Weak Radiative Decays of the B Meson and Bounds on $M_{H^{\pm}}$ in the Two-Higgs-Doublet Model

Mikołaj Misiak

University of Warsaw

based on: [MM & Matthias Steinhauser, Eur. Phys. J. C 77 (2017) 201]

- SM three families of quarks and leptons but only one doublet of scalars
- Possible motivations for considering models with more scalars:
- (i) Dark matter (if one of the scalars is stable due to symmetries)
- (ii) Baryogenesis (if more CP violation is introduced)
- (iii) part of SUSY \leftrightarrow hierarchy problem

SM – three families of quarks and leptons but only one doublet of scalars
Possible motivations for considering models with more scalars:
(i) Dark matter (if one of the scalars is stable due to symmetries)
(ii) Baryogenesis (if more CP violation is introduced)

 $\begin{array}{l} Two-Higgs-Doublet \ Model \ (2HDM) - the \ simplest \ of \ such \ models \\ (impossible \ to \ satisfy \ (i)-(iii) \ simultaneously) \end{array}$

2HDM particle spectrum: SM with the Higgs doublet H_2 in $(1,2)_{1/2}$ and, in addition, a scalar field H_1 in $(1,2)_{-1/2}$

Physical scalars: h^0 , H^0 , A^0 , H^{\pm}

VEVs: $v_1^2 + v_2^2 = v_{SM}^2$, $\tan \beta = v_2/v_1$.

(iii) part of SUSY \leftrightarrow hierarchy problem

SM – three families of quarks and leptons but only one doublet of scalars
Possible motivations for considering models with more scalars:
(i) Dark matter (if one of the scalars is stable due to symmetries)
(ii) Baryogenesis (if more CP violation is introduced)

(iii) part of SUSY \leftrightarrow hierarchy problem

 $\begin{array}{l} Two-Higgs-Doublet\ Model\ (2HDM) - the\ simplest\ of\ such\ models \\ (impossible\ to\ satisfy\ (i)-(iii)\ simultaneously) \end{array}$

2HDM particle spectrum: SM with the Higgs doublet H_2 in $(1,2)_{1/2}$ and, in addition, a scalar field H_1 in $(1,2)_{-1/2}$

Physical scalars: h^0 , H^0 , A^0 , H^{\pm}

VEVs:
$$v_1^2 + v_2^2 = v_{SM}^2$$
, $\tan \beta = v_2/v_1$.

Yukawa couplings to quarks:

Models I and X: $\bar{q} Y_u u \widetilde{H}_2 + \bar{q} Y_d dH_2 + h.c.$ Models II and Y: $\bar{q} Y_u u \widetilde{H}_2 + \bar{q} Y_d d\widetilde{H}_1 + h.c.$

(Model I with Z_2 symmetry $H_1 \to -H_1$) $\xrightarrow{v_1 \to 0}$ IDM

(Inert Doublet Model)

 $\mathbf{2}$

Important constraints on beyond-SM physics come from the $b \to s\gamma$ and $b \to d\gamma$ transitions. Heavy-particle contributions to $b \to s\gamma$ are encoded in an effective low-energy local interaction:

Important constraints on beyond-SM physics come from the $b \to s\gamma$ and $b \to d\gamma$ transitions. Heavy-particle contributions to $b \to s\gamma$ are encoded in an effective low-energy local interaction:

 $\mathcal{B}_{q\gamma}, \ \mathcal{B}_{c\ell\nu}$: CP- and isospin-averaged branching ratios of $\overline{B} \to X_q \gamma$ and $\overline{B} \to X_c \ell \nu$, respectively.

Our preferred observable:
$$R_{\gamma} = \frac{\mathcal{B}_{s\gamma} + \mathcal{B}_{d\gamma}}{\mathcal{B}_{c\ell\nu}} \equiv \frac{\mathcal{B}_{(s+d)\gamma}}{\mathcal{B}_{c\ell\nu}}$$

Decoupling of W & heavier \Rightarrow effective weak interaction Lagrangian:

$$L_{ ext{weak}} \sim \sum_i \ C_i \, Q_i \; ,$$

The Wilson coefficients $C_i(\mu_b \sim m_b)$ are calculated perturbatively (matching & mixing). Current precision: $\mathcal{O}(\alpha_s^2)$ (NNLO). Decoupling of W & heavier \Rightarrow effective weak interaction Lagrangian: $L_{\text{weak}} \sim \sum_{i} C_{i} Q_{i}$ Eight operators Q_{i} matter for $\mathcal{B}_{s\gamma}^{\text{SM},2\text{HDM}}$ barring the NLO EW and CKM-suppressed effects: $\overbrace{\substack{c_{L} \\ b_{L} \\ q_{1,2}}}^{\gamma}$ $\overbrace{\substack{b_{R} \\ Q_{7}}}^{s_{L}}$ $\overbrace{\substack{b_{R} \\ Q_{8}}}^{g}$ $\overbrace{\substack{b_{R} \\ Q_{8}}}^{g}$ $\overbrace{\substack{b_{R} \\ Q_{8}}}^{g}$ $\overbrace{\substack{b_{R} \\ Q_{8}}}^{g}$ $\overbrace{\substack{b_{R} \\ Q_{8}}}^{q}$ $\overbrace{\substack{b_{L} \\ Q_{3,4,5,6}}}^{q}$ penguin

The Wilson coefficients $C_i(\mu_b \sim m_b)$ are calculated perturbatively (matching & mixing). Current precision: $\mathcal{O}(\alpha_s^2)$ (NNLO).

The $\overline{B} \to X_s \gamma$ decay rate for $E_{\gamma} > E_0$ is a sum of the dominant perturbative contribution and a subdominant nonperturbative one $\delta\Gamma_{\text{nonp}}$:

$$\Gamma(ar{B} o X_s \, \gamma) \; = \; \Gamma(b o X_s^p \, \gamma) \;\; + \;\; \delta \Gamma_{ ext{nonp}}.$$

For $E_0 = 1.6 \, {
m GeV} \sim {1 \over 3} m_b,$ one estimates $\delta \Gamma_{
m nonp} = (3 \pm 5)\%.$

[G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594] [M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099] Decoupling of W & heavier \Rightarrow effective weak interaction Lagrangian: $L_{\text{weak}} \sim \sum_{i} C_{i} Q_{i}$ Eight operators Q_{i} matter for $\mathcal{B}_{s\gamma}^{\text{SM},2\text{HDM}}$ barring the NLO EW and CKM-suppressed effects: $\overbrace{\substack{c_{L} \ b_{L} \ q_{1,2}}^{c_{L}}} \xrightarrow{b_{R} \ s_{L}} \xrightarrow{g}_{Q_{7}} \xrightarrow{g}_{Q_{8}} \xrightarrow{g}_{Q_{8}} \xrightarrow{g}_{Q_{3,4,5,6}} \xrightarrow{g}_{Q_{3,4,5,6}}$

The Wilson coefficients $C_i(\mu_b \sim m_b)$ are calculated perturbatively (matching & mixing). Current precision: $\mathcal{O}(\alpha_s^2)$ (NNLO).

The $\overline{B} \to X_s \gamma$ decay rate for $E_{\gamma} > E_0$ is a sum of the dominant perturbative contribution and a subdominant nonperturbative one $\delta\Gamma_{\text{nonp}}$:

$$\Gamma(ar{B} o X_s \, \gamma) \; = \; \Gamma(b o X_s^p \, \gamma) \;\; + \;\; \delta \Gamma_{
m nonp}.$$

For $E_0 = 1.6 \text{ GeV} \sim \frac{1}{3}m_b$, one estimates $\delta\Gamma_{\text{nonp}} = (3\pm 5)\%$. [G. Buchalla, G. Isidori and S.-J. Rey, Nucl. Phys. B511 (1998) 594] [M. Benzke, S.J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099]

 $\delta\Gamma_{
m nonp}$ is strongly E_0 -dependent. If only Q_7 was present, we would have:

$$\left[\frac{\delta\Gamma_{\text{nonp}}}{\Gamma(b\to X_s^p\gamma)}\right]_{\text{only }C_7} = -\frac{\mu_\pi^2 + 3\mu_G^2}{2m_b^2} + \mathcal{O}\left(\frac{\alpha_s\Lambda^2}{(m_b - 2E_0)^2}, \frac{\Lambda^3}{m_b^3}\right).$$

 $\mathbf{4}$

Background-subtracted $\overline{B} \to X_{s+d} \gamma$ photon energy spectrum in the $\Upsilon(4S)$ rest frame, as shown in Fig. 1 of the most recent Belle analysis arXiv:1608.02344. The solid histogram has been obtained by using a shape-function model with its parameters fitted to data.

Effects of extrapolations from E_0^{exp} to 1.6 GeV can be parameterized by

$$\Delta_{q}~\equiv~rac{\mathcal{B}_{q\gamma}(1.6)}{\mathcal{B}_{q\gamma}(E_{0})}~-1$$

$E_0[{ m GeV}]$	$\Delta^{ m BF}_s$	$\Delta^{ m Belle}_s$	$\Delta^{ ext{fix}}_s$	$\Delta^{ ext{fix}}_{s+d}$	$\Delta_d^{ ext{fix}}$
1.7	$(1.5\pm0.4)\%$?	1.3%	1.5%	5.3%
1.8	$(3.4\pm0.6)\%$	$(3.69 \pm 1.39)\%$	$\mathbf{3.0\%}$	3.4%	10.5%
1.9	$(6.8\pm1.1)\%$?	$\mathbf{5.5\%}$	6.0%	15.7%
2.0	$(11.9\pm2.0)\%$?	10.0%	10.5%	22.5%

- BF: O. Buchmüller and H. Flächer, PRD 73 (2006) 073008
- Belle: arXiv:1608.02334, shape function-model fit to data
- fix: perturbative & fixed-order HQET as in arXiv:1503.01789, arXiv:1503.01791

$$R_{\gamma} \;=\; rac{\mathcal{B}_{s\gamma} + \mathcal{B}_{d\gamma}}{\mathcal{B}_{c\ell
u}} \;\equiv\; rac{\mathcal{B}_{(s+d)\gamma}}{\mathcal{B}_{c\ell
u}}$$

$$R_{\gamma}^{
m SM}(1.6) = (331 \pm 22) imes 10^{-5}$$

MM, H. Asatrian, R. Boughezal, M. Czakon, T. Ewerth, A. Ferroglia, P. Fiedler,
P. Gambino, C. Greub, U. Haisch, T. Huber, M. Kamiński, G. Ossola,
M. Poradziński, A. Rehman, T. Schutzmeier, M. Steinhauser and J. Virto
PRL 114 (2015) 221801.

Experimental results and their naive averages:

	Babar			Belle			CLEO	w.a.	w.a.	$oldsymbol{R}_{\gamma}$	R_{γ}	
E_0	incl	semi	had	aver	incl	semi	aver	incl	(E_0)	(1.6)	(E_0)	(1.6)
1.7					306(28)		306(28)		306(28)	311(28)		
					320(29)		320(29)		320(29)	326(30)	300(28)	305(28)
1.8	321(34)			321(34)	301(22)		301(22)		307(19)	318(19)		
	335(35)			335(35)	315(23)		315(23)		321(19)	333(20)	301(19)	312(19)
1.9	300(24)	329(52)	366(104)	308(22)	294(18)	351(37)	305(16)		306(13)	327(14)		
	313(25)	344(54)	381(108)	321(23)	307(19)	367(39)	319(17)		320(14)	343(15)	300(14)	322(15)
2.0	280(19)		339(79)	283(18)	279(15)		279(15)	293(46)	281(11)	315(14)		
	292(20)		353(83)	296(19)	292(15)		292(15)	306(49)	294(11)	331(14)	276(11)	310(14)

Upper rows $-\mathcal{B}_{s\gamma}$, lower rows $-\mathcal{B}_{(s+d)\gamma}$; 306(13) same as in arXiv:1612.07233v2 by HFLAV.

 $\pm 1\sigma$ bands for $R_{\gamma}(1.6)$ in 2HDM-II with $\tan \beta = 50$.

The 2HDM calculation has the same precision as the SM one in arXiv:1503.1789, arXiv:1503.1791, except for the missing NLO EW corrections.

NNLO (3-loop) QCD matching conditions are from T. Hermann, MM, M. Steinhauser, arXiv:1208.2788.

 $\pm 1\sigma$ bands for $R_{\gamma}(1.6)$ in 2HDM-I with $\tan \beta = 1$.

Probability density for $R_{\gamma}^{\exp} = (3.22 \pm 0.15) \times 10^{-3}$, assuming a Gaussian distribution. The integrated probability over the dark-shaded region amounts to 5%. In the absence of theoretical uncertainties, the light-shaded region is accessible in Model-II only for $M_{H^{\pm}} > 1276$ GeV.

Confidence belts (95% C.L.) for 2HDM-II

Two-sided, One-sided right, One-sided left, Feldman-Cousins.

Model	$R_{\gamma}^{ m exp} imes 10^3$	95% C.L. bounds			99% C.L. bounds			
	1	1-sided	2-sided	\mathbf{FC}	1-sided	2-sided	\mathbf{FC}	
	3.05 ± 0.28	307	268	268	230	208	208	
Ι	3.12 ± 0.19	401	356	356	313	288	288	
$(\tan eta = 1)$	3.22 ± 0.15	504	445	445	391	361	361	
	3.05 ± 0.28	740	591	569	477	420	411	
II	3.12 ± 0.19	795	645	628	528	468	461	
(absolute)	3.22 ± 0.15	692	583	580	490	440	439	

Bounds on $M_{H^{\pm}}$ [GeV] obtained using different methods.

95% C.L. lower bounds on $M_{H^{\pm}}$ as functions of tan β .

 $\mathcal{B}(B_s \to \mu^+ \mu^-)$ in the Two-Higgs-Doublet Model II

Summary

- Strong constraints on $M_{H^{\pm}}$ in the 2HDM get imposed by measurements of the inclusive weak radiative *B*-meson decay branching ratio.
- Although in principle straightforward, a derivation of them faces several ambiguities stemming mainly from the photon energy cutoff choice.
- In Model-I, the relevant constraints are obtained only for $\tan \beta \leq 2$.
- In Model-II, the absolute $(\tan\beta\text{-independent})$ 95% C.L. bounds are in the 570–800 GeV range.

BACKUP SLIDES

Confidence belts (95% C.L) for 2HDM-I

Two-sided, One-sided right, One-sided left, Feldman-Cousins.

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_W$. We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_W$.

 $\mathcal{L}_{\text{(full EW \times QCD)}} \longrightarrow \mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{QED} \times \text{QCD}} \left(\begin{smallmatrix} \text{quarks} \neq t \\ \& \text{ leptons} \end{smallmatrix} \right) + N \sum_{n} C_{n}(\mu) Q_{n}$

 $oldsymbol{Q}_{oldsymbol{n}}$ – local interaction terms (operators), $oldsymbol{C}_{oldsymbol{n}}$ – coupling constants (Wilson coefficients)

B-meson or Kaon decays occur at low energies, at scales $\mu \ll M_W$. We pass from the full theory of electroweak interactions to an effective theory by removing the highenergy degrees of freedom, i.e. integrating out the W-boson and all the other particles with $m \sim M_W$.

 $\mathcal{L}_{\text{(full EW \times QCD)}} \longrightarrow \mathcal{L}_{ ext{eff}} = \mathcal{L}_{ ext{QED} \times \text{QCD}} \left(\begin{smallmatrix} ext{quarks} \neq t \\ & ext{leptons} \end{smallmatrix} \right) + N \sum_{n} C_n(\mu) Q_n$ Q_n - local interaction terms (operators), C_n - coupling constants (Wilson coefficients)

Information on the electroweak-scale physics is encoded in the values of $C_i(\mu)$, e.g.,

This is a modern version of the Fermi theory for weak interactions. It is "nonrenormalizable" in the traditional sense but actually renormalizable. It is also predictive because all the C_i are calculable, and only a finite number of them is necessary at each given order in the (external momenta)/ M_W expansion.

Advantages: Resummation of $\left(\alpha_s \ln \frac{M_W^2}{\mu^2}\right)^n$ using RGE, easier account for symmetries.

18

Our ability to observe or constrain new physics depends on the accuracy of determining the SM "background". Thus, precise evaluation of $C_i(\mu)$ in the SM is particularly important.

Two steps of the Wilson coefficient calculation:

- Matching: Evaluating $C_i(\mu_0)$ at $\mu_0 \sim M_W$ by requiring equality of the SM and the effective theory Green's functions.
- Mixing: Deriving the effective theory Renormalization Group Equations (RGE) from the renormalization constant matrices (the operators mix under renormalization). Next, using the RGE to evolve C_i from μ_0 to $\mu \sim$ (external momenta).

Operator bases can chosen in a convention-dependent manner. For example, two possible conventions for the $|\Delta B| = |\Delta S| = 1$ four-quark operators in the SM read:

Expansion in external momenta \Rightarrow spurious IR divergences arise.

Renormalization constant calculation using masses as IR regulators

Münz, MM, 1995	2-loop	dipole operator mixing
van Ritbergen, Vermaseren, Larin, 1997	4-loop	$eta_{ m QCD}$
Chetyrkin, Münz, MM, 1997	3-loop	$(4-quark) \rightarrow dipole$
()		
Gambino, Gorbahn, Haisch, 2003	3-loop	$(4-quark) \rightarrow (quark-lepton)$
Gorbahn, Haisch, 2004	3-loop	four-quark operator mixing
Czakon, 2004	4-loop	$eta_{ m QCD}$
Gorbahn, Haisch, MM, 2005	3-loop	dipole operator mixing
Czakon, Haisch, MM, 2006	4-loop	$(4-\text{quark}) \rightarrow \text{dipole}$
()		
Luthe, Maier, Marquard, Schroder, 2017	5-loop	$eta_{ m QCD}$

Exact decomposition of a propagator denominator:

 $\underbrace{\frac{1}{(q+p)^2 - M^2}}_{\textbf{AD}} = \underbrace{\frac{1}{q^2 - m^2}}_{\textbf{AD}} + \underbrace{\frac{M^2 - p^2 - 2qp - m^2}{q^2 - m^2}}_{\textbf{Q}^2 - m^2} \underbrace{\frac{1}{(q+p)^2 - M^2}}_{\textbf{Q}^2 - m^2}$ $\Delta D = -3$

q-linear combination of loop momenta, p-linear combination of external momenta, M - mass of the considered particle,

 \mathcal{M} - IR regulator mass (arbitrary)

After applying this identity sufficiently many times, the last term can be dropped in each propagator. The only Feynman integrals to perform then are single-scale massive tadpoles.

Up to three loops, explicit expressions for pole parts of all the single-scale massive tadpoles are available in terms of solved recurrences [Chetyrkin, Münz, MM, 1997] (\leftrightarrow Ringberg workshop 1994).

At four loops, IBP are used for reduction to less than 20 master integrals [van Ritbergen, 1997; Schröder, 2002; Czakon, 2004] $(\leftrightarrow \text{RADCOR 2002})$. The matching conditions are most easily found by requiring equality of the full SM and the effective theory 1PI off-shell Green's functions that are **expanded** in external momenta and light masses **prior** to loop-momentum integration.

The $\frac{1}{\epsilon^n}$ poles cancel in the matching equation.

The only Feynman integrals to calculate: partly-massive tadpoles.

Algorithms for calculating 3-loop single-scale partly-massive tadpoles were developed in 1994-2000 [Chetyrkin, Kühn, Steinhauser; Avdeev, Fleischer, Mikhailov, Tarasov, Kalmykov; Broadhurst]. Full automatization in the code MATAD by M. Steinhauser (2000).

Differences among the simultaneously decoupled heavy particle masses can be taken into account by Taylor expanding around the equal-mass point. Alternatively, for large mass ratios, either asymptotic expansions or a sequence of effective theories can be applied.

The "hard" contribution to $\bar{B} \to X_s \gamma$

J. Chay, H. Georgi, B. Grinstein PLB 247 (1990) 399. A.F. Falk, M. Luke, M. Savage, PRD 49 (1994) 3367.

Goal: calculate the inclusive sum $\sum_{X_s} |C_7(\mu_b) \langle X_s \gamma | O_7 | \bar{B} \rangle + C_2(\mu_b) \langle X_s \gamma | O_2 | \bar{B} \rangle + \dots |^2$ The "77" term in this sum is "hard". It is related via the optical theorem to the imaginary part of the elastic forward scattering amplitude $\bar{B}(\vec{p}=0)\gamma(\vec{q}) \rightarrow \bar{B}(\vec{p}=0)\gamma(\vec{q})$: $\operatorname{Im}\left\{ \begin{array}{c} q & q \\ q & q \end{array} \right\} \equiv \operatorname{Im} A$

When the photons are soft enough, $m_{X_s}^2 = |m_B(m_B - 2E_{\gamma})| \gg \Lambda^2 \Rightarrow$ Short-distance dominance \Rightarrow OPE. However, the $\bar{B} \to X_s \gamma$ photon spectrum is dominated by hard photons $E_{\gamma} \sim m_b/2$.

Once $A(E_{\gamma})$ is considered as a function of arbitrary complex E_{γ} , Im A turns out to be proportional to the discontinuity of A at the physical cut. Consequently,

$$\int_{1~{
m GeV}}^{E_\gamma^{
m max}} dE_\gamma~{
m Im}\,A(E_\gamma)\sim \oint_{
m circle} dE_\gamma~A(E_\gamma).$$

Since the condition $|m_B(m_B - 2E_{\gamma})| \gg \Lambda^2$ is fulfilled along the circle, the OPE coefficients can be calculated perturbatively, which gives

$$\left. A(E_\gamma)
ight|_{
m circle} \ \simeq \sum_j \left[rac{F_{
m polynomial}^{(j)}(2E_\gamma/m_b)}{m_b^{n_j}(1-2E_\gamma/m_b)^{k_j}} + \mathcal{O}\left(lpha_s(\mu_{
m hard})
ight)
ight] \langle ar{B}(ec{p}=0) | Q_{
m local \ operator}^{(j)} | ar{B}(ec{p}=0)
angle
ight.$$

Thus, contributions from higher-dimensional operators are suppressed by powers of Λ/m_b .

$$\text{At }(\Lambda/m_b)^0 \colon \quad \langle \bar{B}(\vec{p}) | \bar{b} \gamma^\mu b | \bar{B}(\vec{p}) \rangle = 2p^\mu \quad \Rightarrow \quad \Gamma(\bar{B} \to X_s \gamma) = \Gamma(b \to X_s^{\text{parton}} \gamma) + \mathcal{O}(\Lambda/m_b).$$

At
$$(\Lambda/m_b)^1$$
: Nothing! All the possible operators vanish by the equations of motion.

$$egin{array}{lll} {
m At} \ (\Lambda/m_b)^2 &: & \langle ar{B}(ec{p}) | ar{b}_v D^\mu D_\mu b_v | ar{B}(ec{p})
angle &\sim m_B \, \mu_\pi^2, \ & \langle ar{B}(ec{p}) | ar{b}_v g_s G_{\mu
u} \sigma^{\mu
u} b_v | ar{B}(ec{p})
angle \sim m_B \, \mu_G^2, \end{array}$$

The HQET heavy-quark field: $b_v(x) = \frac{1}{2}(1 + \sqrt[y]{b(x)}\exp(im_b v \cdot x)$ with $v = p/m_B$.

Non-perturbative effects in the presence of other operators $(Q_i \neq Q_7)$

[Benzke, Lee, Neubert, Paz, arXiv:1003.5012].

$$rac{d}{dE_\gamma} \, \Gamma(ar B o X_s \gamma) \, = \, (\Gamma_{77} ext{-like term}) \ + \ ilde N E_\gamma^3 \sum_{i \leq j} \operatorname{Re} \left(C_i^* C_j
ight) \, F_{ij}(E_\gamma).$$

Remarks:

- The SCET approach is valid for large E_{γ} only. It is fine for $E_{\gamma} > E_0 \sim \frac{1}{3}m_b \simeq 1.6$ GeV. Lower cutoffs are academic anyway.
- For such E_0 , non-perturbative effects in the integrated decay rate are estimated to remain within 5%. They scale like:

•
$$\frac{\Lambda^2}{m_b^2}$$
, $\frac{\Lambda^2}{m_c^2}$ (known),
• $\frac{\Lambda}{m_b} \frac{V_{us}^* V_{ub}}{V_{ts}^* V_{tb}}$ (negligible),
 $\frac{\Lambda}{m_b} \frac{v_{us} V_{ub}}{V_{ts}^* V_{tb}}$ (negligible),

• $\frac{\Lambda}{m_b}, \frac{\Lambda^2}{m_b^2}, \alpha_s \frac{\Lambda}{m_b}$ but suppressed by tails of subleading shape functions ("27"),

• $\alpha_s \frac{\Lambda}{m_b}$ to be constrained by future measurements of the isospin asymmetry ("78"),

•
$$lpha_srac{\Lambda}{m_b}$$
 but suppressed by $Q_d^2=rac{1}{9}$ ("88").

• Extrapolation factors? Tails of subleading functions are less important for them.

NNLO QCD corrections to $\bar{B} \to X_s \, \gamma$

The relevant perturbative quantity $P(E_0)$:

$$rac{\Gamma[b
ightarrow X_s \gamma]_{E_{\gamma} > E_0}}{\Gamma[b
ightarrow X_u e ar{
u}]} = \left|rac{V_{ts}^* V_{tb}}{V_{ub}}
ight|^2 rac{6lpha_{
m em}}{\pi} \underbrace{\sum_{i,j} \, C_i(\mu_b) \, C_j(\mu_b) \, K_{ij}}_{P(E_0)}$$

Expansions of the Wilson coefficients and K_{ij} in $\tilde{\alpha}_s \equiv \frac{\alpha_s(\mu_b)}{4\pi}$:

$$C_{i}(\mu_{b}) = C_{i}^{(0)} + \widetilde{\alpha}_{s} C_{i}^{(1)} + \widetilde{\alpha}_{s}^{2} C_{i}^{(2)} + \dots$$
$$K_{ij} = K_{ij}^{(0)} + \widetilde{\alpha}_{s} K_{ij}^{(1)} + \widetilde{\alpha}_{s}^{2} K_{ij}^{(2)} + \dots$$

Most important at the NNLO: $K_{77}^{(2)}$, $K_{27}^{(2)}$ and $K_{17}^{(2)}$.

They depend on $\frac{\mu_b}{m_b}$, $\delta = 1 - \frac{2E_0}{m_b}$ and $z = \frac{m_c^2}{m_b^2}$.

Evaluation of $K_{27}^{(2)}$ and $K_{17}^{(2)}$ for $m_c = 0$ and $\delta = 1$:

[M. Czakon, P. Fiedler, T. Huber, MM, T. Schutzmeier, M. Steinhauser, JHEP 1504 (2015) 168]

Master integrals and differential equations:

Boundary conditions in the vicinity of x = 0:

Results for the NNLO corrections:

$$K_{27}^{(2)}(z,\delta) \,=\, A_2 + F_2(z,\delta) - rac{27}{2} f_q(z,\delta) + f_b(z) + f_c(z) + rac{4}{3} \phi_{27}^{(1)}(z,\delta) \ln z$$

quark loops on the gluon lines & BLM approximation

$$+ \left[ext{terms} \ \sim \left(\ln rac{\mu_b}{m_b}, \ \ln^2 rac{\mu_b}{m_b}, \ \ln rac{\mu_c}{m_c}
ight)$$
 or vanishing when $m_b o m_b^{ ext{pole}}
ight],$

$$K_{17}^{(2)}(z,\delta) \,=\, -rac{1}{6}K_{27}^{(2)}(z,\delta) + A_1 + F_1(z,\delta) + \left[ext{terms} \ \sim \left(\ln rac{\mu_b}{m_b}, \ \ln^2 rac{\mu_b}{m_b}
ight)
ight].$$

 $F_i(0,1) \equiv 0$, $A_1 \simeq 22.605$, $A_2 \simeq 75.603$ from the present calculation.

Next, we interpolate in $z = m_c^2/m_b^2$ by assuming that $F_i(z, 1)$ are linear combinations of $f_q(z, 1)$, $K_{27}^{(1)}(z, 1)$, $z \frac{d}{dz} K_{27}^{(1)}(z, 1)$ and a constant term. The known large-z behaviour of F_i [hep-ph/0609241] and the condition $F_i(0, 1) \equiv 0$ fix these linear combinations in a unique manner.

Effect of the interpolated contribution on the branching ratio

$$rac{\Delta {\cal B}_{s\gamma}}{{\cal B}_{s\gamma}} \; \simeq \; U(z,\delta) \; \equiv \; rac{lpha_s^2(\mu_b)}{8\pi^2} \; rac{C_1^{(0)}(\mu_b)F_1(z,\delta) + igl(C_2^{(0)}(\mu_b) - rac{1}{6}C_1^{(0)}(\mu_b)igr)F_2(z,\delta)}{C_7^{(0) ext{eff}}(\mu_b)}$$

Example:

Evaluation of the (n > 2)-particle cut contributions to K_{28} in the Brodsky-Lepage-Mackienzie (BLM) approximation ("naive nonabelianization", large- β_0 approximation) [Poradziński, MM, arXiv:1009.5685]:

q – massless quark,

 N_q – number of massless flavours (equals to 3 in practice because masses of u, d, s are neglected). Replacement in the final result:

NLO+(NNLO BLM) corrections are not big (+3.8%).

$$-\frac{2}{3}N_q \longrightarrow \beta_0 = 11 - \frac{2}{3}(N_q + 2).$$

The diagrams have been evaluated using the method of Smith and Voloshin [hep-ph/9405204].

Non-BLM contributions to K_{ij} from quark loops on the gluon lines are quasi-completely known. [Boughezal, Czakon, Schutzmeier, 2007], [Asatrian, Ewerth, Gabrielyan, Greub, 2007], [Ewerth, 2008].

Incorporating other perturbative contributions evaluated after the previous phenomenological analysis in hep-ph/0609232:

- 1. Four-loop mixing (current-current) \rightarrow (gluonic dipole) M. Czakon, U. Haisch, MM, JHEP 0703 (2007) 008 [hep-ph/0612329]
- 2. Diagrams with massive quark loops on the gluon lines
 R. Boughezal, M. Czakon and T. Schutzmeier, JHEP 0709 (2007) 072 [arXiv:0707.3090]
 H. M. Asatrian, T. Ewerth, H. Gabrielyan and C. Greub, Phys. Lett. B 647 (2007) 173 [hep-ph/0611123]
 T. Ewerth, Phys. Lett. B 669 (2008) 167 [arXiv:0805.3911]
- 3. Complete interference (photonic dipole)–(gluonic dipole)
 H. M. Asatrian, T. Ewerth, A. Ferroglia, C. Greub and G. Ossola,
 Phys. Rev. D 82 (2010) 074006 [arXiv:1005.5587]

4. New BLM corrections to contributions from 3-body and 4-body final states for interferences not involving the photonic dipole
A. Ferroglia and U. Haisch, Phys. Rev. D 82 (2010) 094012 [arXiv:1009.2144] MM and M. Poradziński, Phys. Rev. D 83 (2011) 014024 [arXiv:1009.5685]

- 5. LO contributions from $b \rightarrow s\gamma q\bar{q}$, (q = u, d, s) from 4-quark operators ("penguin" or CKM-suppressed) M. Kamiński, MM and M. Poradziński, Phys. Rev. D 86 (2012) 094004 [arXiv:1209.0965]
- 6. NLO contributions from $b \to s\gamma q\bar{q}$, (q = u, d, s) from interferences of the above operators with $Q_{1,2,7,8}$ T. Huber, M. Poradziński, J. Virto, JHEP 1501 (2015) 115 [arXiv:1411.7677]

Taking into account new non-perturbative analyses:

M. Benzke, S. J. Lee, M. Neubert and G. Paz, JHEP 1008 (2010) 099 [arXiv:1003.5012] T. Ewerth, P. Gambino and S. Nandi, Nucl. Phys. B 830 (2010) 278 [arXiv:0911.2175]

Updating the parameters (Parametric uncertainties go down to 2.0%)

P. Gambino, C. Schwanda, Phys. Rev. D 89 (2014) 014022

A. Alberti, P. Gambino, K. J. Healey, S. Nandi, Phys. Rev. Lett. 114 (2015) 061802

Updated SM estimate for the CP- and isospin-averaged branching ratio of $\overline{B} \to X_s \gamma$ [arXiv:1503.01789, arXiv:1503.01791]:

$${\cal B}_{s\gamma}^{
m SM} = (3.36 \, {\pm \, 0.23 \over _{\pm 6.9\%}}) imes 10^{-4} ~~{
m for}~ E_{\gamma} > 1.6 \, {
m GeV}$$

Contributions to the total TH uncertainty (summed in quadrature):

5% non-perturbative, 3% from the interpolation in m_c

3% higher order $\mathcal{O}(lpha_s^3),$ 2% parametric

It is very close the the experimental world average:

$$\mathcal{B}_{s\gamma}^{ ext{exp}} = (3.32 \pm 0.15) \times 10^{-4}$$
 [HFLAV, arXiv:1612.07233v2]

Experiment agrees with the SM well within $\sim 1\sigma$.

 \Rightarrow Strong bound on the H^{\pm} mass in the Two-Higgs-Doublet-Model II:

 $M_{H^{\pm}} > 580 \,{
m GeV}$ at $95\% {
m C.L.}$ [MM, M. Steinhauser, arXiv:1702.04571]

 $ar{B} o X_d \gamma \ \mathcal{L}_{ ext{eff}} \ \sim \ V_{td}^* V_{tb} \left[\sum_{i=1}^8 C_i Q_i + \kappa_d \sum_{i=1}^2 C_i (Q_i - Q_i^u)
ight] \qquad igsquare{b}{}_{ ext{Q}_{1,2}^u}$

 $\kappa_d = (V_{ud}^*V_{ub})/(V_{td}^*V_{tb}) = (0.007^{+0.015}_{-0.011}) + i (-0.404^{+0.012}_{-0.014})$

$$egin{aligned} \mathcal{B}_{d\gamma}^{
m SM} &= \left(1.73^{+0.12}_{-0.22}
ight) imes 10^{-5} \ \mathcal{B}_{d\gamma}^{
m exp} &= \left(1.41 \pm 0.57
ight) imes 10^{-5} \end{aligned}
ight\} ext{for $E_0 = 1.6$ GeV}$$

- $\mathcal{B}_{d\gamma}^{
 m SM}$ is rough: m_b/m_q varied between $10 \sim m_B/m_K$ and $50 \sim m_B/m_\pi \Rightarrow 2\%$ to 11% of $\mathcal{B}_{d\gamma}$.
- Fragmentation functions give a similar range [H. M. Asatrian and C. Greub, arXiv:1305.6464].
- Collinear logarithms and isolated photons

The ratio R_{γ}

$$R_{\gamma}^{
m SM} \equiv \left(\mathcal{B}_{s\gamma}^{
m SM} + \mathcal{B}_{d\gamma}^{
m SM}
ight) / \mathcal{B}_{c\ell
u} = (3.31\pm0.22) imes10^{-3}$$

 $egin{aligned} ext{Generic (but CP-conserving) beyond-SM effects:} \ & \mathcal{B}_{s\gamma} imes 10^4 = (3.36 \pm 0.23) - 8.22 \, \Delta C_7 - 1.99 \, \Delta C_8, \ & R_\gamma imes 10^3 = (3.31 \pm 0.22) - 8.05 \, \Delta C_7 - 1.94 \, \Delta C_8. \end{aligned}$