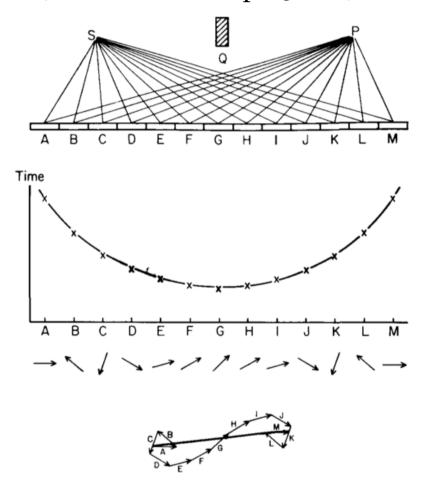
# Quark/gluon jets discrimination

#### A. Siódmok








Matter To The Deepest (3-8 September 2017)

## Thank you prof. Marek Zrałek ...

Physics Winter School, Creative Group Quark, Piwniczna 1998/1999



Lectures by prof. M. Zrałek based on Feynman's QED: The Strange Theory of Light and Matter

## Thank you prof. Marek Zrałek ...

Physics Winter School, Creative Group Quark, Piwniczna 1998/1999



Lectures by prof. M. Zrałek based on Feynman's QED: The Strange Theory of Light and Matter and sledding

## Thank you prof. Marek Zrałek ...

Physics Winter School, Creative Group Quark, Piwniczna 1998/1999



Lectures by prof. M. Zrałek based on Feynman's QED: The Strange Theory of Light and Matter and sledding

From H. Czyż > 13 PhD students promoted

#### Outline

- 1. Motivation and definitions
- 2. LH Quark/gluon jets discrimination [Les Houches arXiv:1605.04692]
- 3. What we have learn [JHEP 1707 (2017) 091]
- 4. How we improved the q/g jets simulation in Herwig [arXiv:1708.01491]
- 5. Outlook

#### Motivation

BSM searches: often signature for a BSM signals: many quark, backgrounds: QCD gluons

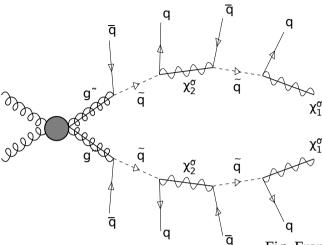
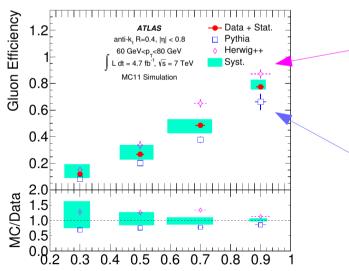
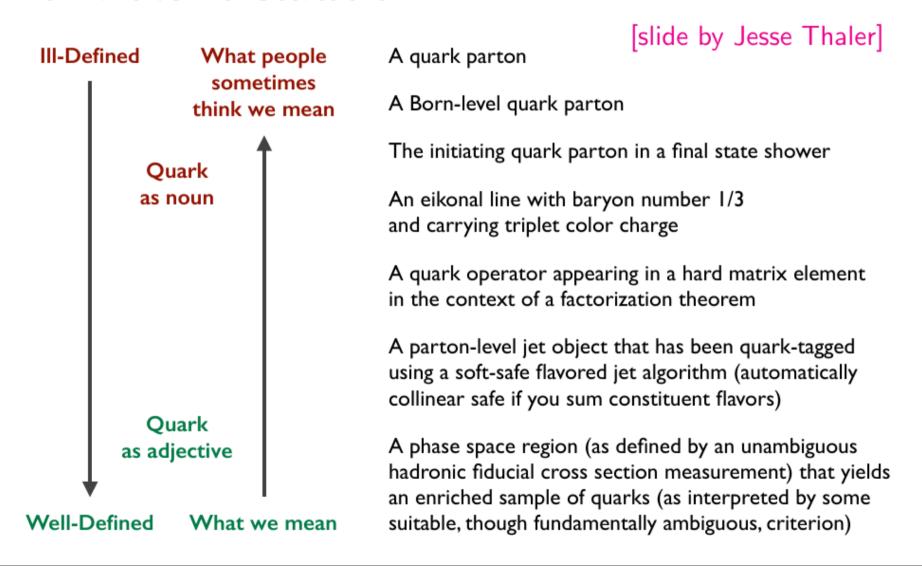




Fig. From J. Gallicchio and M. D. Schwartz, Phys. Rev. Lett.107 (2011)

Problem: Q/G jets LHC data show discrepancy with the predictions from MC generators

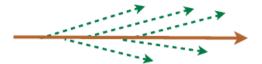


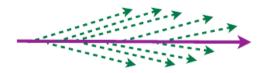
Herwig++ too pessimistic, Quark and gluon jets looks more the same than in data.


Pythia too optimistic, Quark and Gluon jets are too similar compared to data.

[ATLAS, Eur. Phys. J. C (2014) 74] Quark Efficiency

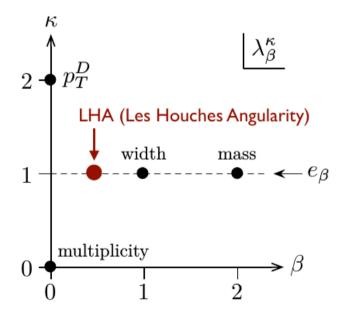
#### **Definition**


# What is a Quark Jet?


From lunch/dinner discussions



#### Definition


Cartoon:





Quark:  $C_F = 4/3$  vs. Gluon:  $C_A = 3$ 

Probe radiation pattern with e.g. Generalized Angularities



[Larkoski, Salam, Thaler, 13] [Larkoski, Thaler, Waalewijn, 14]

#### 2. Idealized case of e+e- [Les Houches arXiv:1605.04692]

#### Framework

#### Processes:

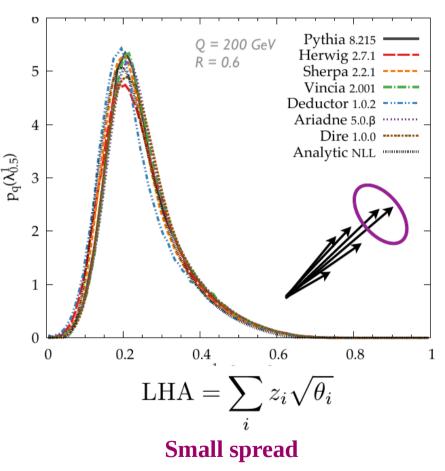
- Quark:  $e^+e^- \rightarrow (\gamma/Z)^* \rightarrow u\bar{u}$
- Gluons:  $e^+e^- \rightarrow H^* \rightarrow gg$

#### **Different settings:**

- Changing the collision energy Q
- Changing the jet radius R

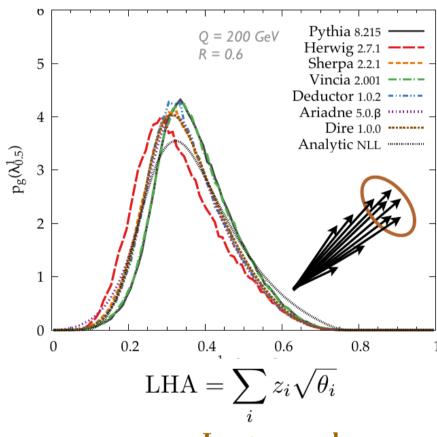
#### <u>Different Monte-Carlo generators at parton and hadron level:</u>

- Pythia 8 (v8.205)
- Herwig++ (v2.7.1)
- Sherpa (v2.1.1)


Additionally different Parton Shower algorithms

- Vincia (v1.201 plugin to Pythia)
- Deductor (v1.0.2 + hadronization from Pythia)
- Ariadne ( $v5.0.\beta$  + hadronization from Pythia)

## LHA – Idealized Quark/Gluon distributions


[Gras, Hoeche, Kar, Larkoski, Lönnblad, Plätzer, AS, Skands, Soyez, Thaler, JHEP 1707 (2017) 091]





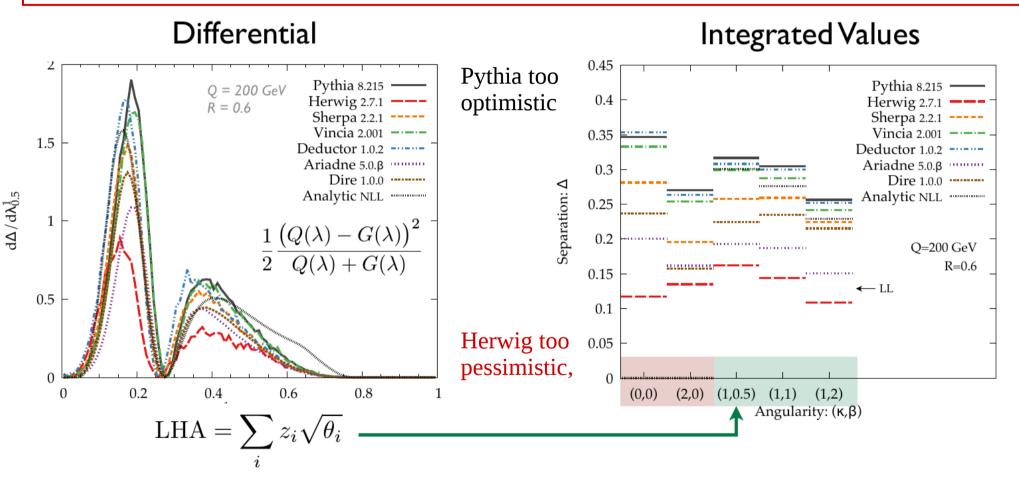
Constrained by LEP

## $e^+e^- \rightarrow gluons (C_A = 3)$



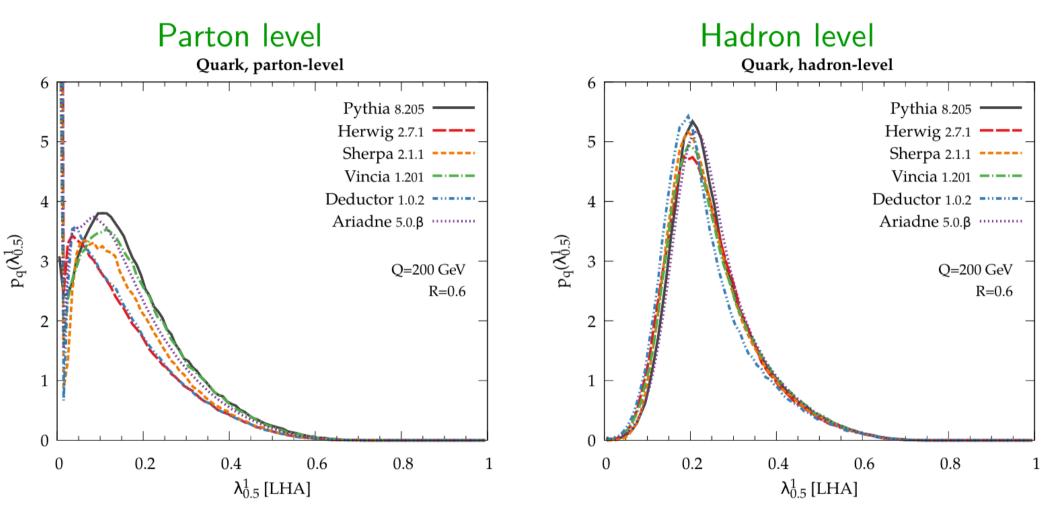
Large spread

Up to now no e+e- data has been used to constrain it.


## LHA – Separation power

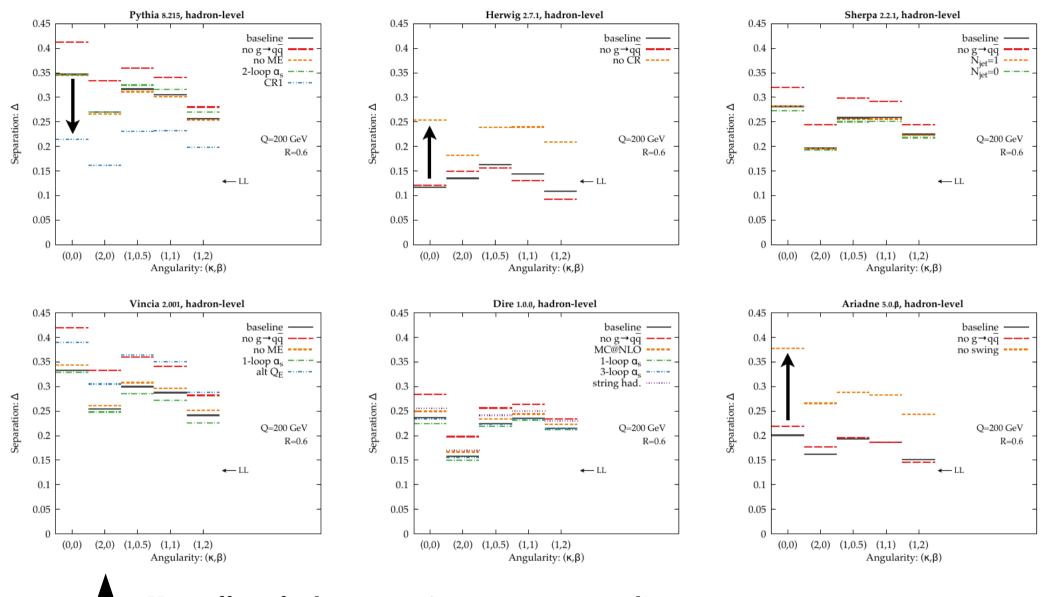
$$\Delta = \frac{1}{2} \int d\lambda \frac{\left(p_q(\lambda) - p_g(\lambda)\right)^2}{p_q(\lambda) + p_g(\lambda)} \quad \Delta = 0$$

$$\Delta = 1$$


 $\Delta = 0$  - corresponds to no discrimination power.

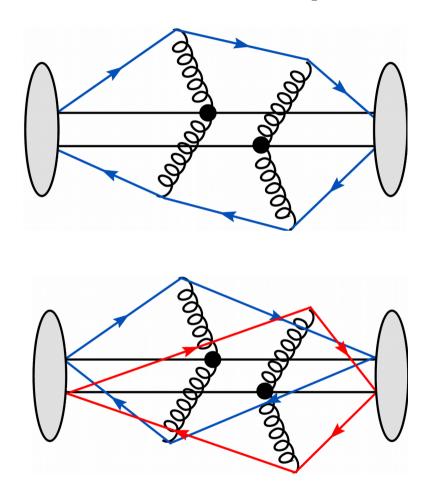
 $\Delta = 1$  - corresponds to perfect discrimination power.

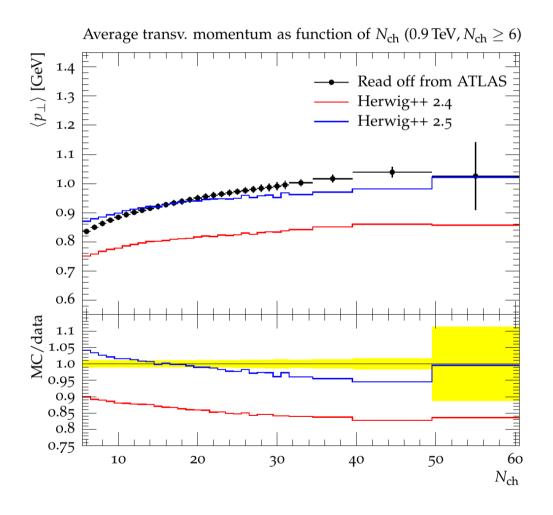



Affects both IRC unsafe and IRC safe observables

# Separation power – non-perturbative effects




Large hadronisation effects (here for quarks)
Large differences between MCs also seen at parton level.
Interplay of perturbative and non-perturbative effects => challenge for both pQCD and NP models

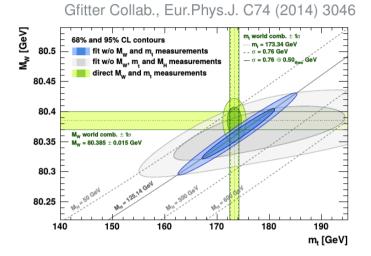

# Separation power – sensitivity to MC options



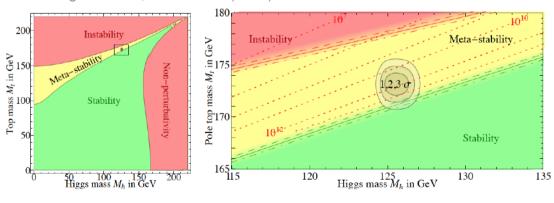
Huge effect of color reconection – very unexpected!

- The least understood part of the Multiple Particle Interaction models.
- Needed to describe the Underlying Event and Min Bias data (sensitive to MPI phenomena)
- Crucial to constrain it, important for top mass, g/q gluon, ...






#### Top quark mass: precision matters


#### Precision tests of the Standard Model:

global EW fit Riemann et al., Baak et al., ...

 $\hookrightarrow$  check self-consistency through  $m_t, m_W, m_H$  correlations

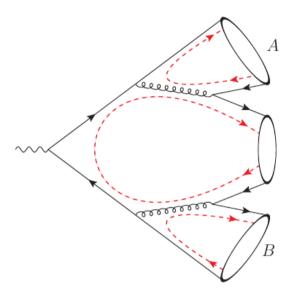




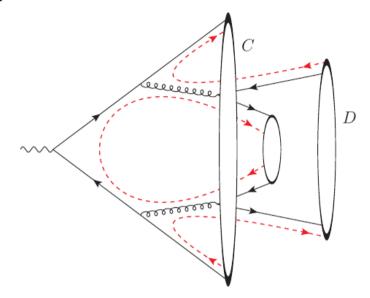


#### Stability of EW vacuum:

stable or meta-stable?


Different sources of uncertainties in  $m_t$  extraction via MC: accuracy of ME's, parton shower + hadronization, color reconnection, b-quark fragmentation ...

dominant source of uncertainty


Matter To The Deepest 2017

6/28

Cluster hadronization [Webber, Nucl. Phys. B238 (1984) 492]



- perturbative QCD provides preconfinement [Amati, Veneziano, Phys. Lett. B83 (1979) 87]
- i.e. small cluster masses  $M_{\rm cl} \gtrsim M_{\rm parton\,1} + M_{\rm parton\,2}$

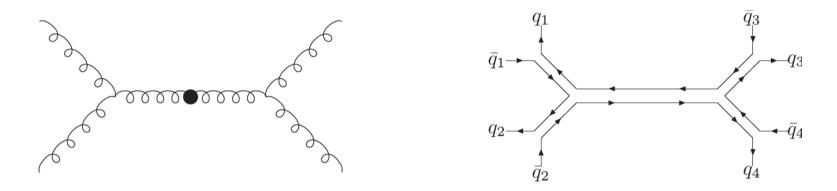


- improved description of soft events/UE at hadron colliders: manually reduce cluster masses
- if  $M_C + M_D < M_A + M_B$  accept alternative clustering with probability  $p_{\text{reco}}$  (model parameter)

[Gieseke, Rohr, AS Eur. Phys. J. C72 (2012) 2225]

### Improving the Simulation of Quark and Gluon Jets with Herwig 7

[D. Reichelt, P. Richardson, AS, arXiv:1708.01491]

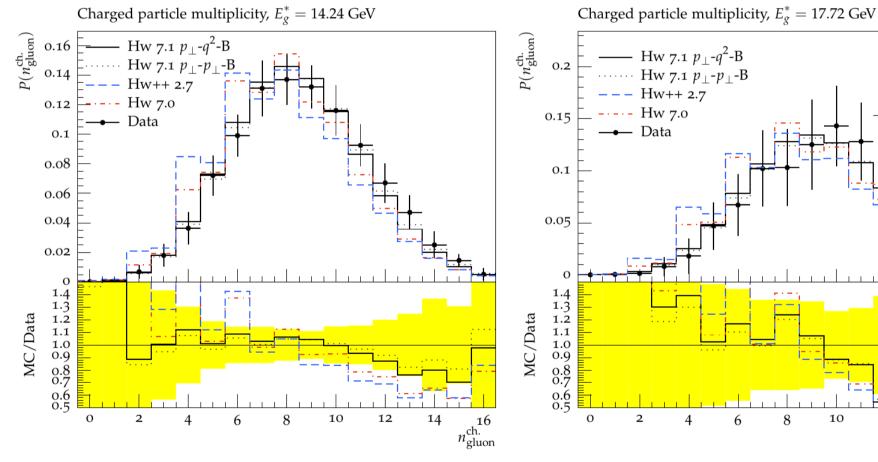

# Strategy:

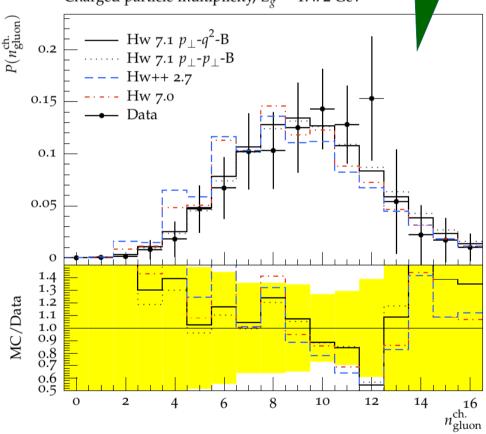
Data which has not previously been used.

- 1. Search for the LEP and LHC data sensitive to gluon jets.
  - Data on gluon jets in e+e-collisions from the OPAL experiment [G. Abbiendi, et al.,: Phys.Rev.D69, 032002 and Eur. Phys. J. C37 (1), 25 (2004)]
  - In pp collisions from ATLAS [G. Aad, et al., Eur. Phys. J. C76 (6), 322 (2016)]
- 2. Improve the non-perturbative color reconnection model.
- 3. Improve the perturbative Parton Shower kinematics.

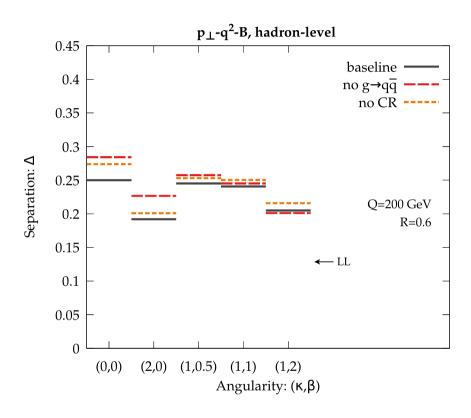
# Herwig – Improvements of Color reconection

 Possible that the color lines of a gluon produced at any stage of the shower can be reconnected leading to the production of a color-singlet object (see example below)

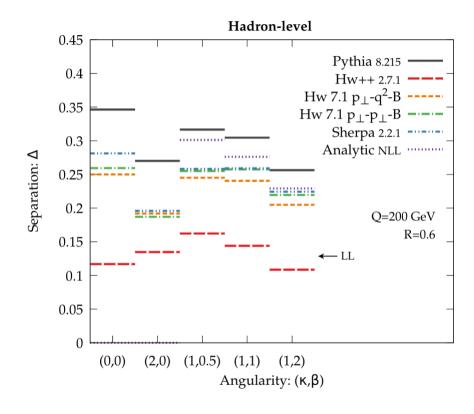




- Clusters containing partons from the parton shower of each of the original gluons, i.e.  $q_1, q_3$  and  $q_4, q_2$ , will have large masses and the rearrangement to give the clusters  $q_1, q_2$  and  $q_4, q_3$  will be kinematically favoured, although it means the original gluons will effectively become colour singlets rather than octets.
- this is physically possible we would expect that it occurs at a rate which is suppressed in the number of colours,  $N_C$ , as  $1/N_C^2=1/9$ , not the much higher reconnection rate 2/3 which is current default value.
- We forbid the reconnection which would lead to a gluon produced in any stage of the partonshower evolution becoming a colour-singlet after hadronization.

#### **OPAL**


Data which has not previously been used for tuning.

Multiplicity distribution of charged particles in gluons jets for two different gluon energies.






#### Idealized Quark/Gluon distributions



 Sensitivity to CR is gone especially for IRC safe observables – as expected.



- Herwig is now more optimistic when it comes to distinguishing q/g jets.
- Spread of predictions is reduced.

### Herwig – Parton Shower kinematics

Good guidance from the perturbative QCD, soft-collinear approximation However, some (more or less clever) choices still to be made:

• evolution variable can be angle (Herwig), virtuality (old Pythia), pT, ... (see M. Skrzypek talk)

Events with 2 hard ( $> 100 \, \text{GeV}$ ) jets and a soft 3rd jet ( $\sim 10 \, \text{GeV}$ )

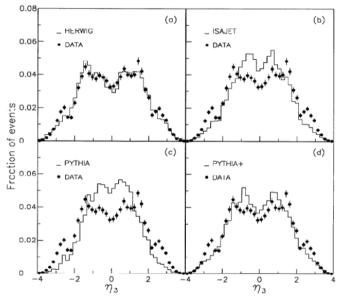


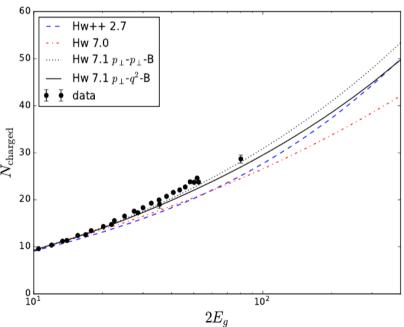

FIG. 13. Observed  $\eta_3$  distribution compared to the predictions of (a) HERWIG; (b) ISAJET; (c) PYTHIA; (d) PYTHIA+.

F. Abe et al. [CDF Collaboration], Phys. Rev. D **50** (1994) 5562.

#### Best description with angular ordering.

- Choice of minimal scale not fixed: we investigated pt and q cut-off.
- Massless partons become massive. How? Kinematics: choice of whether to preserve pT or virtuality q² during the subsequent evolution.

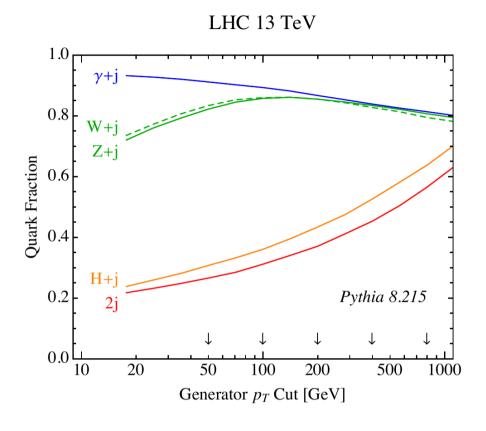
Choices are formally subleading but it can have a large effect on physical observables.


# Tuning

Unfortunately, when the PS is changed we need to retune the hadronization model which is a big effort.

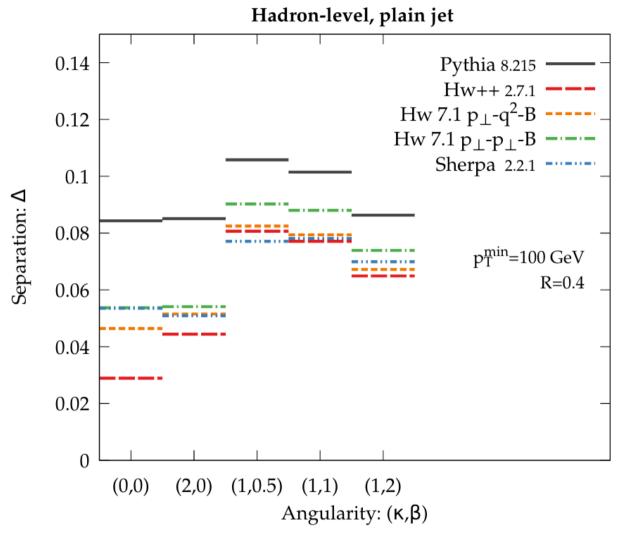
12 tunes for different PS options and data sets used in the tune (A,B,C)

| Cut-Off       | $p_{\perp}$ |             |     |     |       |     |     | Virtual Mass |     |     |       |     |  |  |
|---------------|-------------|-------------|-----|-----|-------|-----|-----|--------------|-----|-----|-------|-----|--|--|
| Preserved     |             | $p_{\perp}$ |     |     | $q^2$ |     |     | $p_{\perp}$  |     |     | $q^2$ |     |  |  |
| Tune          | A           | В           | C   | A   | В     | C   | A   | В            | C   | A   | В     | C   |  |  |
|               | servable    | les         |     |     |       |     |     |              |     |     |       |     |  |  |
| Light quarks  | 4.4         | 4.3         | 6.7 | 3.0 | 2.9   | 4.2 | 7.8 | 7.6          | 6.9 | 4.6 | 4.3   | 3.6 |  |  |
| Charm quarks  | 3.2         | 2.8         | 5.8 | 3.6 | 3.5   | 3.9 | 4.5 | 4.6          | 6.4 | 3.9 | 3.9   | 7.4 |  |  |
| Bottom quarks | 4.0         | 3.4         | 3.6 | 5.4 | 4.9   | 3.4 | 3.4 | 3.3          | 3.4 | 4.1 | 4.1   | 4.9 |  |  |
| Gluons        | 1.1         | 1.1         | 1.5 | 1.1 | 1.1   | 1.4 | 1.2 | 1.2          | 1.2 | 1.3 | 1.2   | 1.5 |  |  |






• the data on light quark jets, in particular event shapes measured at LEP favour preserving q<sup>2</sup> the data on the charged particle multiplicity in gluon jets favours preserving the pT of the branching.


Evolution of # charged particles in gluon jets vs twice the energy of the gluon jet.

#### LHC



$$pp \to Z + j$$
 ("quark-enriched"):  $p_T^Z > p_T^{\min}$ ,  $\frac{p_T^{\text{jet}}}{p_T^Z} > 0.8$ ,  $|y_{\text{jet}} - y_Z| < 1.0$ .  $pp \to 2j$  ("gluon-enriched"):  $\frac{p_{T,1} + p_{T,2}}{2} > p_T^{\min}$ ,  $\frac{p_{T,2}}{p_{T,1}} > 0.8$ ,  $|y_1 - y_2| < 1.0$ .

#### LHC



- Improvements of Herwig led to better discrimination power at the LHC (interesting would be to check against more q/g data, however most of them are not available to us).
- Spread of prediction reduced especially for IRC unsafe observables

# Summary and outlook

- 1. Q/G jet discrimination useful tool for BSM searches, alpha strong extraction from jets...
- 2. Quark jets well constrained by the LEP data, this was not the case for gluon jets.
- 3. Simulation very sensitive to non-perturbative effects especially to colour reconnection.
- 4. We have performed a tuning the Herwig 7 event generator using data on gluon jets from LEP for the first time.
- 5. Improvements of perturbative and non-perturbative aspects of the simulation led significantly better description of gluon jets, in particular their charge particle multiplicity.
- 6. However still there is a tension between the data on charged particle multiplicities, for both quark and gluon initiated jets, and the data on event shapes and particle spectra from LEP.
- 7. Further improvement in the description of this data will require improvements to the non-perturbative hadronization modelling.

### Causality violation

Information

References (53)

Citations (1) Files

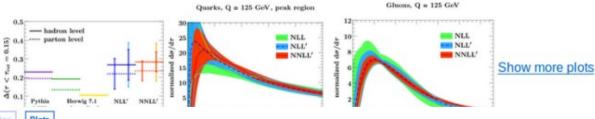
#### A case study of quark-gluon discrimination at NNLL' in comparison to parton showers

Jonathan Mo (Amsterdam U. & NIKHEF, Amsterdam), Frank J. Tackmann (DESY), Wouter J. Waalewijn (NIKHEF, Amsterdam & Amsterdam U.)

Aug 2, 2017 - 10 pages

DESY-17-111. NIKHEF-2017-031 e-Print: arXiv:1708.00867 [hep-ph] | PDF

#### Abstract (arXiv)


Predictions for our ability to distinguish quark and gluon jets vary by more than a factor of two between different parton showers. We study this problem using analytic resummed predictions for the thrust event shape up to NNLL' using  $e^+e^- \to Z \to q\bar{q}$  and

 $e^+e^- \to H \to gg$  as proxies for quark and gluon jets. We account for hadronization effects through a nonperturbative shape function, and include an estimate of both perturbative and hadronization uncertainties. In contrast to previous studies, we find reasonable agreement between our results and predictions from both Pythia and Herwig parton showers. We find that this is due to a noticeable improvement in the description of gluon jets in the newest Herwig 7.1 compared to previous versions.

Note: 10 pages, 5 figures

Keyword(s): INSPIRE: parton: showers | gluon: jet | hadronization: effect | HERWIG | guark | event shape analysis | nonperturbative | guark gluon |

thrust



Information

References (96)

Citations (0)

#### Improving the Simulation of Quark and Gluon Jets with Herwig 7

Daniel Reichelt (Dresden, Tech. U.), Peter Richardson (CERN & Durham U., IPPP), Andrzej Siodmok (Cracow, INP)

Aug 4, 2017 - 14 pages

CERN-TH-2017-174, IFJPAN-IV-2017-16, MCNET-17-13 e-Print: arXiv:1708.01491 [hep-ph] | PDF

#### Abstract (arXiv)

The properties of quark and gluon jets, and the differences between them, are increasingly important at the LHC. However, Monte Carlo event generators are normally tuned to data from  $e^+e^-$  collisions which are primarily sensitive to quark-initiated jets. In order to improve the description of gluon jets we make improvements to the perturbative and the non-perturbative modelling of gluon jets and include data with gluon-initiated jets in the tuning for the first time. The resultant tunes significantly improve the description of gluon jets and are now the default in Herwig 7.1.

Thank you for your attention!

# Tuning

Unfortunately, when the PS is change we need to retune the hadronization model which is a big effort.

| Cut-Off                                         | $p_{\perp}$ |        |        |        |        |        |             | Virtual Mass |        |        |        |        |  |  |
|-------------------------------------------------|-------------|--------|--------|--------|--------|--------|-------------|--------------|--------|--------|--------|--------|--|--|
| Preserved                                       | $p_{\perp}$ |        |        | $q^2$  |        |        | $p_{\perp}$ |              |        | $q^2$  |        |        |  |  |
| Tune                                            | A           | В      | C      | A      | В      | C      | A           | В            | C      | A      | В      | C      |  |  |
| Bottom quark hadronization parameters           |             |        |        |        |        |        |             |              |        |        |        |        |  |  |
| ClMaxBottom                                     | 4.655       |        |        | 3.911  |        |        | 4.0612      |              |        | 4.163  |        |        |  |  |
| ClPowBottom                                     | 0.622       |        |        | 0.638  |        |        | 0.9475      |              |        | 0.590  |        |        |  |  |
| PSplitBottom                                    |             | 0.499  |        | 0.531  |        |        | 1.9568      |              |        | 1.881  |        |        |  |  |
| ClSmrBottom                                     |             | 0.082  |        | 0.020  |        |        | 0.04        |              |        | 0.040  |        |        |  |  |
| SingleHadronLimitBottom                         |             | 0.000  |        | 0.000  |        |        | 0.0204      |              |        | 0.000  |        |        |  |  |
| Charm quark hadronization parameters            |             |        |        |        |        |        |             |              |        |        |        |        |  |  |
| SingleHadronLimitCharm                          | 0.000       |        |        | 0.000  |        |        | 0.078       |              |        | 0.012  |        |        |  |  |
| ClMaxCharm                                      | 3.551       |        |        | 3.638  |        |        | 3.805       |              |        | 3.885  |        |        |  |  |
| ClPowCharm                                      |             | 1.923  |        | 2.332  |        |        | 2.242       |              |        | 2.452  |        |        |  |  |
| PSplitCharm                                     |             | 1.260  |        | 1.234  |        |        | 1.895       |              |        | 1.767  |        |        |  |  |
| ClSmrCharm                                      | 0.000       |        |        | 0.000  |        |        | 0.000       |              |        | 0.000  |        |        |  |  |
| Light quark hadronization and shower parameters |             |        |        |        |        |        |             |              |        |        |        |        |  |  |
| AlphaMZ ( $\alpha_s^{\text{CMW}}(M_Z)$ )        | 0.1094      | 0.1087 | 0.1126 | 0.1260 | 0.1262 | 0.1265 | 0.1221      | 0.1218       | 0.1184 | 0.1314 | 0.1317 | 0.1254 |  |  |
| pTmin                                           | 1.037       | 0.933  | 0.809  | 1.301  | 1.223  | 0.992  |             | N/A          |        |        | N/A    |        |  |  |
| aParameter                                      |             | N/A    |        |        | N/A    |        |             | 0.367        |        |        | 0.234  |        |  |  |
| cutoffKinScale                                  |             | N/A    |        |        | N/A    |        | 2.939       | 2.910        | 2.294  | 3.277  | 3.279  | 1.938  |  |  |
| ClMaxLight                                      | 3.504       | 3.639  | 4.349  | 3.058  | 3.003  | 3.197  | 3.328       | 3.377        | 3.846  | 3.414  | 3.427  | 3.477  |  |  |
| ClPowLight                                      | 2.576       | 2.575  | 1.226  | 1.513  | 1.424  | 2.786  | 1.286       | 1.318        | 2.063  | 2.766  | 2.792  | 2.35   |  |  |
| PSplitLight                                     | 1.003       | 1.016  | 0.855  | 0.885  | 0.848  | 0.648  | 1.198       | 1.185        | 1.277  | 1.346  | 1.333  | 2.015  |  |  |
| PwtSquark                                       | 0.552       | 0.597  | 1.167  | 0.602  | 0.666  | 1.024  | 0.721       | 0.741        | 0.782  | 0.626  | 0.646  | 1.15   |  |  |
| PwtDIquark                                      | 0.369       | 0.344  | 0.181  | 0.416  | 0.439  | 0.512  | 0.277       | 0.273        | 0.246  | 0.321  | 0.328  | 0.366  |  |  |