R-symmetric Super-QCD at the NLO

Wojciech Kotlarski

Technische Universität Dresden

Matter to the Deepest, September 7, 2017, Podlesice, Poland

in collaboration with Philip Dießner, Sebastian Liebschner and Dominik Stöckinger [ARXIV:1707.04557]

Triumph of the Standard Model

1

"SUSY" status at the beginning of Run II

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

	Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	∫ <i>L dt</i> [fb	b ⁻¹] Mass limit	$\sqrt{s} = 7, 8$	TeV $\sqrt{s} = 13$ TeV	Reference
Inclusive Searches	$ \begin{array}{l} MSUGRA/CMSSM \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \\ \tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0} \ (\text{compressed}) \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0} \\ GMSB (\tilde{\ell} \text{ NLSP}) \\ GGM \ (\text{bino NLSP}) \\ GGM \ (\text{higgsino-bino NLSP}) \\ GGM \ (\text{higgsino NLSP}) \\ GGM \ (\text{higgsino NLSP}) \\ GGM \ (\text{higgsino NLSP}) \\ Gravitino \ LSP \end{array} $	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau \\ 0 \\ mono-jet \\ 0 \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 / 2-6 jets 1-3 jets 2-6 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets 2 jets 2 jets mono-jet	b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	\tilde{q} , \tilde{g} \tilde{q} \tilde{q} \tilde{q} \tilde{q} \tilde{g} <t< th=""><th>1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.825 TeV 2.0 TeV 2.0 TeV 1.65 TeV 37 TeV 1.8 TeV</th><th>$\begin{split} &m(\tilde{q})\!=\!m(\tilde{g}) \\ &n(\tilde{k}_1^0)\!<\!200~GeV,~m(1^{\mathrm{st}}~gen,\tilde{q})\!=\!m(2^{\mathrm{nd}}~gen,\tilde{q}) \\ &m(\tilde{q})\!-\!m(\tilde{k}_1^0)\!<\!5~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!400~GeV \\ &m(\tilde{k}_1^0)\!<\!400~GeV \\ &cr(NLSP)\!<\!0.1~mm \\ &m(\tilde{k}_1^0)\!<\!\!950~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!<\!0 \\ &m(\tilde{k}_1^0)\!\!>\!\!580~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!>\!0 \\ &m(\tilde{k}_1^0)\!\!>\!\!830~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!1.8\times10^{-4}~eV,~m(\tilde{g})\!\!=\!\!\mathfrak{m}(\tilde{q})\!\!=\!\!1.5~TeV \end{split}$</th><th>1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518</th></t<>	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.825 TeV 2.0 TeV 2.0 TeV 1.65 TeV 37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q})\!=\!m(\tilde{g}) \\ &n(\tilde{k}_1^0)\!<\!200~GeV,~m(1^{\mathrm{st}}~gen,\tilde{q})\!=\!m(2^{\mathrm{nd}}~gen,\tilde{q}) \\ &m(\tilde{q})\!-\!m(\tilde{k}_1^0)\!<\!5~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!200~GeV \\ &m(\tilde{k}_1^0)\!<\!400~GeV \\ &m(\tilde{k}_1^0)\!<\!400~GeV \\ &cr(NLSP)\!<\!0.1~mm \\ &m(\tilde{k}_1^0)\!<\!\!950~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!<\!0 \\ &m(\tilde{k}_1^0)\!\!>\!\!580~GeV,~cr(NLSP)\!<\!0.1~mm,~\mu\!>\!0 \\ &m(\tilde{k}_1^0)\!\!>\!\!830~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!430~GeV \\ &m(\tilde{k}_2^0)\!\!>\!\!1.8\times10^{-4}~eV,~m(\tilde{g})\!\!=\!\!\mathfrak{m}(\tilde{q})\!\!=\!\!1.5~TeV \end{split}$	1507.05525 ATLAS-CONF-2017-022 1604.07773 ATLAS-CONF-2017-022 ATLAS-CONF-2017-022 ATLAS-CONF-2017-030 ATLAS-CONF-2017-033 1607.05979 1606.09150 1507.05493 ATLAS-CONF-2016-066 1503.03290 1502.01518
3 rd gen. <i>§</i> med.	$ \begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow b t \tilde{\chi}_{1}^{+} \end{array} $	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	rg g g g	1.92 TeV 1.97 TeV 37 TeV	m($\tilde{\chi}_{1}^{0}$)<600 GeV m($\tilde{\chi}_{1}^{0}$)<200 GeV m($\tilde{\chi}_{1}^{0}$)<300 GeV	ATLAS-CONF-2017-021 ATLAS-CONF-2017-021 1407.0600
3 rd gen. squarks direct production	$ \begin{split} \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow b\tilde{\chi}_{1}^{0} \\ \tilde{b}_{1}\tilde{b}_{1}, \tilde{b}_{1} \rightarrow t\tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\tilde{\chi}_{1}^{+} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow Wb\tilde{\chi}_{1}^{0} \text{ or } t\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow c\tilde{\chi}_{1}^{0} \\ \tilde{t}_{1}\tilde{t}_{1} (\text{natural GMSB}) \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + Z \\ \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + h \end{split} $	$\begin{matrix} 0 \\ 2 \ e, \mu \ (SS) \\ 0 - 2 \ e, \mu \\ 0 - 2 \ e, \mu \ (C) \\ 2 \ e, \mu \ (Z) \\ 3 \ e, \mu \ (Z) \\ 1 - 2 \ e, \mu \end{matrix}$	2 b 1 b 1-2 b 0-2 jets/1-2 mono-jet 1 b 1 b 4 b	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 4.7/13.3 20.3/36.1 3.2 20.3 36.1 36.1	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		$\begin{split} & m(\tilde{x}_1^0){<}420GeV \\ & m(\tilde{x}_1^0){<}200GeV,m(\tilde{x}_1^\pm){=}m(\tilde{x}_1^0){+}100GeV \\ & m(\tilde{x}_1^\pm){=}2m(\tilde{x}_1^0),m(\tilde{x}_1^0){=}55GeV \\ & m(\tilde{x}_1^0){=}1GeV \\ & m(\tilde{x}_1^0){=}1GeV \\ & m(\tilde{x}_1^0){>}150GeV \\ & m(\tilde{x}_1^0){=}0GeV \\ & m(\tilde{x}_1^0){=}0GeV \end{split}$	ATLAS-CONF-2017-038 ATLAS-CONF-2017-030 1209.2102, ATLAS-CONF-2016-077 1506.08616, ATLAS-CONF-2017-020 1604.07773 1403.5222 ATLAS-CONF-2017-019 ATLAS-CONF-2017-019
EW direct	$ \begin{array}{l} \tilde{\ell}_{L,R}\tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow \tilde{\ell}\nu(\ell\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\nu(\tau\tilde{\nu}), \tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}\tau(\nu\tilde{\nu}) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L}\nu\tilde{\ell}_{L}\ell(\tilde{\nu}\nu), \ell\tilde{\nu}\tilde{\ell}_{L}\ell(\tilde{\nu}\nu) \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0} \\ \tilde{\chi}_{1}^{+}\tilde{\chi}_{2}^{0} \rightarrow W\tilde{\chi}_{1}^{0}\delta\tilde{\chi}_{1}^{0}, h \rightarrow b\tilde{b}/WW/\tau\tau/\gamma_{2} \\ \tilde{\chi}_{2}^{0}\tilde{\chi}_{3}^{0}, \tilde{\chi}_{2,3}^{0} \rightarrow \tilde{\ell}_{R}\ell \\ \text{GGM (wino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \\ \text{GGM (bino NLSP) weak prod., } \tilde{\chi}_{1}^{0} \end{array} $	$\begin{array}{c} 2 \ e, \mu \\ 2 \ e, \mu \\ 2 \ \tau \\ 3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ 2 \ -3 \ e, \mu \\ \gamma \\ \phi \\ \gamma \\ \widetilde{G} \ 1 \ e, \mu + \gamma \\ \rightarrow \gamma \\ \widetilde{G} \ 2 \ \gamma \end{array}$	0 0 0-2 jets 0-2 b 0 -	Yes Yes Yes Yes Yes Yes Yes Yes	36.1 36.1 36.1 36.1 20.3 20.3 20.3 20.3	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	eV m $(\tilde{\chi}_1^{\pm})$ =m $(\tilde{\chi}_2^{0})$ =m	$\begin{split} &m(\tilde{\chi}_{1}^{0}){=}0 \\ &m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\tau},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{1}^{+}){+}m(\tilde{\chi}_{1}^{0})) \\ &m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \tilde{\ell} \text{ decoupled} \\ &m(\tilde{\chi}_{1}^{+}){=}m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, \tilde{\ell} \text{ decoupled} \\ &(\tilde{\chi}_{3}^{0}), m(\tilde{\chi}_{1}^{0}){=}0, m(\tilde{\ell},\tilde{\nu}){=}0.5(m(\tilde{\chi}_{2}^{0}){+}m(\tilde{\chi}_{1}^{0})) \\ &c\tau{<}1nm \\ &c\tau{<}1nm \end{split}$	ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 ATLAS-CONF-2017-035 ATLAS-CONF-2017-039 ATLAS-CONF-2017-039 1501.07110 1405.5086 1507.05493 1507.05493
Long-lived particles	Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived \tilde{X}_1^+ Direct $\tilde{X}_1^+\tilde{X}_1^-$ prod., long-lived \tilde{X}_1^+ Stable, stopped \tilde{g} R-hadron Stable \tilde{g} R-hadron Metastable \tilde{g} R-hadron GMSB, stable $\tilde{\tau}, \tilde{X}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu$ GMSB, $\tilde{X}_1^0 \rightarrow \gamma \tilde{G}$, long-lived \tilde{X}_1^0 $\tilde{g}\tilde{g}, \tilde{X}_1^0 \rightarrow ev/e\mu v/\mu\mu v$ GGM $\tilde{g}\tilde{g}, \tilde{X}_1^0 \rightarrow Z\tilde{G}$	Disapp. trk dE/dx trk 0 trk dE/dx trk $1-2 \mu$ 2γ displ. $ee/e\mu/\mu$ displ. vtx + jet	1 jet - 1-5 jets - - - τ τ ts -	Yes Yes - - Yes - Yes	36.1 18.4 27.9 3.2 19.1 20.3 20.3 20.3	\tilde{x}_{1}^{\pm} 430 GeV \tilde{x}_{1}^{\pm} 495 GeV \tilde{s} 850 GeV \tilde{s} 850 GeV \tilde{s} 850 GeV \tilde{s} 10 TeV \tilde{x}_{1}^{0} 1.0 TeV \tilde{x}_{1}^{0} 1.0 TeV	1.58 TeV 1.57 TeV	$\begin{split} &m(\tilde{x}_1^+) - m(\tilde{x}_1^0) \sim 160 \; \text{MeV}, \; r(\tilde{x}_1^+) = 0.2 \; \text{ns} \\ &m(\tilde{x}_1^+) - m(\tilde{x}_1^0) \sim 160 \; \text{MeV}, \; r(\tilde{x}_1^+) < 15 \; \text{ns} \\ &m(\tilde{x}_1^0) = 100 \; \text{GeV}, \; 10 \; \mu \text{s} < r(\tilde{g}) < 1000 \; \text{s} \\ &m(\tilde{x}_1^0) = 100 \; \text{GeV}, \; r > 10 \; \text{ns} \\ &10 < \tan\beta < 50 \\ &1 < r(\tilde{x}_1^0) < 3 \; \text{ns}, \; \text{SPS8 model} \\ &7 < cr(\tilde{x}_1^0) < 740 \; \text{mm}, \; m(\tilde{g}) = 1.3 \; \text{TeV} \\ &6 < cr(\tilde{x}_1^0) < 480 \; \text{mm}, \; m(\tilde{g}) = 1.1 \; \text{TeV} \end{split}$	ATLAS-CONF-2017-017 1506.05332 1310.6584 1606.05129 1604.04520 1411.6795 1409.5542 1504.05162 1504.05162
RPV	LFV $pp \rightarrow \tilde{v}_{\tau} + X, \tilde{v}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ Bilinear RPV CMSSM $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow eev, e\mu v, \mu\mu v$ $\tilde{\chi}_{1}^{+}\tilde{\chi}_{1}^{-}, \tilde{\chi}_{1}^{+} \rightarrow W \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow t\tau v_{e}, e\tau v_{\tau}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\bar{q}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow \tilde{t}_{1}t, \tilde{t}_{1} \rightarrow bs$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow b\ell$	$e\mu, e\tau, \mu\tau$ 2 e, μ (SS) 4 e, μ 3 e, $\mu + \tau$ 0 4 1 e, μ 8 1 e, μ 8 0 2 e, μ	- 0-3 b - - 5 large-R je -5 large-R je -10 jets/0-4 2 jets + 2 b 2 b	Yes Yes Yes ets - b - b - -	3.2 20.3 13.3 20.3 14.8 14.8 36.1 36.1 15.4 36.1	$ \begin{array}{c c} \tilde{v}_{r} \\ \tilde{q}, \tilde{g} \\ \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \\ \tilde{x}_{1}^{*} \\ \tilde{y} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{g} \\ \tilde{i}_{1} \\ \tilde{i}_{2} \\ \tilde{i}_{2} \\ \tilde{i}_{3} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{3} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{3} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{3} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{2} \\ \tilde{i}_{3} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ \tilde{i}_{4} \\ \tilde{i}_{2} \\ \tilde{i}_{4} \\ $	1.9 TeV 1.45 TeV V 1.55 TeV 2.1 TeV 1.65 TeV 1.45 TeV	$\begin{split} \lambda'_{311} = & 0.11, \lambda_{132/133/233} = & 0.07 \\ & m(\tilde{q}) = m(\tilde{g}), c\tau_{LSP} < 1 \text{ mm} \\ & m(\tilde{\chi}^0_1) > & 400 \text{GeV}, \lambda_{12k} \neq 0 (k = 1, 2) \\ & m(\tilde{\chi}^0_1) > & 0.2 \times m(\tilde{\chi}^\pm_1), \lambda_{133} \neq 0 \\ & \text{BR}(t) = & \text{BR}(b) = & \text{BR}(c) = & 0\% \\ & m(\tilde{\chi}^0_1) = & 8 \text{OO GeV} \\ & m(\tilde{\chi}^0_1) = & 1 \text{ TeV}, \lambda_{112} \neq 0 \\ & m(\tilde{r}_1) = & 1 \text{ TeV}, \lambda_{323} \neq 0 \\ & \text{BR}(\tilde{r}_1 \rightarrow be/\mu) > & 20\% \end{split}$	1607.08079 1404.2500 ATLAS-CONF-2016-075 1405.5086 ATLAS-CONF-2016-057 ATLAS-CONF-2016-057 ATLAS-CONF-2017-013 ATLAS-CONF-2017-013 ATLAS-CONF-2016-022, ATLAS-CONF-2016-084 ATLAS-CONF-2017-036
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 c	Yes	20.3	č 510 GeV		$m(\tilde{\chi}_1^0)$ <200 GeV	1501.01325

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

10⁻¹

Mass scale [TeV]

1

ATLAS Preliminary

 $\sqrt{s} = 7, 8, 13 \text{ TeV}$

Fine print: MSSM status at the beginning of Run II

ATLAS SUSY Searches* - 95% CL Lower Limits

May 2017

Model	e, μ, τ, γ	Jets	$E_{\mathrm{T}}^{\mathrm{miss}}$	$\int \mathcal{L} dt [\mathbf{fb}]$	¹] Mass limit	$\sqrt{s}=7,8$	3 TeV $\sqrt{s} = 13$ TeV
MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{1} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{cccc} 0-3 \ e, \mu/1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 b 2 jets 2 jets mono-jet	 b Yes Yes Yes Yes - Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3		1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} &m(\tilde{q}) \!\!=\!\!m(\tilde{g}) \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!200 \mathrm{GeV}, m(1^{\mathrm{st}} \mathrm{gen.} \tilde{q}) \!\!=\!\!m(2^{\mathrm{nd}} \mathrm{gen.} \tilde{q}) \\ &m(\tilde{q}) \!\!=\!\!m(\tilde{\chi}_{1}^{0}) \!\!<\!\!200 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!200 \mathrm{GeV}, m(\tilde{\chi}^{\pm}) \!\!=\!\!0.5(m(\tilde{\chi}_{1}^{0}) \!\!+\!\!m(\tilde{g})) \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!200 \mathrm{GeV}, m(\tilde{\chi}^{\pm}) \!\!=\!\!0.5(m(\tilde{\chi}_{1}^{0}) \!\!+\!\!m(\tilde{g})) \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!400 \mathrm{GeV} \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!400 \mathrm{GeV} \\ &cr(NLSP) \!\!<\!\!0.1 mm \\ &m(\tilde{\chi}_{1}^{0}) \!\!<\!\!950 \mathrm{GeV}, c\tau(NLSP) \!\!<\!\!0.1 mm, \mu \!\!<\!\!0 \\ &m(\tilde{\chi}_{1}^{0}) \!\!>\!\!680 \mathrm{GeV}, c\tau(NLSP) \!\!<\!\!0.1 mm, \mu \!\!>\!\!0 \\ &m(NLSP) \!\!>\!\!430 \mathrm{GeV} \\ &m(\tilde{G}) \!\!>\!\!1.8 \times 10^{-4} \mathrm{eV}, m(\tilde{g}) \!\!=\!\!m(\tilde{q}) \!\!=\!\!1.5 \mathrm{TeV} \end{split}$
ğğ, ğ→bbX1 ğğ, ğ→ttX1 ğğ, ğ→btX1	0 0-1 <i>e</i> ,μ 0-1 <i>e</i> ,μ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	õg õg õg	1.92 TeV 1.97 TeV 1.37 TeV	m(ữ₁)<600 GeV m(ữ₁)<200 GeV m(ữ₁)<300 GeV
	Model MSUGRA/CMSSM $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ $q\bar{q}W^{\pm}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{\pm} \rightarrow q\bar{q}W^{\pm}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0}$ GMSB (ℓ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$	Model e, μ, τ, γ MSUGRA/CMSSM $0-3 e, \mu/1-2 \tau$ 2 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ 0 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ 0 $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \mathcal{K}_{1}^{0}$ 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \mathcal{K} \chi_{1}^{0}$ γ $\tilde{g}GM$ (bino NLSP) 2γ $\tilde{g}GM$ (higgsino-bino NLSP) γ $\tilde{g}GM$ (higgsino NLSP) $2 e, \mu(Z)$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{1}$ 0 $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{1}$ 0	Model e, μ, τ, γ JetsMSUGRA/CMSSM $0-3 e, \mu/1-2 \tau$ $2-10 \text{ jets/3}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_{1}^{0} \rightarrow q q W^{\pm} \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0}$ 0 $2-6 \text{ jets}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_{1}^{0}$ 0 $7-11 \text{ jets}$ $GMSB (\ell NLSP)$ $1-2 \tau + 0-1 \ell$ $0-2 \text{ jets}$ GGM (higgsino-bino NLSP) γ $2 p \star$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ 0 $3 b$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ 0 $3 b$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$ 0 $3 b$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_{1}^{1}$ $0 -1 e, \mu$ $3 b$	Model e, μ, τ, γ Jets E_T^{miss} MSUGRA/CMSSM $0-3 e, \mu/1-2 \tau$ $2-10 \text{ jets/3 } b$ Yes $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$ 0 $2-6 \text{ jets}$ Yes $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$ 0 $2-6 \text{ jets}$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^0$ 0 $2-6 \text{ jets}$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^0$ 0 $2-6 \text{ jets}$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q \tilde{\chi}_1^+ \rightarrow q q W^{\pm} \tilde{\chi}_1^0$ 0 $2-6 \text{ jets}$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q q (\ell \ell / \nu \nu) \tilde{\chi}_1^0$ $3 e, \mu$ 4 jets $ \tilde{g}\tilde{g}, \tilde{g} \rightarrow q q W Z \tilde{\chi}_1^0$ 0 $7-11 \text{ jets}$ YesGMSB (ℓ NLSP) $1-2 \tau + 0-1 \ell$ $0-2 \text{ jets}$ YesGGM (bino NLSP) γ $1 b$ YesGGM (higgsino-bino NLSP) γ $1 b$ YesGGM (higgsino-bino NLSP) γ 2 jets YesGGM (higgsino NLSP) $2 e, \mu(Z)$ 2 jets Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes $\tilde{g}\tilde{g}, \tilde{g} \rightarrow b \bar{b} \tilde{\chi}_1^0$ 0 $3 b$ Yes	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Model e, μ, τ, γ Jets E_{T}^{mms} $\int \mathcal{L} dt [fb^{-1}]$ Mass limit $\sqrt{s} = 7, t$ MSUGRA/CMSSM $0.3 e, \mu/1-2 \tau$ $2.10 \text{ jets/3 } b$ Yes 20.3 \tilde{q}, \tilde{g} \tilde{q}, \tilde{g} 1.85 TeV $\tilde{q}\tilde{q}, \tilde{q} \to q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes 30.1 \tilde{q} 1.57 TeV $\tilde{q}\tilde{q}, \tilde{q} \to q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes 3.2 \tilde{q} \tilde{q} $\tilde{g}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes $3.6.1$ \tilde{g} 2.02 TeV $\tilde{g}\tilde{s}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes 36.1 \tilde{g} 2.02 TeV $\tilde{g}\tilde{s}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes 36.1 \tilde{g} 2.02 TeV $\tilde{g}\tilde{s}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 2.6 jets Yes 36.1 \tilde{g} 2.02 TeV $\tilde{g}\tilde{s}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 7.11 jets Yes 36.1 \tilde{g} 2.00 TeV $\tilde{g}\tilde{s}, \tilde{g} \to q q \tilde{\chi}_{1}^{0}$ 0 7.11 jets Yes 32.2 \tilde{g} 2.00 TeV GGM (bino NLSP) $1.2 \tau + 0.1 \ell$ 0.2 jets Yes 32.2 \tilde{g} 1.37 TeV GGM (higgsino-bino NLSP) γ 1 b Yes 20.3 \tilde{g} 900 GeV $\tilde{g}\tilde{s}, \tilde{g} \to b \tilde{b} \tilde{\chi}_{1}^{0}$ 0 3 b Yes 36.1 \tilde{g} 900 GeV $\tilde{g}\tilde{g}, \tilde{g} \to b \tilde{b} \tilde{\chi}_{1}^{0}$ 0 $3 $

Fine print: MSSM status at the beginning of Run II

MSUGRA/CMSSM

A M	ATLAS SUSY Searches* - 95% CL Lower Limits May 2017								
	Model	e, μ, τ, γ	Jets	E ^{miss} T	∫ <i>L dt</i> [fb	-1]	Mass limit	$\sqrt{s}=7,8$	$\frac{1}{\sqrt{s}} = 13 \text{ TeV}$
(MSUGRA/CMSSM $\tilde{q}q, q \rightarrow q \tilde{\kappa}^0$	0-3 e,μ/1-2 τ 2 0	-10 jets/3 <i>b</i> 2-6 jets	Yes Yes	20.3 36.1	q , ĝ q		1.85 TeV 1.57 TeV	$m(\tilde{q})=m(\tilde{g})$ $m(\tilde{\chi}_1^0)<200 \text{ GeV}, m(1^{\text{st}} \text{ gen.} \tilde{q})=m(2^{\text{nd}} \text{ gen.} \tilde{q})$
hes	$\tilde{\tilde{q}}\tilde{\tilde{q}}, \tilde{\tilde{q}} \rightarrow q \tilde{\chi}_1^0$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	mono-jet 0	1-3 jets 2-6 jets	Yes Yes	3.2 36.1	q ğ	608 GeV	2.02 TeV	m(<i>q̃</i>)-m(<i>X̃</i> ⁰ ₁)<5 GeV m(<i>X̃</i> ⁰ ₁)<200 GeV
Searc	$\begin{array}{l} \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{\pm} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0} \\ \tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\gamma\gamma)\tilde{\chi}_{1}^{0} \end{array}$	0 3 e, μ	2-6 jets 4 jets	Yes -	36.1 36.1	200 200 2		2.01 TeV 1.825 TeV	$m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, m(\tilde{\chi}^{\pm}) = 0.5(m(\tilde{\chi}_{1}^{0}) + m(\tilde{g}))$ $m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV}$
sive	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZX_1^\circ$ GMSB ($\tilde{\ell}$ NLSP)	0 1-2 τ + 0-1 ℓ 2 τ	0-2 jets	Yes Yes	36.1 3.2	ĝ ĝ		1.8 TeV 2.0 TeV	$m(\chi_1^0) < 400 \text{GeV}$
Inclu	GGM (higgsino-bino NLSP)	γ	1 <i>b</i> 2 iets	Yes	20.3 13.3	g g g		1.37 TeV 1.8 TeV	$m(\tilde{\chi}_{1}^{0}) < 950 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$ $m/\tilde{\chi}_{1}^{0} > 680 \text{ GeV}, c\tau(\text{NLSP}) < 0.1 \text{ mm}, \mu < 0$
	GGM (higgsino NLSP) Gravitino LSP	2 <i>e</i> ,μ (Z) 0	2 jets mono-jet	Yes Yes	20.3 20.3	\tilde{g} $F^{1/2}$ scale	900 GeV 865 GeV	1.0 101	m(NLSP)>430 GeV $m(\tilde{G})>1.8 \times 10^{-4} \text{ eV}, m(\tilde{g})=m(\tilde{q})=1.5 \text{ TeV}$
^d gen. med.	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow b\bar{b}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\bar{t}\tilde{\chi}_{1}^{0}$	0 0-1 <i>e</i> ,μ	3 <i>b</i> 3 <i>b</i>	Yes Yes	36.1 36.1	دَق دقع		1.92 TeV 1.97 TeV	$m(\tilde{\chi}_{1}^{0}) < 600 \text{ GeV}$ $m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}$
00 00	$gg, g \rightarrow bt \chi_1$	$0-1 e, \mu$	3 <i>b</i>	Yes	20.1	g		1.37 leV	m(ℋ̃1)<300 GeV

Fine print: MSSM status at the beginning of Run II

MSUGRA/CMSSM

A M	TLAS SUSY Se ay 2017	arches*	- 9 5%	% CI	L Lov	ver Limi	ts		
	Model	e, μ, τ, γ	Jets		∫ <i>L dt</i> [fb	⁻¹]	Mass limit	$\sqrt{s}=7,8$	TeV $\sqrt{s} = 13$ TeV
Inclusive Searches	MSUGRA/CMSSM $\tilde{q}q, q \rightarrow q\tilde{\chi}_{1}^{0}$ $\tilde{q}\tilde{q}, \tilde{q} \rightarrow q\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_{1}^{0}$ (compressed) $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0} \rightarrow qqW^{\pm}\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq(\ell\ell/\nu\nu)\tilde{\chi}_{1}^{0}$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$ GMSB ($\tilde{\ell}$ NLSP) GGM (bino NLSP) GGM (higgsino-bino NLSP) GGM (higgsino NLSP) GGM (higgsino NLSP) Gravitino LSP	$\begin{array}{c} 0-3 \ e, \mu/1-2 \ \tau & 2 \\ 0 \\ mono-jet \\ 0 \\ 3 \ e, \mu \\ 0 \\ 1-2 \ \tau + 0-1 \ \ell \\ 2 \ \gamma \\ \gamma \\ 2 \ e, \mu \ (Z) \\ 0 \end{array}$	2-10 jets/3 2-6 jets 1-3 jets 2-6 jets 2-6 jets 4 jets 7-11 jets 0-2 jets - 1 <i>b</i> 2 jets 2 jets prono-jet	 b Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 	20.3 36.1 36.1 36.1 36.1 36.1 3.2 3.2 20.3 13.3 20.3 20.3	\tilde{q}, \tilde{g} \tilde{q} \tilde{q} \tilde{q} \tilde{g}	608 GeV 900 GeV 865 GeV	1.85 TeV 1.57 TeV 2.02 TeV 2.01 TeV 1.825 TeV 1.8 TeV 2.0 TeV 1.65 TeV 1.37 TeV 1.8 TeV	$\begin{split} & m(\tilde{q}) = m(\tilde{g}) \\ & m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, \ m(1^{\text{st}} \text{ gen.} \tilde{q}) = m(2^{\text{nd}} \text{ gen.} \tilde{q}) \\ & m(\tilde{q}) - m(\tilde{\chi}_{1}^{0}) < 5 \text{ GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 200 \text{ GeV}, \ m(\tilde{\chi}^{\pm}) = 0.5 (m(\tilde{\chi}_{1}^{0}) + m(\tilde{g})) \\ & m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV} \\ & m(\tilde{\chi}_{1}^{0}) < 400 \text{ GeV} \\ & c\tau(NLSP) < 0.1 \text{ mm} \\ & m(\tilde{\chi}_{1}^{0}) > 680 \text{ GeV}, \ c\tau(NLSP) < 0.1 \text{ mm}, \ \mu < 0 \\ & m(\tilde{\chi}_{1}^{0}) > 680 \text{ GeV}, \ c\tau(NLSP) < 0.1 \text{ mm}, \ \mu > 0 \\ & m(NLSP) > 430 \text{ GeV} \\ & m(\tilde{G}) > 1.8 \times 10^{-4} \text{ eV}, \ m(\tilde{g}) = m(\tilde{q}) = 1.5 \text{ TeV} \end{split}$
3 rd gen. Ĩg med.	$egin{array}{l} ilde{g} ilde{g}, ilde{g} ightarrow bar{b} ilde{\chi}_1^0 \ ilde{g} ilde{g}, ilde{g} ightarrow bar{t} ilde{\chi}_1^0 \ ilde{g} ilde{g}, ilde{g} ightarrow bar{t} ilde{\chi}_1^+ \ ilde{g} ilde{g}, ilde{g} ightarrow bar{t} ilde{\chi}_1^+ \end{array}$	0 0-1 <i>e</i> ,µ 0-1 <i>e</i> ,µ	3 b 3 b 3 b	Yes Yes Yes	36.1 36.1 20.1	້ອຍ ອີຍ ອີຍ		1.92 TeV 1.97 TeV 1.37 TeV	m(𝔅˜1)<600 GeV m(𝔅˜1)<200 GeV m(𝔅˜1)<300 GeV

those límíts are model dependent and can be much weaker

Landscape of supersymmetric models

MSSM

Landscape of supersymmetric models

singlet extended SSM SUSY with R-parity violation additional U(1)'s MSSM R-symmetry models with Dirac gauginos triplet extended SSM

and many others....

R-symmetry

- additional symmetry of the SUSY algebra allowed by the Haag Łopuszański Sohnius theorem
- for N=1 it is a global $U_R(1)$ symmetry under which the SUSY generators are charged
- implies that the spinorial coordinates are also charged

$$Q_R(\theta) = 1, \ \theta \to e^{i\alpha}\theta$$

- Lagrangian invariance
 - ***** Kähler potential invariant if **R**-charge of vector superfield is 0
 - *** R**-charge of the superpotential must be 2
 - ✤ soft-breaking terms must have R-charge 0

Low-energy R-symmetry realization

R charges of component fields									
		Q _R	scalar	vector	fermionic				
	vector superfield	0	-	0	1				
	chiral superfield	Q	Q	-	Q-1				

- freedom in the choice of chiral superfield charge
- we choose SM fields to have $R=0 \rightarrow$ Higgs superfields $Q_R=0$, lepton and quark superfields have $Q_R=+1$
- with the above assignment R-symmetry forbids
 - * $\mu \hat{H}_u \hat{H}_d$
 - $\ref{eq:linear_state_st$
 - * soft SUSY breaking Majorana masses and trilinear scalar couplings
 - flavor problem ameliorated but now gauginos and higgsinos are masses → possible solution - Dirac gauginos

One way to fix it: Dirac masses							
Minimal R-Symmetric Supersymmetric Standardmodel (MRSSM) Kribs et.al. arXiv:0712.2039							
			<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	$U(1)_{R}$	
	Singlet	Ŝ	1	1	0	0	
Additional fields:	Triplet	Ť	1	3	0	0	
	Octet	Ô	8	1	0	0	
	R-Higgses	Â _u	1	2	-1/2	2	
		Â _d	1	2	1/2	2	

other realizations:

Davies, March-Russell, McCullough (2011) Lee, Raby, Ratz, Schieren, Schmidt-Hoberg, Vaudrevange (2011) Frugiuele, Gregoire (2012)

MRSSM lagrangian

Superpotential — Choi, Choudhury, Freitas, Kalinowski, Zerwas (2011)

$$W = \mu_d \hat{R}_d \hat{H}_d + \mu_u \hat{R}_u \hat{H}_u$$
$$+ \Lambda_d \hat{R}_d \hat{T} \hat{H}_d + \Lambda_u \hat{R}_u \hat{T} \hat{H}_u + \lambda_d \hat{S} \hat{R}_d \hat{H}_d + \lambda_u \hat{S} \hat{R}_u \hat{H}_u$$
$$- Y_d \hat{d} \hat{q} \hat{H}_d - Y_e \hat{e} \hat{l} \hat{H}_d + Y_u \hat{u} \hat{q} \hat{H}_u$$

* terms with λ , Λ couplings generate quartic Higgs couplings in the potential

* MSSM-like Yukawa terms

Allowed soft SUSY-breaking terms

* conventional MSSM B_{μ} -term: $V \ni B_{\mu}(H_d^-H_u^+ - H_d^0H_u^0) + h.c.$

* Dirac mass terms for gauginos $M^D \tilde{g}\tilde{g}'$

* scalar soft masses $m^2 |\Phi|^2$

Particle content summary: MSSM vs. MRSSM

different number of physical states completely new states **R-Higgs** Higgs charginos **CP-odd** charged charged neutral sgluon **CP-even MSSM** 2 2 0 0 0 1 1 MRSSM 4 3 3 2 + 22 2 1

	neutralino	gluino
MSSM	4	1
MRSSM	4	1

Majorana fermions

Dirac fermions

Exemplary mass spectrum

MRSSM signatures at the LHC

sgluon pair production $pp \rightarrow OO$

* complex fields O split by D-term contribution into scalar (S) and pseudoscalar (A) parts 2 2 2 2 2 2 4 $(MD)^2$

$$m_{O_A}^2 = m_O^2 \qquad \qquad m_{O_S}^2 = m_O^2 + 4(M_O^D)^2$$

* O_S naturally heavy, O_A might decay into quarks through loop-induced coupling

* Coupling proportional to m_q . If O_A^q is lighter than other SUSY particles but $m_{O_A} > 2m_t$ O_A decays exclusively to top quarks

same sign squark pair production $pp \rightarrow \tilde{q}_L \tilde{q}_R$

Constrained \tilde{g}_D pair production, with cross section roughly twice as large as in the MSSM

Leading order analysis

Leading order analysis

squark anti-squark production is almost the same

Leading order analysis

squark anti-squark production is almost the same

squark anti-squark pair production becomes subdominant

Details of NLO calculation

Detour - regularization in SUSY theories

dimensional regularization (DREG) breaks supersymmetry gluon Majorana gluino g^{μ} \tilde{g} degrees of freedom in 4-dimensions 4-2=2 = 2

degrees of freedom in **D**-dimensions

D-2 ≠ 2

- Solution use dimensional reduction (DRED). In DRED, momenta are continued from 4 to D dimensions, while gauge fields and γ-matrices remain 4-dimensional objects.
- PDF are fitted in the $\overline{\text{MS}}$ scheme. Not trivial to combine them with matrix elements regularized using DRED.
- Solution: do the calculation in the $\overline{\text{MS}}$ scheme and derive $\overline{\text{MS}} \to \overline{\text{DR}}$ transition terms by matching off-shell Green's functions calculated in both schemes. This fixes UV-part without altering the IR one.

Virtual matrix element — technical side

- **FeynArts** model containing renormalization constants and $\overline{MS} \rightarrow \overline{DR}$ transition counterterms
- Amplitude generated using **FeynArts** and evaluated in **FormCalc** in terms of Passarino - Veltman loop functions

Check of UV-finiteness

Virtual matrix element — pheno implications

 \mathbf{x}

Effect of Dirac gluinos

- * MSSM contains virtual corrections which grow together with $m_{\tilde{g}}$
- but no such corrections in the MRSSM
- Non-decoupling of sgluons
 - * difference between gauge coupling g and gluino coupling \hat{g}

$$\hat{g}_s - g_s = \frac{\alpha_s}{8\pi} \left(\log \frac{m_{O_s}^2}{m_{\tilde{g}}^2} + \log \frac{m_{O_p}^2}{m_{\tilde{g}}^2} \right)$$

translates into

$$\sigma_{pp \to \tilde{u}_L \tilde{u}_R}^{\text{super-oblique part}} = \frac{\alpha_s}{2\pi} \left(\log \frac{m_{O_s}^2}{m_{\tilde{g}}^2} + \log \frac{m_{O_p}^2}{m_{\tilde{g}}^2} \right) \sigma_{pp \to \tilde{u}_L \tilde{u}_R}^{\text{LO}}$$

Real emissions — generic structure

IR divergences cancelled after including real emission diagrams and through mass factorization, e.g.

Split real emission phase space as (two-cut phase space slicing)

$$\sigma_{R} = \int d\sigma_{R}$$

$$= \int_{S} d\sigma_{R} + \int_{H} d\sigma_{R}$$

$$= \int_{S} d\sigma_{R} + \int_{HC} d\sigma_{R} + \int_{H\overline{C}} d\sigma_{R}$$

split emitted parton phase space according to its softness split emitted hard parton phase space according to its collinearity

S and HC parts integrated analytically in D-dimension

soft and collinear part (S) is the source of $\epsilon_{\text{IR}}^{-2}$, $\epsilon_{\text{IR}}^{-1}$

* hard-collinear part (HC) is the source of $\epsilon_{\rm IR}^{-1}$

Cut cancelation

two separate calculations: analytic and MadGraph5_aMC@ NLO+GoSam

Resonances in real emission diagrams

- appearance of on-shell gluino when $m_{\tilde{g}} \geq m_u + m_{\tilde{u}_i}$
- 2 popular ways of treating them
 - diagram removal (DR)
 - \Rightarrow diagram subtraction (DS)
 - for DR one needs to carefully choose the gauge
 - * DR breaks gauge invariance
 - unphysical gauges break factorization of collinear singularities — use family of light-cone gauges defined by

$$\eta_{\pm} \equiv (\sqrt{1+\delta^2}, 0, \delta, \pm 1)$$

Resonances in real emission diagrams

Phenomenology

NLO improvements

reduction of theoretical uncertainty

shift of cross-sections

Comparison with the MSSM

Two possible definitions of K-factors:

- unsummed over L- and R-squarks
- ***** summed

Differential distributions

Summary and outlook

- MRSSM presents a viable alternative to the MSSM, without some of the MSSM drawbacks
- Its collider phenomenology might be quite different from the MSSM
- I presented the first calculation of the SQCD NLO correction to $2 \rightarrow 2$ processes at the LHC within the R-symmetric SUSY
- We developed a standalone C++ code, called RSYMSQCD, allowing to calculate NLO cross sections for described processes. The code will be published at <u>http://rsymsqcd.hepforge.org</u> If you want it now, let me know.
 - Future goals:
 - Moving to Catani-Seymour dipole subtraction (order of magnitude speed up)
 - ***** Implementing remaining $2 \rightarrow 2$ processes
 - Implications for the LHC

Summary and outlook

- MRSSM presents a viable alternative to the MSSM, without some of the MSSM drawbacks
- Its collider phenomenology might be quite different from the MSSM
- I presented the first calculation of the SQCD NLO correction to $2 \rightarrow 2$ processes at the LHC within the R-symmetric SUSY
- We developed a standalone C++ code, called RSYMSQCD, allowing to calculate NLO cross sections for described processes. The code will be published at <u>http://rsymsqcd.hepforge.org</u> If you want it now, let me know.
 - Future goals:
 - Moving to Catani-Seymour dipole subtraction (order of magnitude speed up)
 - ***** Implementing remaining $2 \rightarrow 2$ processes
 - Implications for the LHC

Thank you!

EW sector of the MRSSM (status)

- The SM-like Higgs boson mass in the MRSSM has been calculated including full 1-loop and leading 2-loop corrections^{1,2}
- Impact of EWPO was analyzed¹
- MRSSM can predicts correct dark matter relic density while being in agreement with dark matter direct detection bounds³
 - Its EW signatures were checked against available 7 and 8 TeV data³

1. P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP 1412 (2014) 124

 P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, Adv. High Energy Phys. 2015 (2015) 760729

3. P. Dießner, J. Kalinowski, W. Kotlarski and D. Stöckinger, JHEP **1603** (2016) 007

