Vector-fermion dark matter

Michał Iglicki

based on: A. Ahmed, M. Duch, B. Grządkowski, MI "Multi-Component Dark Matter: the vector and fermion case" – in progress

> Matter to the Deepest Podlesice, 3–8 September 2017

> > 비로 《문》 《문》 《집》 《曰》

Why multicomponent dark matter?

- Single-component WIMP's perfect in large scales
- Galactical scales problems possible solution: 2 component DM $(m_1 \ll m_2)$
 - core-cusp problem

- too-big-to-fail problem: bigger satellite galaxies around the Milky Way and other big galaxies predicted by simulations
- Why only one component? (vs. 17 particles of SM)

Vector-fermion model

- Gauge group: $\mathcal{G} = \underbrace{SU(3)_c \times SU(2)_L \times U(1)_Y}_{\text{Standard Model gauge group}} \times U(1)_X.$
- SM not charged under $U(1)_X$
- New fields: S complex scalar , χ Dirac fermion, X_{μ} $U(1)_X$ gauge boson
- Charges:

$$S:(1,1,0,1), \qquad \chi:(1,1,0,1/2)$$

The Lagrangian

• $\mathcal{L} = \mathcal{L}_{SM} + \mathcal{L}_{DM} + \mathcal{L}_{portal}$

• The dark sector Lagrangian

$$\begin{split} \mathcal{L}_{\mathsf{DM}} &= -\frac{1}{2} \mathcal{F}_{\mu\nu} \mathcal{F}^{\mu\nu} + (\mathcal{D}_{\mu}S)^* \mathcal{D}^{\mu}S + \mu_{S}^2 |S|^2 - \lambda_{S} |S|^4 \\ &+ \bar{\chi} (i \not D - m_D) \chi - \frac{1}{\sqrt{2}} (y_X S^* \chi^T \mathcal{C} \chi + h.c.) \\ &D_{\mu} \equiv \partial_{\mu} + i g_X q_X X_{\mu} \end{split}$$

• \mathcal{L} invariant under \mathcal{C} symmetry:

$$X_{\mu} \xrightarrow{\mathcal{C}} -X_{\mu}, \quad S \xrightarrow{\mathcal{C}} S^*, \quad \chi \xrightarrow{\mathcal{C}} \chi^{\mathcal{C}} = -i\gamma_2\chi^*$$

 $\mathbb{Z}_2 \text{ symmetry} \Rightarrow \text{ no } \frac{U(1)_Y}{U(1)_X} \text{ mixing} \Rightarrow \text{ no } X_\mu \text{ decay into SM}$

• The Higgs portal Lagrangian – the only DM-SM interaction

$$\mathcal{L}_{\text{portal}} = -\kappa |S|^2 |H|^2$$

• = • • = •

Higgs particles mixing

$$V(H,S) = \underbrace{-\mu_H^2 |H|^2 + \lambda_H |H|^4}_{\text{SM}} - \underbrace{\mu_S^2 |S|^2 + \lambda_S |S|^4}_{\text{DM}} + \underbrace{\kappa |H|^2 |S|^2}_{\text{portal}}$$

Spontaneous symmetry breaking

• π^+ , π^0 , σ – the Goldstone bosons

• *h* and ϕ mix to mass eigenstates h_1 and h_2 :

$$\begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \mathcal{R}^{-1} \begin{pmatrix} h \\ \phi \end{pmatrix}$$
, where $\mathcal{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$

• h_1 considered to be the known Higgs particle, $m_{h_1} = 125$ GeV

Majorana fermion states

$$\mathcal{L}_{DF} = \bar{\chi}(i\not D - m_D)\chi - \frac{1}{\sqrt{2}}(y_X S^* \chi^T C \chi + h.c.)$$

• After SSB we diagonalize \mathcal{L}_{DF} with mass eigenstates ψ_{\pm} :

$$\psi_{+} = \frac{\chi + \chi^{\mathcal{C}}}{\sqrt{2}}, \qquad \qquad m_{+} = m_{D} + y_{x}v_{x}$$
$$\psi_{-} = \frac{\chi - \chi^{\mathcal{C}}}{i\sqrt{2}}, \qquad \qquad m_{-} = m_{D} - y_{x}v_{x}$$

-∢ ⊒ ▶

Feynman rules

Interaction Lagrangian of the dark sector:

$$\begin{split} \mathcal{L}_{\text{int}} &= -\frac{y_{x}}{2}(\bar{\psi}_{+}\psi_{+} + \bar{\psi}_{-}\psi_{-})\phi - \frac{i}{4}g_{x}(\bar{\psi}_{+}\gamma^{\mu}\psi_{-} - \bar{\psi}_{-}\gamma^{\mu}\psi_{+})X_{\mu} \\ &+ v_{x}g_{x}^{2}X^{\mu}X_{\mu}\phi + \frac{g_{x}^{2}}{2}X^{\mu}X_{\mu}\phi^{2}, \end{split}$$

 $\mathcal{R} = \begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix} \qquad \begin{array}{c} \text{the only decay possibility} \\ m_{-} < m_{+} \Rightarrow \psi_{-} \\ \text{always stable} \end{array}$

크 > < 크

The Boltzmann equation for DM – the general form

The Boltzmann equations for our model

$$\begin{aligned} \frac{dn_{X}}{dt} &= -3Hn_{X} - \langle \sigma_{v}^{XX\phi\phi'} \rangle \left(n_{X}^{2} - \bar{n}_{X}^{2} \right) - \langle \sigma_{v}^{X\psi+\psi-h_{i}} \rangle \left(n_{X}n_{\psi+} - \bar{n}_{X}\bar{n}_{\psi+}\frac{n_{\psi-}}{\bar{n}_{\psi-}} \right) \\ &- \langle \sigma_{v}^{X\psi-\psi+h_{i}} \rangle \left(n_{X}n_{\psi-} - \bar{n}_{X}\bar{n}_{\psi-}\frac{n_{\psi+}}{\bar{n}_{\psi+}} \right) - \langle \sigma_{v}^{Xh_{i}\psi+\psi-} \rangle \bar{n}_{h_{i}} \left(n_{X} - \bar{n}_{X}\frac{n_{\psi+}n_{\psi-}}{\bar{n}_{\psi+}\bar{n}_{\psi-}} \right) \\ &- \langle \sigma_{v}^{XX\psi+\psi+} \rangle \left(n_{X}^{2} - \bar{n}_{X}^{2}\frac{n_{\psi+}^{2}}{\bar{n}_{\psi+}^{2}} \right) - \langle \sigma_{v}^{XX\psi-\psi-} \rangle \left(n_{X}^{2} - \bar{n}_{X}^{2}\frac{n_{\psi-}^{2}}{\bar{n}_{\psi-}^{2}} \right) \\ &+ \Gamma_{\psi+\to X\psi-} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{X}}{\bar{n}_{X}}\frac{n_{\psi-}}{\bar{n}_{\psi-}} \right) \\ \frac{dn_{\psi-}}{dt} &= -3Hn_{\psi-} - \langle \sigma_{v}^{\psi-\psi-\phi\phi'} \rangle \left(n_{\psi-}^{2} - \bar{n}_{\psi-}^{2} \right) - \langle \sigma_{v}^{\psi-\psi+Xh_{i}} \rangle \left(n_{\psi-}n_{\psi+} - \bar{n}_{\psi-}\bar{n}_{\psi+}\frac{n_{X}}{\bar{n}_{X}} \right) \\ &- \langle \sigma_{v}^{X\psi-\psi+h_{i}} \rangle \left(n_{X}n_{\psi-} - \bar{n}_{X}\bar{n}_{\psi-}\frac{n_{\psi+}}{\bar{n}_{\psi+}} \right) - \langle \sigma_{v}^{\psi-h_{i}X\psi+} \rangle \bar{n}_{h_{i}} \left(n_{\psi-} - \bar{n}_{\psi-}\frac{n_{\psi+}}{\bar{n}_{\psi+}}\frac{n_{X}}{\bar{n}_{X}} \right) \\ &- \langle \sigma_{v}^{\psi-\psi-XX} \rangle \left(n_{\psi-}^{2} - \bar{n}_{\psi-}^{2}\frac{n_{X}^{2}}{\bar{n}_{X}^{2}} \right) - \langle \sigma_{v}^{\psi-\psi+\psi+\psi+} \rangle \left(n_{\psi-}^{2} - \bar{n}_{\psi-}^{2}\frac{n_{\psi+}^{2}}{\bar{n}_{\psi+}^{2}} \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\chi}}{\bar{n}_{\chi}} \right) - \langle \sigma_{v}^{\psi-\psi+\chi+\psi+} \rangle \left(n_{\psi-}^{2} - \bar{n}_{\psi-}^{2}\frac{n_{\psi+}^{2}}{\bar{n}_{\psi+}^{2}} \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\chi}}{\bar{n}_{\chi}} \right) - \langle \sigma_{v}^{\psi-\psi+\psi+\psi+} \rangle \left(n_{\psi-}^{2} - \bar{n}_{\psi-}^{2}\frac{n_{\psi+}^{2}}{\bar{n}_{\psi+}^{2}} \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\psi}}{\bar{n}_{\psi+}} \right) \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\psi}}{\bar{n}_{\psi+}} \right) \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\psi}}{\bar{n}_{\psi+}} \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\psi}}{\bar{n}_{\psi+}} \right) \right) \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{\psi+}\frac{n_{\psi}}{\bar{n}_{\psi+}} \right) \\ \\ &+ \Gamma_{\psi+} \left(n_{\psi+} - \bar{n}_{$$

$$+ \Gamma_{\psi_{+} \to X\psi_{-}} \left(n_{\psi_{+}} - n_{\psi_{+}} \frac{1}{\bar{n}_{\psi_{-}}} \frac{1}{\bar{n}_{X}} \right)$$

$$\frac{dn_{\psi_{+}}}{dt} = [\psi_{-} \leftrightarrow \psi_{+}] - \Gamma_{\psi_{+} \to X\psi_{-}} \left(n_{\psi_{+}} - \bar{n}_{\psi_{+}} \frac{n_{\psi_{-}}}{\bar{n}_{\psi_{-}}} \frac{n_{X}}{\bar{n}_{X}} \right)$$

3 5

글 🕨 🖌 글 🕨

Solving the Boltzmann equations

- Experimental constraints \rightarrow relic density $\Omega_{\sf DM} {\it h}^2 \approx 0.12$
- Convenient variables: $Y \equiv \frac{n}{s}$, $x = \frac{m_{\text{ref}}}{T} \Rightarrow \text{BEq.:} \frac{dY_i}{dx} = \frac{m_{\text{ref}}}{m_i} \frac{dn_i}{dt} + 3Hn$

$$\Omega_i h^2 = \frac{h^2 s_0}{\rho_{\rm cr}} m_i Y_i^\infty = 2.742 \times 10^8 \left(\frac{m_i}{\rm GeV}\right) Y_i^\infty$$

- The BEq. solved by micrOMEGAs and a dedicated c++ code
 - micrOMEGAs dedicated to 1 or 2 component DM
 - our model 2 or 3 components
- Free parameters: g_x , $\sin \alpha$, m_X , m_+ , m_- , m_{h_2} .

The results – 2 component DM

- Bigger $g_x \Rightarrow$ stronger DM-SM interactions \Rightarrow smaller abundance
- Good agreement with micrOMEGAs

$$\langle \sigma \mathbf{v} \rangle = \mathbf{a}_0 + \mathbf{a}_1 \mathbf{x}^{-1} + \mathbf{a}_2 \mathbf{x}^{-2} + \dots$$

process	a _N	a_{N+1}	Ν
$XX \rightarrow SM$	$1.2 \cdot 10^{-2}$	$-3.5 \cdot 10^{-2}$	0
$\psi_+\psi_+ \rightarrow SM$	$2.7 \cdot 10^{-4}$	$-8.2 \cdot 10^{-4}$	1
$\psi\psi \rightarrow SM$	$7.8 \cdot 10^{-3}$	$-6.2 \cdot 10^{-2}$	1
$\Psi_+\Psi_+ \rightarrow XX$	$6.9 \cdot 10^{-4}$	$1.6 \cdot 10^{-3}$	0
$XX \rightarrow \Psi_{-}\Psi_{-}$	$6.4 \cdot 10^{-5}$	$1.6 \cdot 10^{-4}$	0
$\Psi_+, \Psi_+ \to \Psi \Psi$	$3.8 \cdot 10^{-3}$	$2 \cdot 10^{-3}$	0
$\Psi_+\Psi \rightarrow Xh_1$	$4.5 \cdot 10^{-6}$	$1.8 \cdot 10^{-5}$	0
$\Psi_+\Psi \rightarrow Xh_2$	$1.1 \cdot 10^{-4}$	$4.5 \cdot 10^{-4}$	0
$\Psi_+ h_1 \rightarrow X \Psi$	$2.3 \cdot 10^{-4}$	$4.2 \cdot 10^{-3}$	0
$\Psi_+ h_2 \rightarrow X \Psi$	$5.6 \cdot 10^{-3}$	$9.4 \cdot 10^{-2}$	0
$X\Psi_+ \rightarrow \Psi h_1$	$2.8 \cdot 10^{-4}$	$-3.1 \cdot 10^{-4}$	0
$X\Psi_+ \rightarrow \Psi h_2$	$6.7 \cdot 10^{-3}$	$-7.6 \cdot 10^{-3}$	0
$\Psi_+ \rightarrow X \Psi$	$1 \cdot 10^{-3}$		

(A/
process	a _N	a _{N+1}	IN
$XX \rightarrow SM$	$7.68 \cdot 10^{4}$	$-2.18 \cdot 10^{5}$	0
$\psi_+\psi_+ \rightarrow SM$	$1.69 \cdot 10^{3}$	$-5.19 \cdot 10^{3}$	1
$\psi\psi \rightarrow SM$	$4.88 \cdot 10^{4}$	$-3.86 \cdot 10^{5}$	1
$\Psi_+\Psi_+ \rightarrow XX$	$4.29 \cdot 10^{3}$	$9.93 \cdot 10^{3}$	0
$XX \rightarrow \Psi \Psi$	4 · 10 ²	$1.03 \cdot 10^{3}$	0
$\Psi_+, \Psi_+ \to \Psi \Psi$	$2.39 \cdot 10^{4}$	$1.25 \cdot 10^{4}$	0
$\Psi_+\Psi \rightarrow Xh_1$	$2.8 \cdot 10^{1}$	$1.11 \cdot 10^{2}$	0
$\Psi_+\Psi \rightarrow Xh_2$	$6.67 \cdot 10^{2}$	$2.76 \cdot 10^{3}$	0
$\Psi_+ h_1 \rightarrow X \Psi$	$1.42 \cdot 10^{3}$	$2.61 \cdot 10^4$	0
$\Psi_+ h_2 \rightarrow X \Psi$	$3.51 \cdot 10^{4}$	$5.88 \cdot 10^{5}$	0
$X\Psi_+ \rightarrow \Psi h_1$	$1.75 \cdot 10^{3}$	$-1.95 \cdot 10^{3}$	0
$X\Psi_+ \rightarrow \Psi h_2$	$4.19 \cdot 10^{4}$	$-4.87 \cdot 10^{4}$	0
$\Psi_+ \rightarrow X \Psi$	$2.59 \cdot 10^{0}$		

The results – 3 component DM

• Disagreement with micrOMEGAs

$$\langle \sigma v \rangle = a_0 + a_1 x^{-1} + a_2 x^{-2} + \dots$$

process	a _N	a _{N+1}	Ν
$XX \rightarrow SM$	$4 \cdot 10^{-2}$	$-1.9 \cdot 10^{-2}$	0
$\psi_+\psi_+ \rightarrow SM$	$9.6 \cdot 10^{-4}$	$-3.1 \cdot 10^{-4}$	1
$\psi\psi \rightarrow SM$	$9.9 \cdot 10^{-4}$	$-1.1 \cdot 10^{-4}$	1
$\Psi_+\Psi_+ \rightarrow XX$	$1 \cdot 10^{-5}$	$1.7 \cdot 10^{-5}$	0
$\Psi\Psi\to XX$	$1.4 \cdot 10^{-5}$	$1.2 \cdot 10^{-5}$	0
$\Psi\Psi \to \Psi_+\Psi_+$	$2.3\cdot10^{-4}$	$5.6 \cdot 10^{-4}$	0
$\Psi_+\Psi \rightarrow Xh_1$	$1.6 \cdot 10^{-6}$	$-2.6 \cdot 10^{-6}$	0
$Xh_2 \rightarrow \Psi_+ \Psi$	$6.1 \cdot 10^{-7}$	$6.9 \cdot 10^{-5}$	0
$X\Psi \rightarrow \Psi_+ h_1$	$7.1 \cdot 10^{-6}$	$1.1 \cdot 10^{-4}$	0
$\Psi_+ h_2 \rightarrow X \Psi$	$1.6 \cdot 10^{-5}$	$1.2 \cdot 10^{-4}$	0
$X\Psi_+ \rightarrow \Psi h_1$	$4.7 \cdot 10^{-7}$	$1.1 \cdot 10^{-4}$	0
$\Psi h_2 \rightarrow X \Psi_+$	$9.5 \cdot 10^{-4}$	$-9.7 \cdot 10^{-5}$	0

process	aN	a _{N+1}	N
$XX \rightarrow SM$	$7.82 \cdot 10^{0}$	$-2.54 \cdot 10^{0}$	0
$\psi_+\psi_+ \rightarrow SM$	$1.8 \cdot 10^{-1}$	$-1.1 \cdot 10^{-1}$	1
$\psi\psi \rightarrow SM$	$1.7 \cdot 10^{-1}$	$-7 \cdot 10^{-2}$	1
$\Psi_+\Psi_+ \rightarrow XX$	$6.8 \cdot 10^{-1}$	$1.03 \cdot 10^{0}$	0
$\Psi\Psi \to XX$	$9 \cdot 10^{-1}$	$6.8 \cdot 10^{-1}$	0
$\Psi\Psi\to\Psi_+\Psi_+$	$1.52 \cdot 10^1$	$3.66 \cdot 10^{1}$	0
$\Psi_+\Psi \rightarrow Xh_1$	$1 \cdot 10^{-1}$	$-1.7 \cdot 10^{-1}$	0
$Xh_2 \rightarrow \Psi_+\Psi$	$4 \cdot 10^{-2}$	$4.52 \cdot 10^{0}$	0
$X\Psi \rightarrow \Psi_+ h_1$	$4.7 \cdot 10^{-1}$	$7.13 \cdot 10^{0}$	0
$\Psi_+ h_2 \rightarrow X \Psi$	$1.05 \cdot 10^{0}$	$7.55 \cdot 10^{0}$	0
$X\Psi_+ \rightarrow \Psi h_1$	$3.1 \cdot 10^{-2}$	$7.31 \cdot 10^{0}$	0
$\Psi h_2 \rightarrow X \Psi_+$	$6.2\cdot10^{1}$	$-5.84\cdot10^{0}$	0

ロト 《母 》 《臣 》 《臣 》 国目 のへで

Summary

- The simple U(1) extension of the Standard Model gauge group
- New fields: a scalar S, a Dirac fermion χ and a gauge boson X_{μ}
- After SSB: two Majorana fermions ψ_\pm , a gauge boson X_μ and a second Higgs particle h_2
- Convenient framework to analyze various multicomponent (2 or 3) DM scenarios
- Developement of the general multicompDM Boltzmann equation solving tool
- Parameter space scans are performed (problem: time)
- Work still in progress...

Summary

- The simple U(1) extension of the Standard Model gauge group
- New fields: a scalar S, a Dirac fermion χ and a gauge boson X_{μ}
- After SSB: two Majorana fermions ψ_\pm , a gauge boson X_μ and a second Higgs particle h_2
- Convenient framework to analyze various multicomponent (2 or 3) DM scenarios
- Developement of the general multicompDM Boltzmann equation solving tool
- Parameter space scans are performed (problem: time)
- Work still in progress...

THANK YOU FOR YOUR ATTENTION

BACKUP SLIDES

(日) (四) (로) (로) (도) (대) (이)

Other parameters expressed in terms of the free ones

free parameters:

 g_x , $\sin \alpha$, m_X , m_+ , m_- , m_{h_2}

other parameters:

$$v_{x} = \frac{m_{X}}{g_{x}} \qquad \qquad \kappa = \frac{(m_{1}^{2} - m_{2}^{2})\sin(2\alpha)g_{x}}{2vv_{x}}$$
$$\lambda_{H} = \frac{m_{1}^{2}\cos^{2}\alpha + m_{2}^{2}\sin^{2}\alpha}{2v^{2}} \qquad \qquad \lambda_{S} = \frac{m_{1}^{2}\sin^{2}\alpha + m_{2}^{2}\cos^{2}\alpha}{2v_{x}^{2}}$$
$$y_{x} = \frac{m_{+} - m_{-}}{2v_{x}} \qquad \qquad m_{D} = \frac{m_{+} + m_{-}}{2}$$

・ロト (日) (王) (王) (王) (日)

Symmetries of the Lagrangian

$$\begin{aligned} \mathcal{L}_{\text{int}} &= -\frac{y_{x}}{2} (\bar{\psi}_{+}\psi_{+} + \bar{\psi}_{-}\psi_{-})\phi - \frac{i}{4} g_{x} (\bar{\psi}_{+}\gamma^{\mu}\psi_{-} - \bar{\psi}_{-}\gamma^{\mu}\psi_{+}) X_{\mu} \\ &+ v_{x} g_{x}^{2} X^{\mu} X_{\mu} \phi + \frac{g_{x}^{2}}{2} X^{\mu} X_{\mu} \phi^{2} \end{aligned}$$

Symmetry	X_{μ}	ψ_+	ψ_{-}	ϕ
\mathbb{Z}_2	_	+	_	+
\mathbb{Z}_2'	—	-	+	+
$\mathbb{Z}_2^{\overline{n}}$	+	—	_	+

(日) (四) (王) (王) (日)

- The lightest odd particle stable
- No DM \rightarrow SM decays

2 component DM scan

- Bigger $g_x \Rightarrow$ stronger DM-SM interactions \Rightarrow smaller abundance
- Bigger mass \Rightarrow smaller $\bar{Y} \sim \left(\frac{m}{T}\right)^{3/2} e^{-\frac{m}{T}} \Rightarrow$ smaller abundance
- s-channel resonance effect when $m_{h_2} pprox 2m_-$

