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WHAT WE DO

Few (2,3) body (nucleon) systems

| nucleon〉 =| momentum isospin spin〉
Small energies, non-relativistic QM (we hope to include relativistic
corrections)

Directly solve: Schrödinger, Lippmann-Schwinger, Fadeev,
. . . equations using a numerical approach

Use effective (2,3) nuclear forces

Use fenomenological potentials (e.g. AV18) or derived from ChEFT
(Bonn, Bohum) - find parameters

New calculation schemes
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PWD VS 3D “TRADITIONAL” APPROACH

PARTIAL WAVES - EXAMPLE

For the moment let’s focus on the 2N system.

Let’s try to calculate the 2N transition operator.
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PWD VS 3D “TRADITIONAL” APPROACH

PARTIAL WAVES - SYMMETRIZATION
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PWD VS 3D “TRADITIONAL” APPROACH

PARTIAL WAVES - SYMMETRIZATION

V̌ is the 2N potential.

Each � lives in a subspace with given orbital angular momentum l ,
spin s and total angular momentum j and different momentum
magnitude states:

〈|p′|(l ′s ′)j ′ | . . . | |p|(ls)j〉

Impose pairity, time reversal and rotational symmetry ...
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PWD VS 3D “TRADITIONAL” APPROACH

PARTIAL WAVES - CALCULATION

Perform PWD on each operator of, eg., LSE ť = V̌ + V̌ Ǧ0ť.

Solve the resulting linear equations.
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PWD VS 3D “TRADITIONAL” APPROACH

PARTIAL WAVES - PROS AND CONS

+

Battle tested.
Small numerical workload.

−
Implementation requires heavily oscilating functions.
It is not always obvious how many partial waves need to be taken into
account.
This is more complicated for three or more particles and different
coupling schemes.
Convergence problems for higher energies.
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PWD VS 3D 3D APPROACH

3D - EXAMPLE

Lets take the 2N transition operator.

Assume we are working in momentum space with p′ = (p′x , p
′
y , p
′
z)

being the final and p = (px , py , pz) being the initial momentum of
the two nucleons.
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PWD VS 3D 3D APPROACH

3D - SIZE OF THE PROBLEM

We would like to calculate the full transition operator. This is
equivalent to calculating, for every p′ and every p, the matrix element
〈p′ | ť | p〉.
This matrix element is an operator in spin space and has the form:[

〈p′ | ť | p〉
]

=
t11(p′x , p

′
y , p
′
z , px , py , pz) t12(. . .) t13(. . .) t14(. . .)

t21(. . .) t22(. . .) t23(. . .) t24(. . .)
t31(. . .) t32(. . .) t33(. . .) t34(. . .)
t41(. . .) t42(. . .) t43(. . .) t44(. . .)

 .
It must satisfy the LSE equation ť = V̌ + V̌ Ǧ0ť.
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We would like to calculate the full transition operator. This is
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〈p′ | ť | p〉
]

=
t11(p′x , p

′
y , p
′
z , px , py , pz) t12(. . .) t13(. . .) t14(. . .)

t21(. . .) t22(. . .) t23(. . .) t24(. . .)
t31(. . .) t32(. . .) t33(. . .) t34(. . .)
t41(. . .) t42(. . .) t43(. . .) t44(. . .)

 .
It must satisfy the LSE equation ť = V̌ + V̌ Ǧ0ť.
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PWD VS 3D 3D APPROACH

3D - SIZE OF THE PROBLEM

We need to calculate 16 functions of 6 real parameters that satisfy
the LSE.

If each argument is discretized over 32 points then 16× 326 ≈
17.2× 109 complex numbers to represent ť.

We know that the solution has to satisfy appropriate symmetries.

Can we use this to simplify the problem?
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PWD VS 3D 3D APPROACH

3D - SYMMETRIZATION

The general operator form of the two nucleon potential and transition
operator is well known [Phys. Rev. 96 1654 (1954)].

The matrix element in momentum space can be written as a linear
combination of 6 scalar functions ti and spin operators [wi ]:

[
〈p′ | ť | p〉

]
=

6∑
i=1

ti (|p′|, |p|, p̂′ · p̂) [w̌i (p,p)] .
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PWD VS 3D 3D APPROACH

3D - SYMMETRIZATION

Instead of calculating 16 functions of 6 real variables we now only
need to calculate 6 functions of 3 variables.

From 16× 326 ≈ 17.2× 109 to 6× 323 ≈ 16.4× 104 complex
numbers for ť.

Couple orders of magnitude less numerical work!
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PWD VS 3D 3D APPROACH

3D - PROS AND CONS

+

More precision at higher energies.
Calculations can be easily modified to use different potentials.
Operator fomrms (operators and states) significantly reduce numerical
workload.

−
We are running out of operator forms!
Can we construct new symmetric operator forms? Can this be
generalized to systems of three or more particles?
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

If Ř is a spatial rotation, we require that operator X̌ :

Ř−1X̌ Ř = X̌ .

Ideally we would like to fit the operator into an operator form:

〈. . . | X̌ | . . .〉 =
∑

xi
[
Ǒi

]
.

Here x is a scalar function of momenta and O is an operator in spin
space and . . . are momenta.

How can a rotation invariant operator be constructed?
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

Let’s generalize a little bit and incorporate the dependance on the
total momentum K .

Boulding blocks (actually any number of momenta and spin vectors
can be used):

T = {p̌′, p̌, Ǩ , σ̌(1), σ̌(2)}.

In principle we have to consider all scalar combinations of the
elements from T. For example if v i ∈ T we could use:

(v̌1 × (v̌2 × v̌3)) · (v̌4 × (v̌5 × (v̌6 × v̌7)))

or
(v̌1 × v̌2) · (v̌3 × (v̌4 × (v̌5 × v̌6))) .
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

Simple vector identities lead to:

(v̌1 × (v̌2 × v̌3)) · (v̌4 × (v̌5 × (v̌6 × v̌7)))

= (v̌1 · v̌3)(v̌2 · v̌5)(v̌4 × v̌6 · v̌7)

−(v̌1 · v̌2)(v̌3 · v̌5)(v̌4 × v̌6 · v̌7)

+(v̌1 · v̌2)(v̌4 · v̌5)(v̌3 × v̌6 · v̌7)

−(v̌1 · v̌3)(v̌4 · v̌5)(v̌2 × v̌6 · v̌7)

and

(v̌1 × v̌2) · (v̌3 × (v̌4 × (v̌5 × v̌6)))

= (v̌1 · v̌6)(v̌2 · v̌3)(v̌4 · v̌5)

−(v̌1 · v̌3)(v̌2 · v̌6)(v̌4 · v̌5)

−(v̌1 · v̌5)(v̌2 · v̌3)(v̌4 · v̌6)

+(v̌1 · v̌3)(v̌2 · v̌5)(v̌4 · v̌6).
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

A general observation can be made: Any scalar expression
constructed from operators in T can be constructed from a
combination of operators in the set V:

V = {1̌, v̌ i · v̌ j , (v̌ i × v̌ j) · v̌k}.

For example, from the previous slide, we have the following CHAINS
of operators of length 3:

[
Č1
]

= (v̌1 · v̌3)(v̌2 · v̌5)(v̌4 × v̌6 · v̌7),[
Č2
]

= (v̌1 · v̌2)(v̌3 · v̌5)(v̌4 × v̌6 · v̌7),[
Č3
]

= (v̌1 · v̌2)(v̌4 · v̌5)(v̌3 × v̌6 · v̌7),[
Č4
]

= (v̌1 · v̌3)(v̌4 · v̌5)(v̌2 × v̌6 · v̌7),[
Č5
]

= (v̌1 · v̌6)(v̌2 · v̌3)(v̌4 · v̌5),[
Č6
]

= (v̌1 · v̌3)(v̌2 · v̌6)(v̌4 · v̌5),[
Č7
]

= (v̌1 · v̌5)(v̌2 · v̌3)(v̌4 · v̌6),[
Č8
]

= (v̌1 · v̌3)(v̌2 · v̌5)(v̌4 · v̌6).
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

How get from this to the operator form?

In principle we have to include CHAINS of operators constructed from
V with any number of links?

〈p′K | X̌ | pK 〉 = . . .+
8∑

i=1

xi
[
Či

]
+ . . .

Infinitely many terms?
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Či

]
+ . . .

Infinitely many terms?

K. Topolnicki MTTD 2017 3-8 IX 2017 23 / 43



GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

How get from this to the operator form?

In principle we have to include CHAINS of operators constructed from
V with any number of links?

〈p′K | X̌ | pK 〉 = . . .+
8∑

i=1

xi
[
Či
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GENERAL OPERATOR FORM ROTATIONS

INVARIANCE UNDER SPATIAL ROTATIONS

No! [Eur. Phys. J. A 52:188 (2016)]

The operator form for X̌ :

〈p′K | X̌ | pK 〉 =
16∑
i=1

xi
[
Ǒi (p,p′,K )

]
.

X̌ could be the potential, transition operator with relativistic
corrections . . .

The set T can be extended . . .
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GENERAL OPERATOR FORM OTHER SYMMETRIES

ADDING ADDITIONAL SYMMETRIES

We can use a simple symmetrization procedure.

Let D be a grup of transformations constructed from parity, time
reversal, Hermitian conjugate and two particle exchange.

A symmetric operator is obtained using:

X̌ →
∑
Ť∈D

Ť X̌ .

Applying any Ť ∈ D to
∑

Ť∈D Ť X̌ returns the same operator.
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GENERAL OPERATOR FORM OTHER SYMMETRIES

ADDING ADDITIONAL SYMMETRIES

If this is done carefully [Eur. Phys. J. A 52:188 (2016)], a new general form for
operators that have rotation invariance and are symmetric with
respect to D can be constructed.

Additionall symmetry conditions on the scalar functions appear.

The problem becomes more complicated if there are three particles
involved [Phys. Rev. C 87,054007 (2013)] . . .
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3N SCATTERING MOTIVATION

NUCLEON DEUTERON SCATTERING

N-d elastic scattering and breakup description via the 3N Faddeev
equation

Ť = ťP̌ + ťǦ0P̌Ť .

P̌ = P̌12P̌23 + P̌13P̌23.

Use only first order terms:

Ť = ťP̌ + ťǦ0P̌ ťP̌ + ťǦ0P̌ ťǦ0P̌ ťP̌ + . . . ≈ ťP̌.

Calculate observables in the breakup channel (〈φo | - three free
nucleons, | φ〉 - deuteron and free nucleon):

〈φ0 | ǔ0 | φ〉 = 〈φ0 | (1 + P̌)ťP̌ | φ〉.
Calculate observables in the elastic channel:

〈φ′ | ǔ | φ〉 = 〈φ′ | P̌Ǧ−1
0 + P̌ ťP̌ | φ〉.
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Ť = ťP̌ + ťǦ0P̌ ťP̌ + ťǦ0P̌ ťǦ0P̌ ťP̌ + . . . ≈ ťP̌.
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〈φ0 | ǔ0 | φ〉 = 〈φ0 | (1 + P̌)ťP̌ | φ〉.
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〈φ′ | ǔ | φ〉 = 〈φ′ | P̌Ǧ−1
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3N SCATTERING MOTIVATION

NUCLEON DEUTERON SCATTERING

Compare 3D approach and “battle tested” PWD approach.

ELASTIC SCATTERING: BREAKUP:

-q i �
�
�
��
qf

- ẑ
6

x̂

θc.m. -q i = q i��*
pf

@
@
@Rqf

- ẑ
6

x̂

Initially the neutron: q i . In the final state, the neutron:
qf .

Scattering parametrized by θc.m..

In the final state the Jacobi momenta: pf and qf .

Scattering parametrized by the kinematic curve

parameter S: pf (S), qf (S).
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6

x̂

θc.m. -q i = q i��*
pf

@
@
@Rqf

- ẑ
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3N SCATTERING MOTIVATION

NUCLEON DEUTERON SCATTERING

Results for breakup [Eur. Phys. J. A 51:132 (2015)].

Deuteron and nucleon vector analyzing powers (Ad
y , AN

y ) and the
deuteron tensor analyzing powers (Axx , Ayy , Azz) LAB energy 190
MeV.

Solid line - 3D results.

The dashed-dotted, dotted and dashed lines - PWD results with max.
total anguler momentum 21/2, 23/2, 25/2 and max. 2− 3 angular
momentum 8.
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3N SCATTERING MOTIVATION

NUCLEON DEUTERON SCATTERING
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3N SCATTERING MOTIVATION

FULL 3D CALCULATION

Most general approach for Ť , no rotational symmetry.

In general (8× 8 = 64)× 64 functions of 4 vector arguments - the
Jacobi momnta in the initial and final states.

Every argument as a 32 element list leads to 64× 64× 3212 ≈
47.2× 1021 complex numbers to represent Ť .

Not practical.
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3N SCATTERING MOTIVATION

FULL 3D CALCULATION

Most general approach to Ť | φ〉.
8× 8 functions of 3 vector arguments - the Jacobi momnta in the
final state and the free nucleon momentum.

Every argument as a 32 element list leads to 64× 329 ≈
22.3× 1014 complex numbers to represent Ť | φ〉.
Not practical.
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8× 8 functions of 3 vector arguments - the Jacobi momnta in the
final state and the free nucleon momentum.

Every argument as a 32 element list leads to 64× 329 ≈
22.3× 1014 complex numbers to represent Ť | φ〉.
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3N SCATTERING MOTIVATION

FULL 3D CALCULATION

Rotation invariant operator form for Ť | φ〉.
64× 8 scalar functions of 3 vector arguments - the Jacobi momnta in
the final state and the free nucleon momentum.

Every argument as a 32 element list leads to 64× 8× 326 ≈
55.0× 1010 complex numbers to represent Ť | φ〉.
Realistic.
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3N SCATTERING OPERATOR FORM FOR 3N SCATTERING

ANATOMY OF THE SCATTERING STATE

Observation, the scattering state in the Faddeev equations has the
general form:

〈pq | Ť | φ〉 =
[
X̌ (p,q,q0)

]
| s〉

Rotation symmetry → X̌ has rotational symmetry.

We can use the algorithm from [Eur. Phys. J. A 52:188 (2016)].
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3N SCATTERING OPERATOR FORM FOR 3N SCATTERING

GENERAL FORM

Finally:

〈pq | Ť | φ〉 =
∑
γ3N

64∑
r=1

τγ
3N

r (p,q,q0) | γ3N〉 ⊗
(
Ǒr (p,q,q0) | α〉

)
Ť | φ〉 = ťP̌ | φ〉+ ťǦ0P̌Ť | φ〉 → τ = τ̃ + Q̌τ [ Phys. Rev. C 96 014611 (2017) ]

We can use the same methods as in other “three dimensional”
problems - Arnoldi algorithm.
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3N POTENTIAL MOTIVATION

Traditional and 3D calculations can benefit from a common template
for the 3N force.

General operator form available for local 3N potentials [ Eur. Phys. J. A 51 26

(2015) ].
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3N POTENTIAL CONTINUOUS SYMMETRIES

Spatial rotations.

Isospin rotations.
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3N POTENTIAL DISCRETE SYMMETRIES

Time reflection.

Parity inversion.

Hermitian conjugation.

Particle exchange (S3!).

K. Topolnicki MTTD 2017 3-8 IX 2017 38 / 43



3N POTENTIAL DISCRETE SYMMETRIES

Time reflection.

Parity inversion.

Hermitian conjugation.

Particle exchange (S3!).

K. Topolnicki MTTD 2017 3-8 IX 2017 38 / 43



3N POTENTIAL DISCRETE SYMMETRIES

Time reflection.

Parity inversion.

Hermitian conjugation.

Particle exchange (S3!).

K. Topolnicki MTTD 2017 3-8 IX 2017 38 / 43



3N POTENTIAL DISCRETE SYMMETRIES

Time reflection.

Parity inversion.

Hermitian conjugation.

Particle exchange (S3!).

K. Topolnicki MTTD 2017 3-8 IX 2017 38 / 43



3N POTENTIAL DISCRETE SYMMETRIES

Time reflection.

Parity inversion.

Hermitian conjugation.

Particle exchange (S3!).

K. Topolnicki MTTD 2017 3-8 IX 2017 38 / 43



3N POTENTIAL PROBLEMS

Discrete symmetry group is more complicated.

2N potential - the particle exchange group is Z2.
General 3N potential - the particle exchange group is S3.

Momentum dependence is more complicated.

Local 3N potential - two momentum transfer vectors.
General 3N potential - two Jacobi momenta in the initial state, two
Jacobi momenta in the final state.
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3N POTENTIAL APPROACH

Discrete symmetry group is more complicated.

Use approach from [ Eur. Phys. J. A 51 26 (2015) ].
Construct operators with definite transformation properties.
Require that the scalar functions have appropriate transformation
properties and compensate.

Momentum dependence is more complicated.

320 operators in the isospin - spin space of the 3N system.
Adding total momentum dependence does not change the operator
structure.
The set of operators in the final form is not unique.
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3N POTENTIAL RESULTS

〈p′q′ | V̌3N | pq〉 =
∑320

k=1 hk(p′,q′,p,q)
[
Šk(p′,q′,p)

]
〈p′q′K | V̌3N | pqK 〉 =

∑320
k=1 hk(p′,q′,p,q,K )

[
Šk(p′,q′,p)

]
p′,q ′,p,q - Jacobi momenta in the final and initial state, K - total
momentum of the system, h - scalar functions, Š - operators in the
isospin - spin space of the 3N system.

All the operators are given and have definite transformation properties
under the discrete symmetries.

All the scalar functions are required to have appropriate
transformation properties in order to compensate - this can
potentially lead to a reduction of memory requirements in the
numerical implementation.

Paper submitted to EPJ A with my choice of the final 320 operators.
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SUMMARY

First order results for neutron deuteron scattering suggest that the 3D
approach can be used to achieve convergence at higher energies.

Constructing the general, rotation invariant form of Ť | φ〉 can lead
to efficient calculations.

Including additional symmetries in the operator form of the scattering
state is possible and might lead to a further reduction of numerical
complexity.

Including the three nucleon interaciton is also possible ... the general
form of the three nucleon force needs to be developed.

Possibility to add relativistic corrections to the calculations.
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