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Preliminary



The process

We consider decay of a color neutral massive particle to a pair of
heavy quark of mass m.

Notation
t X(q) = ta) + )
e X=V,A,8,P
‘ ¢ (1—z)?




The general structure

Vector and Axial Vector
Vi —idijvg (’)’” Fya+ 5=0t"q, Fv,z)

A: —idijaq (v“vs Faq+ ﬁql‘% FA,z)

Scalar and Pseudo Scalar
2555 | sQFs + ipgTsFr]




The form factors are expanded in the strong coupling constant as

F=3 ()

n=

To obtain FI(") = appropriate projector on the amplitudes

i gz m 4, +m
Py, = ™ (7#sz qu - un)9V1> m
= e g, +m
Pai=— . ’Yu’YsgA 3 Qm + 3u)759% Z) o
v m +m v = . +m
Ps = h— <gs> h » Pp = % (Z’YSQP) h )
2msg  m m 2mpg  m m

g = g(s,d) and are determined by demanding F}O) =1,
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An important component of the N°LO contribution, is the O(e)
piece at two-loop. In this talk, we present
- cross-check of the results available in the literature,
- computation of the integrals in different methods,
. FI(Z)((’)(eZ)) for different currents and corresponding
computational details.
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The generic procedure

- Diagrammatic approach -> QGRAF [Nogueira '93] to generate diagrams

- FORM [Vermaseren '01] for algebraic manipulation :
Lorentz, Dirac and Color [color.h] algebra

- Decomposition of the dot products to obtain scalar integrals

2%kp _K—(h-plip 11 P
k(k—p)?  K(k-p?  (k—p? Kk K(k—p)?

- Identity relations among scalar integrals : IBPs, LIS & SRs

- Algebraic linear system of equations relating the integrals

(3
Master integrals (MlIs)

- CRUSHER [Marquard, Seidel] for reduction to master integrals

- Computation of Mls : Differential eqns. and Difference eqns.



Computing the master integrals

The master integrals can be expressed as

2 dP1,dP1 1
2—e _€eYE 1 2
J(n, ..., v,) = ((‘W) e )) / (2m)2P DI'...Di»

where for non-singlet case (n = 7)

Di=(+q) —m?, Dy=(h+q)?—m? Ds=(—q)—m?
Diy=(h—q@)Y —m?, Ds=1, Ds=(l1—0h)?, D=(—b+aq)—m’.

and for singlet case (n = 6)

Di=lh+aq) Dy=0L+aq)P?-m’, Di=(—q),
Dy=(l—q)*—m?, Ds=10§, Ds=(h—10)’—m,



Using differential equations

- We obtain systems of coupled differential equations of the Mls
by taking derivative w.r.t. x and using IBP relations - diff. egns.
depend on the integrals from the same sector or sub-sectors.

- The systems appeared mostly in a block-triangular form except
a few 2 x 2 coupled systems.

Jq . . . . s . Jq Ry
Jy 0 ° . . 900 . Jy Ry
J3 0 . . . Cee . J3 Ry
Ay Jy 0 0 0 . e . Jy + Ry
Jn 0 0 0 0 cee . Jn Rp

- To solve them, we consider the bottom-up approach - first solve
the simplest sectors and move up in the chain of subsystems.

10



An example of a 2 x 2 coupled system

2

1422 1—=

a4 J) _ z(1—x2) z2
I3 ) 1 4(+az?)

1—x? z(1—z2)

I(

I
I3

)+

Ry(e, z)
Ry (e, x)

).

il
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An example of a 2 x 2 coupled system

1422 1—a?
A ap \_| =(0-z9 x? In 4 Baie®
da 723 1 4(+az?) J23 Ry(e,z) )~

1—x? z(1—z2)

Decouple it to obtain a 2”¢ order non-homogeneous differential eqn.

. dJ. d.Jy
2 4 p(@) S+ q@) Tz = (@); T = ¢ (0) T2 + ¢ (@) + 7 (0)

4

Solve the homogeneous part : solutions y(z) & y,(x)

Use variation of constant to obtain the solution
Jn = yi( x){Cw /d ﬂ} +w (x){cz-i-/d ﬂ}

W (1, v2) W (y1,2)

W (y1,92) is Wronskian of the system.

il



Boundary conditions are fixed by imposing regularity of the integrals
in the limit of vanishing space-like momentum ¢ — 0 i.e. x — 1.

However, for few integrals, there exists a branch cut at z = 1. In that
case, we match the general solution with the asymptotic expansion
around z — 1.



Using difference equations

The idea : write integrals in series expansion & use differential eqns
to obtain difference eqns for coefficients of the series expansions.

- In the non-singlet case, integrals are regular around z =1,
hence they can be expanded around y =1 — z.

Tiy) =YY &Ci n)y"
n=0j=-2
- For singlet case, there are logarithms of the type In(y)

oo 3 P
Jiw) =32 D ¢ Ciin(n) " (y)y"

n=0 k=0 j=—2



Algorithm
- Consider an integral J; and assume the integrals which belonged to it's
sub-topology, are known.
- Insert generic expanded form of J; in corresponding differential eqn.

- One obtains a system of eqns. with C4 ; x(n), j, k, n after equating each
power of € In*(y)y™ on both sides.

- (4,1 (n) can be obtained by solving the system iteratively.

All of this are done automatically using

Sigma [Schneider '01-], EvaluateMultiSums,
SumProduction [Ablinger, Blimlein, Hasselhuhn, Schneider "10-]
and HarmonicSums [Ablinger, Blimlein, Schneider '10,13]

The results are obtained in terms of harmonic sums and generalized
harmonic sums and after performing the sums, in terms of HPLs.
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We consider a hybrid scheme for UV renormalization.

Heavy quark mass and wave function (Z,,.0s, Z2,0s) : On-shell
QCD strong coupling constant (Z,,) : MS

The renormalization of Fy,; and Fs is straightforward
Byg = ZZ,OSFVJ Fs = Zm.0sZ.0sFs

But, presence of vs in Fl4; and Fp, makes it complicated. Based on
the appearance of s in the v-chain, F; can be of two types :

non-singlet : open fermion lines are attached to chiral vertex
singlet : a fermion loop is attached to chiral vertex



Renormalization of the non-singlet pieces of F4 ; and Fp is similar

Fy = Zy o8ty Fp° = ZmosZ,0sFp°

Fj’ﬁz) has a UV pole and can be removed by Z;. The finite parts for
singlet pieces are effected by the prescription used for ~s. We use
the prescription by Larin, and according to it, one can add a finite
renormalization constant to maintain the anomalous Ward identity.
But, to keep in mind, Ward identities are true for physical quantities
and hence does not make sense to study them higher order in e.

16



non-singlet : both ~5 are in same ~-chain
We use an anti-commuting ~s in d-dimension with 42 = 1

singlet : two +s are in different y-chain

Y5 = ZEuvpa TV VPV [Larin '93]
The product of two e tensors is expressed as determinant over
metric tensors in d-dimensions.



Ward identities

Chiral Ward identity

2F0% +

[t =2y

%wa

x

. )ﬁ:mms



Ward identities

Chiral Ward identity ‘qul“ﬁ’”s =2mIp

. 1 1—1x)2 i
2P + 5 (—(5”)> F1% = am B
’ T

Anomalous Ward identity qu. I = 2mI's — i2Tp(GG)q

(GG) o denotes the truncated matrix element of the gluonic operator GG between

the vacuum and an on-shell heavy quark pair (QQ).



Infrared structure




The infrared singularities factorize as a multiplicative factor
[Becher, Neubert '09]

Fi(e,x) = Z(e,z, ) F{ ™ (x, 1)

Z(e,x, p) is universal/independent of current
F{™(x, 1) is finite as e — 0

Renormalization group evolution of Z(e, z, i) provides

s ([ G 3 (524912

I',, is the n'* order massive cusp anomalous dimension.

19



Results




We

Results & Checks

have obtained F? up to O(e?)

@ p@ p@ RO
Fyh, Fo, FiL F

2) (2
v Far Fuo Fg' Fp

F}z) up to O(€%) matches with the results from Bernreuther et al.
(up to an overall factor due to different scheme)
F‘Q up to O(e) matches with the result from Gluza et al.

(‘except a difference of —CpCa[e{ (110_?_1”336 )

F‘Q up to O(e?) matches with the result from Henn et al. ( color-planar limit )
Chiral Ward identity: relating non-singlet parts of Axial-vector and Pseudo-scalar

Anomalous Ward identity: relating the singlet parts

20



Interesting facts

% Two constants appear in the two-loop result

¢ =12610°(2) + In*(2) + 24Li.(1/2)
¢ = 26¢ In(2) — 206 In’(2) — In°(2) 4 120Lis(1/2)

% Around 300 HPLs with alphabet {—1,0,1} up to weight 6 appear

The independent HPLs up to O(e) are

H_q, Hy, Hy, H_q 9, Hy 1, Ho 1, Hy —1,—1, Ho,—1,1- Ho,0,—1> Ho,0,1> Ho,1,—1» Ho,1,1- Ho,—1,—-1,—1>
Ho, —1,-1,1» Ho,—1,0,1> Ho,—1,1,—1> Ho,—1,1,1> Ho,0,—1,—1> Ho,0,—1,1: H0,0,0,—1> H0,0,0,1> H0,0,1,—1>
Ho 01,1 Ho1,—1, -1 Ho1,—1,15 Ho,1,1,—15 Ho1,1,1> Ho, —1,—1,0,1> Ho, —1,0,—1,—1> Ho,—1,0,—1,1>
Ho,—1,0,1,—1, Ho0,-1,0,1,7, Ho,—1,1,0,1> H0,0,—1,—1,—1> H0,0,—1,-1,1> H0,0,—1,0,—1: H0,0,-1,0,1»

Ho,0,—1,1,—1+ H0,0,—1,1,1: #0,0,0,—1,—1> H0,0,0,—1,1> H0,0,0,0,—1> H0,0,0,0,1> H0,0,0,1,—1: H0,0,0,1,1>

Ho,0,1,—1,—1, H0,0,1,—1,1> H0,0,1,0,—1> H0,0,1,0,1> H0,0,1,1,—1> H0,0,1,1,1> H0,1,0,1,—1> H0,1,0,1,1

21



Form factors at various kinematical regions

Low energy region ¢ <m? or x —1
We redefine z as = = €' and expand around ¢ = 0 up to 4" order.
Note that, for ¢ = 0 Fy 1 =1, Fy, = Anomalous magnetic moment
High energy region ¢>> m? or z—0
We expand up to O(z*). In the massless limit (z = 0),

- the chirality flipping form factors Fy., & F4 , vanishes.

- Fyqisequalto Fy 4, as expected

- Fgisequalto Fp too
Threshold region ¢°> ~ 4m? or z — —1

We define B8 = /1 — 4%2 and expand around 8 = 0 up to O(5?)

useful for applications e.g. ete™ — tf near threshold
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- the chirality flipping form factors Fy,; & F4 , vanishes.
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O(e%) part of Fy1|cprs

Low Q?
High Q2
........ 2 Threshold

..... - B*Threshold
Exact
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0(61) part of FV,1 |CFTF
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03 04 05
- High Q2
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Conclusion




- We have obtained two-loop corrections to heavy quark form
factors for different currents up to O(e?). They are essential
elements to higher order corrections.

- We computed the master integrals using two techniques -
namely method of differential eqns and difference eqns.

- For the non-singlet contributions, ~s is implemented following
the pragmatic approach (anti-commutation), whereas for the
singlet contributions, we have followed the prescription by Larin
(adapted from the 't Hooft Veltman prescription).
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Thank You!
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