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What is measured?

SNO
KamLAND Solar CC/NC ratio
V. Disappearance

Daya Bay
V. Disapearance

MINOS/T2K
V. Appearance

U il INOS/T2K

vy Disappearance

sNO 4" OPERA and SK
Solar NC fluxes v: Appearance

Mark RosF-Lonergani-- IPPP, Dyrham Universicy |
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8 = (UPMNS)aiV,-(m)

Mixing matrix

1 0 0 Ci3 0 S13(97i(S Ci2 Sz 0
Upmns = | 0 c3  Se3 0o 1 0 —S12 Cr2 O
0 —sx3 C3 —s13€° 0 C13 0 0 1

Experimental values of mixing parameters

012 € [31.38°,35.99°], 63 € [38.4°,53.0°),
013 € [7.99°,8.91°], &€ [0,27]
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Full experimental data - interval matrix

experiments

Upmins Vosc

CP Invariant Case

—0.538 = —0.408 0.414 +0.624 0.615+ 0.791

0.799 = 0.845 0.514 +0.582  0.139 = 0.155
Vosc -
0.22 = 0.402 —0.73 = —0.567 0.595 = 0.776

http://www.nu-fit.org

Vose —— BSM
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Extended mixing - BSM models

Complete mixing

(N [ Vose Vi v(m N\ U p(m)
o )7\ Vi Vi pm) ) — p(m)
Observable part

v = (Vaso)ar™ + (Vin)ajt,™
—_— ~—
SM part BSM part

A standard approach to deviation from unitarity

BeunsBhyns = [(1+n)NJI(1 +mN]T =1 + ¢

N — Unitary

1, € — Hermitian
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Our approach: mixing matrix and

singular values

Singular values o; of a given matrix A are positive square roots of the
eigenvalues ); of the matrix AAf

Properties:

» generalization of eigenvalues
» always positive

» stable under perturbations

Unitary matrices

UU' = | = diag(1,1, ..., 1) = all singular values equal to 1
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Characterization of physical mixing matrices

< Vosc Vlh > ?
Vi Vin

Contraction
| Voscll < 1
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Contractions

1Al <1

Operator norm (spectral norm)

|Al:= sup [[AX]| = omax(A)

[Ix[[=1

Contractions as submatrices of the unitary matrix

Vose Vi B
H( Vi Vi )H =1=[[Vosc| <1
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Unitarity and Contraction: a toy example

For UPMNS holds

D Pas=1,
However, for a nonunitary U this relation is not fulfilled. ©, = ©1 + ¢
U— ( cos O sin@1)
—sin®; cosO;
In this case we get, Aj oc (M7 — m?) £
Pee + Pe, = 1+ 4esin® Agy sin ©4 cos ©1 cos 201 + O(€?)

Pue + P, =1 — 4esin® Apy sin ©4 cos ©1 cos 201 + O(€%)

Peculiar fact:
1l > 1

Non-physical parametrization!
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Statistics of Contractions in Vs

Experimental mixing matrix

0.799 + 0.845 0.514 = 0.582  0.139 = 0.155
Vese = | —0.538 +—-0.408 0.414 +-0.624  0.615 -+ 0.791
0.22 +0.402 —0.73 + —0.567 0.595 = 0.776

Contractions: only 4 %

Non-physical: 96%

Contractions as a convex combination of unitary matrices

m m
V:Za,Ui, o > 0 and Za]zl
i=1 i=1

m m
IVI= 1) il < ) aill Ul = 1
i=1 i=1
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Physical Region

m m
Q :=conv(Upyns) = {Z aiUi | Ui e UB), a1, ...,am > 0, Za,- =1,
i=1

i=1

012, 013, 023 and § given by experimental values}

Theory:
By ={C eMayxs:[IC] <1} Experimental analysis

IVoscll > 1

Ugxp

Unphysical region
Usxs Uexp
Physical region



Unitary dilation

Contractions o
contractions
Upuns — Vosc Q

BSM?

Ve dilation vV V — U UU —
Vi Vin

CS decomposition

o-(3 )~ (% &) (81E8) (2 9
"\ VY Vi 0 W, ol o 1, 0 Q
where C > 0 and S > 0 are diagonal matrices satisfying C? + S? = I,

Wi, Qi € Mpxn and Wa, Qo € My are unitary matrices
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Unitary dilation: an example

As an illustration let us take two Upyns matrices

U1 . 912 = 31.3807623 = 38.40,013 = 7.990,
Us i 012 = 35.99° 003 = 52.8°, 013 = 8.90°,

and let us construct a contraction as
1 1
V=3U+ 5l
The set of singular values
o1(V) =1, o2(V) = 0.991, o3(V) = 0.991

for which we get the following unitary dilation

0.822411 0.548133 0.146854 0.0169583 —0.0368511
—0.468394 0.520442 0.70103 —0.133845 0.0197681
U = 0.311417 —0.643236 0.686702 0.0250273 0.130689
—0.0524981 0.122242 —0.0336064 0.599485 0.788536

—0.0671638 0.00403263 0.119588 0.788536 —0.599485

Wojciech Flieger |



Quark Sector

Wolfenstein parametrization

Si2 =X, Si3=AN, s136° = AX3(p +in)

2 .
1— % A . AX3(p — in) )
Veku = -2 -5 AN2 +0(X%)
AX3(p —in) —AN? 1

Distribution of contractions
All matrices within Vi are contractions with 2% accuracy

6% of ||VCKM|| = 1002

0.961 < [[Vose|| < 1.178
94% of ||VCKM|| =1.001
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Summary

» Interval matrix Vg allows for independent analysis of mixing
data

» Matrix theory and convex geometry offer suitable tools for that
» Singular values enrich studies beyond unitarity

» Contractions are natural to describe interplay between SM and
BSM mixing theories in V,sc. They define physical region Q by
Upnns €cOnvex combination.

» There is a lot of space for BSM in V4. Dilations allow for
appropriate construction of complete unitary matrices

Details in

A novel approach to neutrino mixing analysis based on singular values
arXiv:1708.09196
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Backup slides
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Matrix norm

A matrix norm is a function || - || from the set of all complex (real
matrices) into R that satisfies the following properties

[All > 0and [[A|| =0<= A =0,
@Al = lal[|All, e € C,

A+ B < [|All+ B,

IAB|| < [|A[lllB]

Examples of matrix norms
» spectral norm: [|Al| = max,—1 |AX|l2 = o1(A)

» Frobenius norm: ||A||r = \/ Tr(ATA) = \/Z,'-fj:1 |aj|? = \/27:1 0?
» maximum absolute column sum norm:

[AllT = maXxx,=1 [[AX]lc = max; >, |aj]
» maximum absolute row sum norm:

[Alloe = maXx) =1 [[AX[|oc = max; }_; |aj]
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Weyl’s inequality for singular values

Let A and B be a m x n matrices and let ¢ = min{m, n}. Then

O'j(A-l— B) < U,’(A) + U/,,‘+1(B) for i S]
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Proof of the toy example

Let us calculate UUT and UT U for U, s(c); = sin(cos)®;, i =1,2

UUT _ 1 S1Co — SoCy
S1Co — SoCy 1

UTU = c2+s3  C1S1— S0
C1S1 — S0 s? +c2

As for the real A we have ||ATA|| = || AAT|| = ||A||?, we can focus only
on one of this products. Let us then write UU in the following form
UUT _ < 1 S1Co — SoCy )
S1Co — SoCy 1

_ 10 + 0 S1Co — SoCy
o 0 1 S1C — SoC4 0
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Proof of the toy example

This can be simplified into

T 10 0 s o
wro(50)(8 % )=rs

where s3 = sin©3 = sin(©1 — O).

Let us observe that eigenvalues of B are equal £ss.

Using fact that spectral norm is unitarily invariant and matrix B is
symmetric, we get

IUUT| = |1+ Bl = |WT(I+ B)W|| = ||| + WTBW|
= [Ir+ Dl

where W is an orthogonal matrix such that

WTBW = D = diag(ss, —S3)
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Proof of the toy example

Since I + D equals
1+s3 0
0 1—-s3 )7
its operator norm, i.e., the largest singular value equals
1+ 83 ifsg >0,

1733 ifS3<0

we can see that by adding B to identity matrix we can not decrease

spectral norm
1=/ < |/+B||=|uUT|

Thus
|l > 1
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Algorithm

The following steps lead to a contraction settled by Upyns and then to its unitary dilation of a
minimal dimension

1) Select a finite number of unitary matrices U;, i = 1, 2, ...m, within experimentally allowed range
of parameters 043, 023 and 4.
2) Construct a contraction U1 as a convex combination of selected matrices U;

m m
V:Zu,-U,', ity ..., am >0, Zu,:L
i=1 i=1

3) Find singular value decomposition of V/, i.e.
V=wzxzq]

where Wy, Qq are unitary, X is diagonal, and determine number 7 of singular values strictly less
than 1.
4) Use CS decomposition

_ V.V _
U_< Vi Vin >_

(s ) (S8 (4 4)
2 0 S C 0 Q)

to find the unitary dilation U € M(3,.,)x (3++) Of contraction Uis.
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