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Motivation — Dark Matter

Properties of dark matter:
e electrically neutral (non luminous)
e non-relativistic (cold) (structure formation)
e stable or long-lived

o weakly interacting with ordinary matter

Dark matter interactions

e annihilation — production in the early
universe and indirect detection (FERMI,
MAGIC, H.E.S.S, ...)

e scattering on nucleons — direct detection
(LUX, XENON, PANDA, ...) strong

constraints

e production — collider searches
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Motivation — Breit-Wigner resonance

Breit-Wigner resonance 2Mp,; ~ Mp
enhanced annihilation = suppressed coupling

@ insensitive to direct detection, but
constrained by indirect searches

enhancement of annihilation rate at low
velocity

Ibe et al., 2009, Guo, Wu 2009

e kinetic decoupling (Toar # Tsn) 7

e enhancement of the self-interaction
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Standard freeze-out mechanism

Boltzmann equation for DM fL[fDM}dBp = j C[fDM]dBp

dn
e +3Hn = —<avrel>(n2 - nQEQ)
. dY <UUrel> 2 2 S(m)
DM yield Y =n/s, e (Y = Ygrq), a= Hm)
e x = m/T dimensionless parameter
@ s — entropy density «— conserved in the comoving volume
Chemical decoupling = = x4 (ov) [oms]
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Breit-Wigner approximation

Annihilation cross-section - s-wave
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Thermally averaged annihilation cro

(C’Vrel)/<0Vrel>0

Ro=

(ovrel) grows for smaller temperatures

Averaged cross section (gvrel) normalized to (Gvrel)T=0
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Kinetic decoupling — simple picture

Condition Tpys = Tsys is not always fulfilled.

Thermal equilibrium is maintained by the scattering of DM on the
abundant light SM states.

DM DM @ proper relic abundance requires small
coupling of DM to SM
D R SM R
@ scattering process is not resonantly
DM SM
SM  SM enhanced

Comparision of the Hubble rate to the scattering rate

Bi at al, 2011

max(6, 7]

1
3/2\ 1
H(Tka) ~ Tscat (de) = Thd S ( 10-6 ) = Tyxa ~ Tq.

Kinetic and chemical decoupling temperatures are comparable



Kinetic decoupling — detailed description

Mpu=1TeV, 6=107°, y=10"° Mpn=1TeV, 6=10"°, y=10"°
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Bringmann, 0903.0189
v

Second moment of Boltzmann equation
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Kinetic decoupling — detailed description

Coupled Boltzmann equation

. g,
dy ~ S
@ = e (Yo — Yiglova):)
!
dy -5
% = - T 2Mprre(T)(y — yEQ)+

- Sy(Y (<Uvrel>zDM - <Uvrel>2|zDM) - % (<O'Vrcl>x - yETQ<O'Vrcl>2‘x)>:|

Aarssen, Bringmann, Goedecke 2012
Scattering and annihilation have both influence on temperature

scattering rate c(T)
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Kinetic decoupling — solutions of Boltzmann equation

Density

Mpw=1TeV, 6=1075, y=107°
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Illustration - the Higgs portal with vector dark matter

Additional complex scalar field S

o singlet of U(1)y x SU(2)r x SU(3)., charged under U(1)x
L= Lonp— %vwvW + (D.S)* DS + V'(H, S)
V(H,8) = —pa| HI* + Au|H|" — 15|SI” + As|S|* + x[S|*[H|?

Vacuum expectation values: (H) = ”5734, (S) ==

U(1)x vector gauge boson V,,

o Stability condition - no mixing of U(1)x with U(1)y  Bp¥"
Z9:Vy— =V, S — S*, S =¢e’: p— p, 0 — —0

o Higgs mechanism in the hidden sector My = g, v,

Higgs couplings — mixing angle «, My, =125 GeV
h hg si _ _
Lo 1 cosa + hasina (2]\4‘/[11/1/;1/‘/M n M%ZMZ“ _ meff>
v
f




Resonance with a Higgs scalar

(oUrel) ox sin? o cos? on

ZI SM
%"

zZ' SM

ZI SM
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Small a required by relic abundance

Resonance with the SM-like Higgs
o My ~125/2 GeV

e decay channel h; — Z'Z’, if open
suppressed by sin? o and by phase space

1—4M2, /M2 =V <1  Thzz <Tsu

o Breit-Wigner approximation is sufficient
Resonance with the second Higgs
4 MZ/ ~ Mh2/2 GeV

e hy — SMSM suppressed by sin? a,
he — Z'Z’ dominates

e near threshold effects



Velocity dependent width

Beyond Breit-Wigner approximation — resummed propagator
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Solutions of Boltzmann equation -

Density

Mpw=1TeV, 6=10"%, a=10"*
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dashed lines — Breit-Wigner approximation

o earlier chemical decoupling

e annihilation lasts longer

v-dependent width

Temperature
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e annihilation less effective in changing
DM temperature

(ovrel) grows for smaller velocities = annihilation heats up DM



on the paramet

Mixing angle « set by relic density
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Effects of kinetic decoupling may change the relic density by more than

order of magnitude




Summary

o When thermally averaged cross-section is temperature dependent
and scattering on the SM states is suppressed kinetic decoupling
effects are important

o To include the effects of early kinetic decoupling one has to solve
the set of coupled Boltzmann equations

e If coupling between resonant mediator and DM is not suppressed then
Breit-Wigner approximation is modified by near threshold effects.

o Large self-interactions are strongly constrained by the DM
indirect searches.



