g-2 and low-mass new physics

Dominik Stöckinger, TU Dresden

Matter to the Deepest, September 2017

(日) (同) (三) (三)

Outline

- 2 Two-Higgs doublet model
- 3 R-symmetric SUSY as a concrete example

4 Conclusions

< 17 ▶

- - E > - E >

Overview on g-2

Now: a_{μ}^{ex}

$$a_{\mu}^{\exp} - a_{\mu}^{SM} = (28.1 \pm 6.3^{Exp} \pm 3.6^{Th(KNT17)}) \times 10^{-10}$$

Keshavarzi,Nomura,Teubner'17; Jegerlehner'17: \pm 4.4Th

Overview on g-2

Soon: $a_{\mu}^{\exp} - a_{\mu}^{SM} = (30?? \pm 1.6^{Exp} \pm 3.4^{Th}??) \times 10^{-10}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

2 Two-Higgs doublet model

3 R-symmetric SUSY as a concrete example

4 Conclusions

→ ∃ →

Two-Higgs Doublet Model

• Second Higgs doublet well motivated in theory $\rightsquigarrow h, H, H^{\pm}, A^0$

 $h^{\text{SM-like}} = (c_{\beta-\alpha}H + s_{\beta-\alpha}h)$ (LHC-data $\Rightarrow c_{\beta-\alpha} = \text{small } !)$

Yukawas: type 1, 2 (← MSSM), X (lepton-specific), Y (flipped)

- consider general model without FCNC ~> "aligned" [Pich, Tuzon]
- recently: full two-loop calculation of g 2 in this model

 $[Cherchiglia, Kneschke, DS, Stöckinger-Kim'16] \rightsquigarrow \mathsf{NOW} apply! [ongoing, Cherchiglia, DS, Stöckinger-Kim]$

Two-Higgs Doublet Model

• Second Higgs doublet well motivated in theory $\rightsquigarrow h, H, H^{\pm}, A^0$

 $h^{\text{SM-like}} = (c_{\beta-\alpha}H + s_{\beta-\alpha}h)$ (LHC-data $\Rightarrow c_{\beta-\alpha} = \text{small } !)$

Yukawas: type 1, 2 (← MSSM), X (lepton-specific), Y (flipped)

- consider general model without FCNC ~> "aligned" [Pich, Tuzon]
- recently: full two-loop calculation of g 2 in this model

 $[{\sf Cherchiglia}, {\sf Kneschke}, {\sf DS}, {\sf St\"ockinger-Kim'16}] \rightsquigarrow {\sf NOW} apply! [{\sf ongoing}, {\sf Cherchiglia}, {\sf DS}, {\sf St\"ockinger-Kim}]$

Two-Higgs Doublet Model

• Second Higgs doublet well motivated in theory $\rightsquigarrow h, H, H^{\pm}, A^0$

 $h^{\text{SM-like}} = (c_{\beta-\alpha}H + s_{\beta-\alpha}h)$ (LHC-data $\Rightarrow c_{\beta-\alpha} = \text{small } !)$

- Yukawas: type 1, 2 (← MSSM), X (lepton-specific), Y (flipped)
- consider general model without FCNC ~> "aligned" [Pich, Tuzon]
- recently: full two-loop calculation of g 2 in this model

 $[{\sf Cherchiglia},{\sf Kneschke},{\sf DS},{\sf St\"ockinger-Kim'16}] \rightsquigarrow {\sf NOW} \ {\sf apply!} \ [{\sf ongoing},\ {\sf Cherchiglia},{\sf DS},{\sf St\"ockinger-Kim}]$

Two-Higgs Doublet Model couplings

• Yukawa couplings in general "aligned" model

$$Y_{d,l;u}^{A} = \mp \zeta_{d,l;u}$$

$$Y_{f}^{h} = s_{\beta-\alpha} + c_{\beta-\alpha}\zeta_{f}$$

$$Y_{f}^{H} = c_{\beta-\alpha} - s_{\beta-\alpha}\zeta_{f}$$

Two-Higgs Doublet Model couplings

• Yukawa couplings in general "aligned" model

$$Y_{d,l;u}^{A} = \mp \zeta_{d,l;u}$$
$$Y_{f}^{h} = s_{\beta-\alpha} + c_{\beta-\alpha}\zeta_{f}$$
$$Y_{f}^{H} = c_{\beta-\alpha} - s_{\beta-\alpha}\zeta_{f}$$

 $\begin{array}{ll} \mathsf{MSSM}/\mathsf{Type} \ 2: & \zeta_{d,l} = -\tan\beta, & \zeta_u = 1/\tan\beta \\ \mathsf{Type} \ \mathsf{X} \ (\mathsf{lepton-specific}): & \zeta_l = -\tan\beta, & \zeta_{d,u} = 1/\tan\beta \\ \mathsf{General: expect} & \zeta_l \sim 50, & \zeta_{d,u} \sim 1, & M_A < M_h \end{array}$

(4回) (日) (日) (日) (1000)

Two-Higgs Doublet Model: τ -loop

Two-Higgs Doublet Model: τ -loop

Two-Higgs Doublet Model: top-loop

Dominik Stöckinger

Two-Higgs Doublet Model: top-loop

Two-Higgs Doublet Model: top-loop

Results and outlook

- Maximum contributions to g 2
- Interesting scenario: light A^0 ; $M_{H^{\pm}} \sim 200$ GeV, large couplings to tau/top, large Higgs self couplings preferred
- Constrained/testable by other measurements, e.g.: $gg \to A^0 \to \tau \tau$ [\rightsquigarrow + Dresden ATLAS group]

Outline

Overview and theory

- 2 Two-Higgs doublet model
- 3 R-symmetric SUSY as a concrete example

4 Conclusions

∃ ► < ∃ ►</p>

R-symmetric model MRSSM [Kribs, Poppitz, Weiner]

- surprisingly promising: (LHC, EWPO, dark matter)
- beautiful/rigid: conserved R-charges
- Gauginos/Higgsinos must be Dirac (not Majorana!)

→ talk Wojciech Kotlarski]

R-symmetric model MRSSM [Kribs, Poppitz, Weiner]

- surprisingly promising: (LHC, EWPO, dark matter)
- beautiful/rigid: conserved R-charges
- Gauginos/Higgsinos must be Dirac (not Majorana!)

→ talk Wojciech Kotlarski]

R-symmetric model MRSSM [Kribs, Poppitz, Weiner]

- surprisingly promising: (LHC, EWPO, dark matter)
- beautiful/rigid: conserved R-charges
- Gauginos/Higgsinos must be Dirac (not Majorana!)

new Yukawa-like terms

$$W_{\text{MRSSM}} = \ldots + \Lambda_u \hat{H}_u \hat{T} \hat{R}_u + y_u \hat{Q} \hat{H}_u \hat{U}$$

→ talk Wojciech Kotlarski]

Compare standard/R-symmetric SUSY

No enhancement by v_u any more!

Compare standard/R-symmetric SUSY

No enhancement by v_u any more! but by Λ_d !

Compare standard/R-symmetric SUSY

No enhancement by v_u any more! but by Λ_d !

|A|≤2,4,6,8,10

< 一型

≣ 12/15

글 🕨 🔺 글 🕨

Results and outlook

- Large a_{μ} in MRSSM for $m_{{
 m SUSY}}\sim 100\ldots 300$ GeV and $\Lambda\gg 1$
- Otherwise, prediction: a_{μ} very small

• • = • • = •

Results and outlook

- Large a_μ in MRSSM for $m_{
 m SUSY} \sim 100 \dots 300$ GeV and $\Lambda \gg 1$
- Otherwise, prediction: a_{μ} very small
- Outlook: correlation with lepton flavour violation:

Outline

Overview and theory

- 2 Two-Higgs doublet model
- 3 R-symmetric SUSY as a concrete example

()

Conclusions

- Currently $a_{\mu}^{\mathrm{Exp}} a_{\mu}^{\mathrm{SM}} pprox$ (28.1 \pm 6.3 \pm 3.6) imes 10 $^{-10}$
 - \blacktriangleright Experimental progress in sight: $6.3 \rightarrow 1.6$

• R-symmetric SUSY

Two-Higgs doublet model
 g − 2 → light A₀
 non-Type X

large couplings to τ , t

- motivated by fundamental symmetry
- explore phenomenology ~> many pleasant surprises
- very interesting interplay $g 2/\mu \rightarrow e\gamma/\mu \rightarrow e$

Dominik Stöckinger

15/15

Backup: Two-Higgs Doublet Model: H^{\pm} -loop

