
- A generalization to multiloops seems to be not straightforward or impossible.
- Solving the recursions for self-energies, vertices in terms of special functions (and for boxes, not shown here) reproduces essential parts of the results of Tarasov et al. from 2003.
- Concerning their b_{3}-terms, we see a need of improvement compared to their paper, if their result is not just wrong in some kinematical situations. Our conclusions concerning that depend somewhat on an interpretation of their text.
- We derived a new series of Mellin-Barnes representations: 1-dimensional for self-energies, 2-dim. for vertices, and 3-dimensional for box diagrams for the most general kinematics. Compared to dim $=3,5,9$ respectively, in the "conventional" Mellin-Barnes-approach.
This is not yet worked out. Again, we see no direct generalization to multi-loops.
- The special case of vanishing Gram determinant $G_{n}=0$ is not covered. But small Gram determinants are, and one has to take measures to get reasonable numerics. \rightarrow Small Gram dets are very interesting, but nothing is done.

References I

[1] G. Mann, T. Riemann, EFFECTIVE FLAVOR CHANGING WEAK NEUTRAL CURRENT IN THE STANDARD THEORY AND Z BOSON DECAY, Annalen Phys. 40 (1984) 334.
[2] G. 't Hooft, M. Veltman, Scalar One Loop Integrals, Nucl. Phys. B153 (1979) 365-401, available from the Utrecht University Repository as https://dspace.library.uu.nl/bitstream/handle/1874/4847/14006.pdf?sequence=2\&isAllowed=y. doi:10.1016/0550-3213(79) 90605-9.
[3] G. Passarino, M. Veltman, One loop corrections for $e^{+} e^{-}$annihilation into $\mu^{+} \mu^{-}$in the Weinberg model, Nucl. Phys. B160 (1979) 151. doi:10.1016/0550-3213(79)90234-7.
[4] A. I. Davydychev, A Simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B263 (1991) 107-111, http://wwwthep.physik.uni-mainz.de/~davyd/preprints/tensor1.pdf. doi:10.1016/0370-2693(91)91715-8.
[5] F. V. Tkachov, A THEOREM ON ANALYTICAL CALCULABILITY OF FOUR LOOP RENORMALIZATION GROUP FUNCTIONS, Phys. Lett. B100 (1981) 65-68.
[6] K. Chetyrkin, F. Tkachov, Integration by parts: The algorithm to calculate β functions in 4 loops, Nucl.Phys. B192 (1981) 159-204. doi:10.1016/0550-3213(81)90199-1.
[7] O. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D54 (1996) 6479-6490. arXiv:hep-th/9606018, doi:10.1103/PhysRevD.54.6479.
[8] J. Fleischer, F. Jegerlehner, O. V. Tarasov, Algebraic reduction of one loop Feynman graph amplitudes, Nucl. Phys. B566 (2000) 423-440. arXiv:hep-ph/9907327, doi:10.1016/S0550-3213(99)00678-1.
[9] J. Fleischer, T. Riemann, A Complete algebraic reduction of one-loop tensor Feynman integrals, Phys. Rev. D83 (2011) 073004. arXiv:1009.4436, doi:10.1103/PhysRevD.83.073004.
[10] T. Riemann, A. Almasy, J. Gluza and I. Dubovyk, Contraction of 1-loop 5-point tensor Feynman integrals, talk held at the 15th International Workshop on Advanced Computing and Analysis Techniques in Physics Research (ACAT2013), May 2013, Beijing, China. http://indico.ihep.ac.cn/event/2813/session/6/contribution/4/material/slides/0.pdf.
[11] U. Nierste, D. M"̈uller, M. Bø"ohm, Two loop relevant parts of D-dimensional massive scalar one loop integrals, Z. Phys. C57 (1993) 605-614. doi:10.1007/BF01561479.

References II

[12] O. V. Tarasov, Application and explicit solution of recurrence relations with respect to space-time dimension, Nucl. Phys. Proc. Suppl. 89 (2000) 237-245, [,237(2000)].
arXiv:hep-ph/0102271, doi:10.1016/S0920-5632(00)00849-5.
[13] J. Fleischer, F. Jegerlehner, O. Tarasov, A New hypergeometric representation of one loop scalar integrals in d dimensions, Nucl. Phys. B672 (2003) 303-328.
arXiv:hep-ph/0307113, doi:10.1016/j.nuclphysb.2003.09.004.
[14] Gauss hypergeometric function ${ }_{2} F_{1}$, http://mathworld.wolfram.com/GeneralizedHypergeometricFunction. html.
[15] Lauricella functions are generalizations of hypergeometric functions with more than one argument, see
http://mathworld.wolfram.com/AppellHypergeometricFunction.html. Among them are $F_{A}^{n}, F_{B}^{n}, F_{C}^{n}, F_{D}^{n}$, studied by Lauricella, and later also by Campe de Ferrie. For $\mathrm{n}=2$, these functions become the Appell functions $F_{2}, F_{3}, F_{4}, F_{1}$, respectively, and are the first four in the set of Horn functions. The F_{1} function is implemented in the Wolfram Language as AppellF1[a, b1, b2, c, x, y].
[16] Lauricella indicated the existence of ten other hypergeometric functions of three variables besides $F_{A}^{n}, F_{B}^{n}, F_{C}^{n}, F_{D}^{n}$ [15]. These were named $F_{E}, F_{F}, \ldots F_{T}$ and studied by S. Saran, https://en.wikipedia.org/wiki/Lauricella_hypergeometric_series.
[17] D. B. Melrose, Reduction of Feynman diagrams, Nuovo Cim. 40 (1965) 181-213, available from http://www.physics.usyd.edu.au/theory/melrose_publications/PDF60s/1965.pdf. doi:10.1007/BF028329.
[18] E. Whittaker, G. Watson, A course of modern analysis, Cambridge University Press, 1927.
[19] T. Regge, G. Barucchi, On the properties of Landau curves, Nuovo Cim. 34 (1964) 106. doi:10.1007/BF02725874.
[20] I. N. Bernshtein, Modules over a ring of differential operators. study of the fundamental solutions of equations with constant coefficients, Functional Analysis and Its Applications 5 (2) (1971) 89, moscow State University, translated from Funktsional'nyi Analiz i Ego Prilozheniya, Vol. 5, No. 2, pp. 1-16, April -June, 1971. Available at
http://www.math1.tau.ac.il/~bernstei/Publication_list/publication_texts/bernstein-mod-dif-EAN.pdf. doi:10.1007/BF01076413.

References III

[21] V.A. Golubeva and V.Z. Énol'skii, The differential equations for the Feynman amplitude of a single-loop graph with four vertices, Mathematical Notes of the Academy of Sciences of the USSR 23 (1978) 63.
doi:10.1007/BF01104888, available at http://www.mathnet.ru/links/c4b9d8a15c8714d3d8478d1d7b17609b/mzm8124.pdf.
[22] G. N. Watson, A treatise on the theory of Bessel functions, $x x, x x$.

