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Outline

I Precision searches for BSM physics
I Static observables (spectrum)

I Light-by-light contribution to the Lamb shift
I Bound electron g-factor and the LBL contribution

I Dynamical observables (decay rate)
I Bs → µ+µ−

I Conclusions
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New Physics?

How can we discover BSM physics?

The answer is simple: we need an observable that can be computed
in the SM, we need to measure it and find a discrepancy.

Not all observables are equally good

Long-distance non-perturbative physics hides short-distance BSM
contribution

Our best options are

I Precise low energy measurements dominated by QED effects

I Rare process suppressed/forbidden in the SM

First and fundamental task is to get a precise SM theoretical
prediction!
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Example: muon g − 2

Electron g-2 may be sensitive to the same New Physics

δge ∼ m2
e

m2
µ
δgµ, but a new source of α is needed

I Atomic spectroscopy (R∞ = α2mec
4π~ )

I Bound electron g
I currently the best source of me

I in the future also a source of α

We need QED corrections for the Lamb shift, and bound electron
g-factor.
Current relative uncertainty for 1S − 2S transition ∼ 10−15 and for
bound g -factor ∼ 10−10; improvement expected soon.
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Self-energy correction to hydrogen energy levels

Can be organized as an expansion in powers of α
π (number of

photons) and Zα (binding corrections)

∆E

me
=
α

π

(
A41(Zα)4 ln(Zα)−2 + A40(Zα)4 + A50(Zα)5 + . . .

)
+(α

π

)2 (
B40(Zα)4 + B50(Zα)5 + B63(Zα)6 ln3(Zα)−2 + . . .

)
+ . . .

A41 = 4
3 (Bethe Logarithm)

We focus on the light-by-light contributions.
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Light-by-light contribution

e e

N N

1. Wichmann-Kroll potential
I O

(
α(Zα)6

)
: A60

I ∆E1S = 2.5kHz (Z=1)
I [E. Wichmann and N. M. Kroll, 1954, 1956]



6/23

Light-by-light contribution

e e

N N

2. Dirac form factor
I O

(
α3(Zα)4

)
: C40

I [K. Melnikov and T. van Ritbergen, 2000]
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Light-by-light contribution

e e

N N

3. O
(
α2(Zα)5

)
: B50

I ∆E1S = −5.3kHz (Z=1)
I [M.I.Eides,H.Grotch,and P.Peble, 1994; K. Pachucki 1993, 1994]

A given diagram may contribute also to higher orders in Zα.
In the third case, the higher order contribution is
logarithmically enhanced → B61.
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δ-contribution

e e

N N

e e

N N

I O
(
α2(Zα)5

)
I ∆E1S = −5.3kHz (Z=1)

I [M.I.Eides,H.Grotch,and P.Peble, 1994; K. Pachucki 1993, 1994, M.

Dowling, J. Mondejar, J. H. Piclum, and A. Czarnecki 2011]
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Logarithmic contribution

e e

A
0

A
0

~E 2 ∼ (Zα)2

r4

The matrix element of this operator is logarithmically divergent

∆EnS = χLBL

〈
~E 2
〉
nS

=
(Zα)6

n3
ln(Zα)24χLBL

with the matching coefficient

χLBL =
(α
π

)2
(

43

144
− 133

3456
π2

)
[A. Czarnecki, R.S., 2016]
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Significance of the LBL correction

Total corrections at O
(
α2(Zα)6 ln(Zα)

)
[K. Pachucki 2001, U. D.

Jentschura, A. Czarnecki, and K. Pachucki, 2005] are much larger than
the LBL contribution.

LBL correction decreases 1S − 2S by 280Hz; experimental accuracy
is 10Hz. Other transitions are measured with accuracy ∼ kHz.

Theory of hydrogen spectrum has to be further checked!

Measurements of 1S − 2S transition in He+ can provide a test of
bound-state QED. [M. Herrmann et al. 2009]
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LBL correction - bound electron g factor
Calculation of the LBL correction to the bound electron g is similar
to Lamb

A

e e

A
0

A

LNRQED ⊃
ψ†(~σ · ~B)(~∇ · ~E )ψ

m3
e

The LBL correction (not included in previous evaluation of

(Zα)4
(
α
π

)2
terms)

δge = (Zα)4
(α
π

)2 16− 19π2

108

[A. Czarnecki, R.S., 2016]
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Rare SM processes

Flavor violating processes are typically suppressed and offer a
chance to probe BSM physics at scales well above the reach of the
LHC.
On the lepton side, the most important processes are

I µ→ eγ

I muon - electron conversion (note enhanced QED corrections
to bound muon decay spectrum [A. Czarnecki, R.S., 2015])

Processes with quarks are usually contaminated by
non-perturbative long-distance QCD effects, however there are
exceptions.
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Leptons vs quarks

NP effects can be parametrized with SM EFT

L = LSM +
∑
i ,n

Ci

Λn
Oi ,n

In the leptonic case ASM is negligible due to smallness of neutrino
masses.

|ASM +ANP|2 ∼ |ANP|2 ∼
1

Λ4

In the quark case, the interference term gives the dominant NP
effect

|ASM +ANP|2 ∼ |ASM |2 + 2Re [ASMANP] ∼ 1 +
1

Λ2

Better sensitivity but requires precise knowledge of the SM
contribution.
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Bs → µ+µ−

In the SM the process is

I loop suppressed (FCNC)

I helicity suppressed (scalar meson
decaying into energetic muons)

I purely leptonic final state allows for
a prescience SM prediction, QCD
contained in fB

b

s̄

Bs

This decay has been observed by LHCb and CMS
B(Bs → µ+µ−)LHCb = (3.0+0.7

−0.6) · 10−9 [LHCb, 2017]

SM helicity suppression makes it very sensitive to BSM scalar
interactions.
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Scales in the problem

Leptonic decay of Bs is a
multi-scale problem

I Electroweak scale mW

I Hard scale mb

I Hard-collinear scale√
mbΛQCD

I Soft scale ΛQCD

I Collinear scale mµ

We take ΛQCD ∼ mµ so the soft
scale of HQEFT is also a soft
scale of SCETI

SM

Weak EFT

SCETI ⊗ HQEFT

SCETII ⊕ HQEFT

m2
W → ∞

m2
b → ∞

mbΛQCD → ∞
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Bs → µ+µ− in the SM
Weak interaction EFT - integrate out the EW scale, expansion
in mb

mW
, RG evolution to µb ∼ mb [C. Bobeth, P. Gambino, M. Gorbahn,

and U. Haisch, 2004; T. Huber, E. Lunghi, M. Misiak, and D. Wyler,2006]

I NLO EW [C. Bobeth, M. Gorbahn, E.

Stamou, 2014 ]

I NNLO QCD [T. Hermann, M. Misiak,

M. Steinhauser, 2013]

b sW

l +

u,c,t

l −

Z

u,c,t

L∆B=1 =
4GF√

2

10∑
i=1

CiQi + h.c.

Q9 =
αem

4π
(q̄γµPLb)(¯̀γµ`)

Q10 =
αem

4π

(
q̄γµPLb

)(
¯̀γµγ5`

)
Q7 =

e

16π2
mb

(
q̄σµνPRb

)
Fµν
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QED corrections in the QCD bond-states

The final state has no strong interaction – QCD is contained in the
decay constant

〈0|q̄γµγ5b|B̄q(p)〉 = ifBqp
µ

This is no longer true when QED effects are included – non-local
time ordered products have to be evaluated

〈0|
∫

d4x T{jQED(x),L∆B=1(0)}|B̄q〉

This can be done for QED bound-states but QCD is
non-perturbative at low scales
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SCET approach

b

q̄ ℓ

ℓ̄

γ

h.c.

EFT approach allows to per-
form systematic expansion
in

ΛQCD

mb
Two step matching

is required: Effective weak
interaction → SCETI →
SCETII

Modes

I Hard collinear, p2 ∼ ΛQCDmb

I Collinear, p2 ∼ Λ2
QCD ∼ m2

µ

I Soft p2 ∼ Λ2
QCD

In each case, the quark has
a hard-collinear virtuality –
soft gluons are power sup-
pressed
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Helicity suppression

Can the helicity suppression be relaxed?

b

q̄

ℓ

ℓ̄

Bs ℓ̄γµγ5ℓ → mℓ
mb

ℓ̄cγ5ℓc̄

For m` → 0 the amplitude has to vanish

Annihilation and helicity flip take place at the same point r . 1
mb
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Helicity suppression
Can the helicity suppression be relaxed?

b

q̄
ℓ

ℓ̄

Bs ℓ̄γµγνℓ → mℓ
ΛQCD

ℓ̄cγ5ℓc̄

Annihilation and helicity flip can be separated by r ∼ 1√
mbΛQCD

It is still short distance effect, since the size of the meson is
r ∼ 1

ΛQCD

For m` → 0 the amplitude still vanishes
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The correction

b

q̄
γ

C9,10

ℓ̄

ℓ

q̄ ℓ

b

q̄
γ

C7

ℓ̄

ℓ

q̄ ℓ

γ
b

q̄
γ

Ci

ℓ̄

ℓ

q′
γ

ℓq̄

iA = m`fBqN C10
¯̀γ5` +

αem

4π
Q`Qq m`mB fBqN ¯̀(1 + γ5)`

×
{ ∫ 1

0
du (1− u)C eff

9 (um2
b)

∫∞
0

dω
ω φB+(ω)

[
ln

mbω

m2
`

+ ln
u

1− u

]

−Q`C
eff
7

∫∞
0

dω
ω φB+(ω)

[
ln2 mbω

m2
`
− 2 ln

mbω

m2
`

+
2π2

3

]}
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ℓ̄

ℓ

q̄ ℓ

b

q̄
γ

C7

ℓ̄

ℓ

q̄ ℓ

γ
b

q̄
γ

Ci

ℓ̄

ℓ

q′
γ

ℓq̄

iA = m`fBqN C10
¯̀γ5` +

αem

4π
Q`Qq m`mB fBqN ¯̀(1 + γ5)`

×
{ ∫ 1

0
du (1− u)C eff

9 (um2
b)

∫∞
0

dω
ω φB+(ω)

[
ln

mbω

m2
`

+ ln
u

1− u

]

−Q`C
eff
7

∫∞
0

dω
ω φB+(ω)

[
ln2 mbω

m2
`
− 2 ln

mbω

m2
`

+
2π2

3

]}

I Tree level amplitude
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ℓ
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b
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γ
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ℓ̄

ℓ

q′
γ
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3
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I Helicity suppression × power enhancement factor
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I Convolution from the hard-scale matching



20/23

The correction

b

q̄
γ

C9,10

ℓ̄

ℓ

q̄ ℓ

b

q̄
γ

C7

ℓ̄

ℓ

q̄ ℓ

γ
b

q̄
γ

Ci

ℓ̄

ℓ

q′
γ

ℓq̄

iA = m`fBqN C10
¯̀γ5` +

αem

4π
Q`Qq m`mB fBqN ¯̀(1 + γ5)`

×
{ ∫ 1

0
du (1− u)C eff

9 (um2
b)

∫∞
0

dω
ω φB+(ω)

[
ln

mbω

m2
`

+ ln
u

1− u

]

−Q`C
eff
7

∫∞
0

dω
ω φB+(ω)

[
ln2 mbω

m2
`
− 2 ln

mbω

m2
`

+
2π2

3

]}

I Convolution with the light-cone distribution function
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I Double logarithmic enhancement due to endpoint singularity
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Non-perturbative contribution

Non-perturbative physics is encoded in the moments of B-meson
light-cone distribution function [M. Beneke, G. Buchalla, M. Neubert,

and C. T. Sachrajda, 1999]

1

λB(µ)
≡
∫ ∞

0

dω

ω
φB+(ω, µ),

σn(µ)

λB(µ)
≡
∫ ∞

0

dω

ω
lnn µ0

ω
φB+(ω, µ)

λB(1 GeV) = (275± 75) MeV
σ1(1 GeV) = 1.5± 1
σ2(1 GeV) = 3± 2
Power - enhancement factor

mB

∫ ∞
0

dω

ω
φB+(ω) lnk ω ∼ mB

λB
× σk
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Numerical predictions
Total correction:

−(0.3− 1.1)%

thanks to cancellation between C7 and C9 part. Central value:
−0.6% = 1.1%− 1.7% (C7,C9 parts ).
Uncertainty comes form λB , σ1, σ2.
New prediction for the branching ratio [M. Beneke, C. Bobeth, R. S.,

2017]

B(Bs → µ+µ−)SM = (3.57± 0.17) · 10−9

Uncertainty:

I parametric: ±0.167 (now dominates but it is expected to be
reduced in the future)

I non-parametric non-QED: ±0.043

I QED +0.022
−0.030 (∼ 0.84%)

Previous estimate of QED uncertainty was 0.3%, obtained by scale
variation method. This uncertainty is still present.
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Conclusions

I Radiative corrections in bound states can have surprisingly
complex pattern

I Spectroscopic measurements serve as the most precise source
of fundamental constants and they can also facilitate
discovery of new physics

I Theory of hydrogen energy levels has to be further scrutinized

I QED correction to QCD bound states can exhibit power
enhancement that cannot be anticipated without detailed
computation

I Radiative corrections can mimic New Physics signal

I Systematic progress is possible thanks to EFT approach
(NRQED, HQEFT, SCET)


