Interference effects in very precise measurement of muon charge asymmetry at FCCee

S. JADACH

in collaboration with S. Yost

Institute of Nuclear Physics PAN, Kraków, Poland

Partly supported by the grants of *Narodowe Centrum Nauki* 2016/23/B/ST2/03927

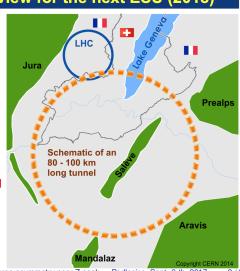
Presented at "Matter to the deepest", Podlesice, Sept. 6-th, 2017

INTRODUCTION: - if you have not heard about FCCee:)

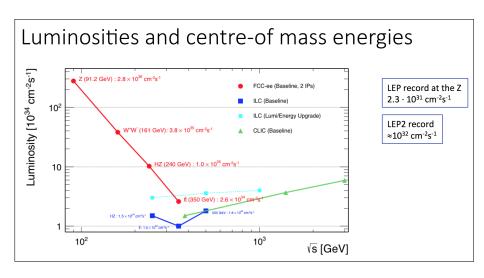
Future Circular Collider Study GOAL: CDR and cost review for the next ESU (2018)

International FCC collaboration (CERN as host lab) to study:

- pp-collider (FCC-hh)
 main emphasis, defining infrastructure requirements
- ~16 T \Rightarrow 100 TeV pp in 100 km
- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step / as a possible first step
- p-e (FCC-he) option, HE-LHC ...



FCCee as Z-factory: 1.5×10^{12} Z's/year! $10^5 \times$ LEP



INTRODUCTION

- ▶ M_Z , G_F , $\alpha_{QED}(0)$ outweigh other data in the "testing power" in the SM overall fit to experimental data
- ▶ However, $\alpha_{QED}(Q^2 = 0)$ is ported to $\alpha_{QED}(Q^2 = M_Z^2)$ using low energy QCD data -> this limits its usefulness beyond LEP precision.
- ▶ Patrick Janot has proposed (arxiv:1512.05544) another observable, $A_{FB}(e^+e^- \to \mu^+\mu^-)$ at $\sqrt{s_\pm} = M_Z \pm 3.5 \, GeV$, with a similar "testing profile" in the SM overall fit as $\alpha_{QED}(M_Z^2)$, but could be measured at high luminosity FCCee very precisely. (It is advertised as "determining $\alpha_{QED}(M_Z^2)$ " from $A_{FB}(\sqrt{s_\pm})$ ".)
- ► However, A_{FB} near $\sqrt{s_{\pm}}$ is varying very strongly, hence is prone to large QED corrections (for instance ISR).
- ► In particular A_{FB} away from Z peak gets also a direct sizable contributions from QED initial-final state interference, nickname IFI.
- ▶ It is therefore necessary to re-discuss how efficiently these trivial but large QED effects in *A_{FB}* can be controlled and/or eliminated.

The aim is to reduce QED uncert. to $\delta A_{FB}(e^+e^- o \mu^+\mu^-) < 4 imes 10^{-5}$

- ▶ Presently $\Delta \alpha_{QED}(M_Z)/\alpha_{QED} \simeq 1.1 \times 10^{-4}$ (using low energy e^+e^- data).
- ▶ Recent studies using the same method of dispersion relations are quoting possible improvements down to $\Delta\alpha/\alpha \simeq (0.5-0.2)\times 10^{-4}$.
- ▶ To be competitive A_{FB} has to provide $\Delta \alpha / \alpha < 10^{-4}$
- ▶ Using Fig.4 of arxiv:1512.05544 paper by Patrick Janot

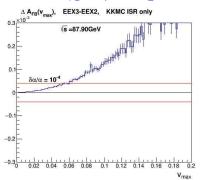
$$\Delta \alpha / \alpha < 10^{-4}$$
 translates into $\Delta A_{FB} < 4 \times 10^{-5}$

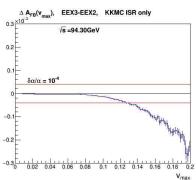
- ▶ LEP era estimate of QED uncertainty in A_{FB} outside Z peak was $\sim 2.5 \times 10^{-3}$, see "The LEP-2 MC Workshop 2000", arxiv:0007180.
- Its improvement by at least factor 200 sounds as a very ambitious goal!
- ▶ Encouraging precedent: for QED photonic corrs. to Z-lineshape ($\sim 30\%$), its uncertainty reduced down to $\delta\sigma/\sigma \simeq 3\times 10^{-4}$, (Jadach,Skrzypek,Martinez, Phys.Lett.B280(1992)129)!

QED (photonic) correction effects in $A_{FB}(e^+e^- \to \mu^+\mu^-)$ General features

- ▶ Pure ISR (initial state radiation) indirect influence due to reduction of \sqrt{s} . Non-soft h.o. missing corrs. under very good control, see next slide.
- Pure FSR (final state radiation) for sufficiently inclusive event selection (cut-offs) generally small, but cut-off dependence has to be controlled with high quality MC.
- ▶ Direct contribution of IFI (initial-final state interference) is suppressed at the peak but sizable off-peak.
- ▶ IFI effect comes from non-trivial matrix-element, even in the soft-photon approximation.
- ► KKMC Monte-Carlo program (J.S., Ward, Was, Phys.Rev. D63 (2000)) is the most sophisticated tool to calculate all the above effects.

Pure ISR in A_{FB} at $\sqrt{s} \sim M_Z \pm 3 \text{GeV}$

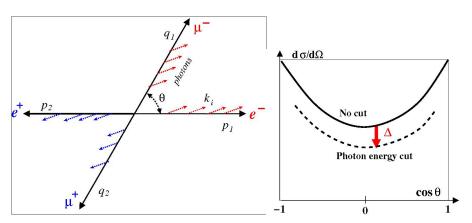




- ▶ Cut on energy of all photons $v < v_{\text{max}}, v \equiv 1 \frac{M_{\mu\mu}^2}{s} \simeq \sum_i \frac{2E_i^{\gamma}}{\sqrt{s}}$
- ► Examine downgrade non-soft of QED M.E. from EEX3 to EEX2
- ► For photon cut-off below $v_{\text{max}} = 0.03$ we get $\delta A_{FB} < 4 \cdot 10^{-4}$.
- ▶ Looks good, but to be x-checked using semianalytical *KKsem*.
- ▶ Important contribution from e⁺e[−] soft pairs not included!!!

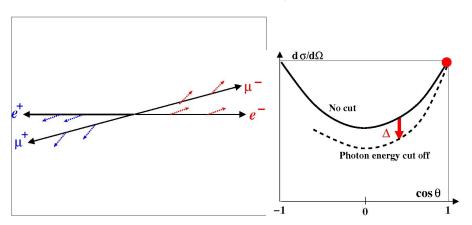
A general understanding of the IFI

- ▶ In $e^-e^+ \to \mu^-\mu^+$ not only e^- gets annihilated, but also its accompanying elmgt. field of charge -1. New elmg. field of charge -1 is created along μ^- .
- ▶ At **wide angles** these two processes are independent sources of real photos. The effect of cut on photon energy is essentially θ -independent.



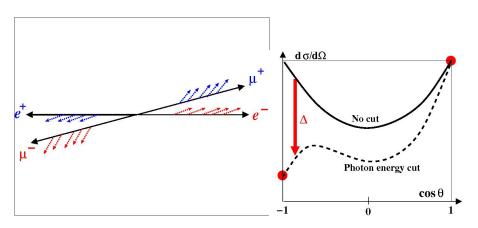
A general understanding of the IFI

- ▶ In $e^-e^+ \to \mu^-\mu^+$ not only e^- gets annihilated, but also its accompanying elmgt. field of charge -1. New elmg. field of charge -1 is created along μ^- .
- ▶ μ^- close to initial e^- inherits part of e^- elmg. field \to bremsstrahlung is weaker. Hence for $\theta \to 0$ zero effect due to cut on real photons!

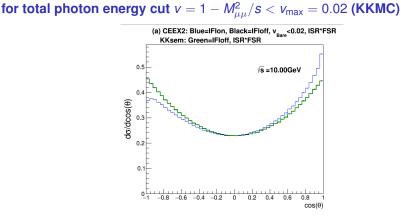


A general understanding of the IFI

- ▶ In $e^-e^+ \to \mu^-\mu^+$ not only e^- gets annihilated, but also its accompanying elmgt. field of charge -1. New elmg. field of charge -1 is created along μ^- .
- ▶ In the **backward** direction, replacing field of charge -1 with that of +1 is "more violent", more real photons \rightarrow stronger effect of the cut, dip in $d\sigma/d\Omega$.



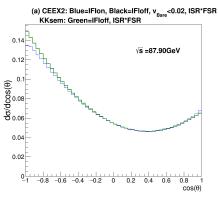
IFI effect in the muon angular distri. at $\sqrt{s} = 10 \, GeV, \ M_Z \pm 3.5 \, GeV$

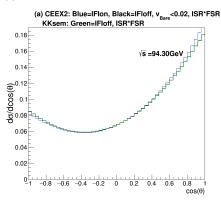


- ▶ A few percent effect seen in the angular distribution.
- Good agreement of KKMC and semianalytical KKsem when IFI is off.
- (Inclusion of IFI in semianalytical KKsem is quite urgent!)

IFI effect in the muon angular distri. at $\sqrt{s} = 10 \, GeV, \ M_Z \pm 3.5 \, GeV$

for total photon energy cut $v=1-M_{\mu\mu}^2/s < v_{
m max}=0.02$ (KKMC)

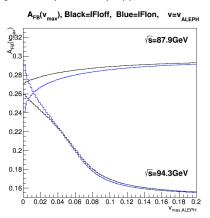


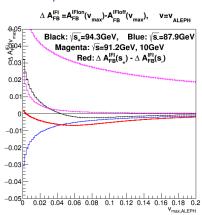


- ▶ A few percent effect seen in the angular distribution.
- Good agreement of KKMC and semianalytical KKsem when IFI is off.
- (Inclusion of IFI in semianalytical KKsem is quite urgent!)

Direct influence of IFI in $A_{FB}(e^+e^- ightarrow \mu^+\mu^-)$ at $\sqrt{s}\sim M_Z\pm 3{\rm GeV}$

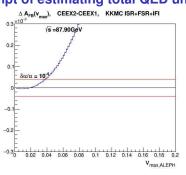
Sign of A_{FB}(87.9 GeV) flipped in order to better fit into plot

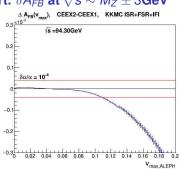




- ▶ IFI suppression by $\sim \Gamma/M$ seen comparing $\sqrt{s} = 10 \text{GeV}$ and 91GeV results.
- ▶ IFI effect is \sim 3% at s_{\pm} (\sim 1% when combined).
- ▶ IFI is huge, compared to the aimed precision $\delta A_{FB} \sim 10^{-5}$
- $ightharpoonup \sim \Gamma/M$ suppression dies out for $v_{max} < 0.04$.

Attempt of estimating total QED uncert. δA_{FB} at $\sqrt{s} \sim M_Z \pm 3 \text{GeV}$

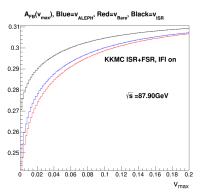


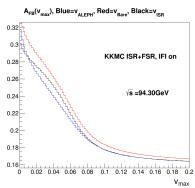


- Examined CEEX2 → CEEX1 downgrade of M.E. in KKMC for ISR+FSR+IFI.
- ▶ Energy cut-ff on all photons using FSR-inclusive $v = v_{\text{max},ALEPH}$.
- ▶ Naively, we get $\delta A_{FB} < 4 \cdot 10^{-4}$ for photon cut-off $v_{max} \le 0.03$ as wanted...
- However, this test does not quantify QED uncertainty in IFI in a reliable way, because IFI remains in exactly the same soft-photon resumation scheme.
- Quality of the soft-photon resumation of IFI has to be examined separately

 it was not done in a systematic way at so high precision level.

How important is the type of kinematic cuts in A_{FB} ?





- ▶ v_{ALEPH} is FSR-inclusive, $v_{bare} = 1 M_{\mu\mu}^2/s$ is FSR-sensitive and v_{ISR} from $M_{\mu\mu}^2$ after ISR before FSR (from MC).
- ▶ It matters a lot, > 1%, especially above Z!
- It does not seem to cancel between s₊ and s₋.
- MC like KKMC is mandatory to control/eliminate this effect.
- ▶ N.B. Effect of changing definition of muon $\cos \theta$ is completely negligible!

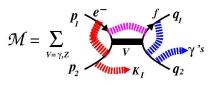
Theoretical uncertainty of soft-resummed IFI contribution to resonant matrix element implemented in KKMC

- Basicaly, soft-resumed M.E. in KKMC looks perfect, but all resummed calculation are to some extent non-unique.
- ▶ Pioneering works in the soft-photon resummation for resonant $e + e^-$ annihilation including IFI were done by Frascati group, (Greco et.at. Phys. Lett. B101 (1975) 234, Phys. Lett. B171 (1980) 118.)
- KKMC implements and extends this technique,
 see ref. [JWW-2001], Jadach, Ward, Was, Phys. Rev. D63(2001)113009
- Possible source of uncertainty: virtual formfactor.

Multiphoton matrix element in KKMC

Neglecting for clarity non-soft parts it reads (see [JWW-2001]):

$$\sigma(s) = \frac{1}{\text{flux}(s)} \sum_{n=0}^{\infty} \frac{1}{n!} \int d\tau_{n+2} \prod_{i=1}^{n} \int \frac{d^{3}k_{i}}{2k_{i}^{0}} \mathcal{M}^{\mu_{1},\mu_{2},...,\mu_{n}}(k_{1},...,k_{n}) \big[\mathcal{M}_{\mu_{1},\mu_{2},...,\mu_{n}}(k_{1},...,k_{n}) \big]^{*}$$

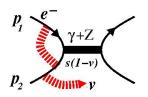


$$\begin{split} \mathfrak{M}^{\mu_1,...,\mu_n}(k_1,...,k_n) &= \sum_{V=\gamma,Z} e^{\alpha B_4(p_i,q_i) + \alpha \Delta B_4^V(P-K_I)} \sum_{\{I,F\}} \prod_{i \in I} j_I^{\mu_i}(k_i) \prod_{r \in F} j_F^{\mu_r}(k_r) \, \mathcal{M}_V^{(0)}\big(P-K_I\big) \\ &j_I^{\mu}(k) = \frac{e}{4\pi^{3/2}} \Big(\frac{p_1^{\mu}}{p_1 \cdot k} - \frac{p_2^{\mu}}{p_2 \cdot k}\Big), \quad j_F^{\mu}(k) = \frac{e}{4\pi^{3/2}} \Big(\frac{q_1^{\mu}}{q_1 \cdot k} - \frac{q_2^{\mu}}{q_2 \cdot k}\Big), \ P = p_1 + p_2, \quad K_I = \sum_{i \in I} k_i. \end{split}$$

- ▶ $B_4(p_i,q_i)$ is YFS virtual formfactor. The additional $\alpha\Delta B_4^Z(P) = -2\frac{\alpha}{\pi}\ln\frac{-t}{s}\ln\frac{M_Z^2-iM\Gamma_Z-(P-K_i)^2}{M_Z^2-iM_Z\Gamma_Z}, \Delta B_4^\gamma = 0$, (Greco et.al. 1974) is mandatory for real/virtual cancellations of $\sim \frac{\alpha}{\pi}\ln\frac{\Gamma_Z}{M_Z}$. (To be improve further?).
- ▶ Almost complete $\mathcal{O}(\alpha^2)$ (except penta-boxes) QED virtual and real corrs. and EW $\mathcal{O}(\alpha^1)$ (DIZET) are also included in KKMC.

High precision Z-lineshape QED ISR formula used at LEP

decades of work by: Yennie, Frautschi, Suura, Gribov Lipatov, Kuraev, Fadin, Greco, Pancherini, Srivastava, Jackson, Martin, Berends, Burgers, Jadach, Skrzypek, Ward,...

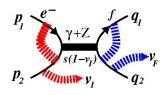


$$\sigma(s, v_{\text{max}}) = \int_0^{v_{\text{max}}} dv \ F(\gamma_I) \gamma_I v^{\gamma_I - 1} \ \sigma_B(s(1 - v)) \ \left[1 + \text{NIR(v)} \right],$$
$$F(\gamma) \equiv \frac{e^{-C_E \gamma}}{\Gamma(1 + \gamma)}, \quad \gamma_I = 2 \frac{\alpha}{\pi} \left(\ln \frac{s}{m_s^2} - 1 \right)$$

- Non-infrared perturbative function NIR(v), for $\delta\sigma/\sigma \simeq 2 \times 10^{-4}$ precision, to be found in J.S.+Skrzypek+Pietrzyk Phys.Lett.B280(1992)129.
- ▶ One can add Electroweak corrections to σ_B , 1st order FSR, generalize to $d\sigma/d\Omega$ etc. as it was done in ZFITTER.

KKMC extensively tested with ISR+FSR (IFI off) formula

implemented in semianalytical program KKsem, part of KKMC distribution

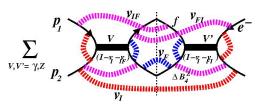


$$\begin{split} \frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) &= \int dv_I \; dv_F \; \delta(v-v_I-v_F)\theta(v < v_{\text{max}}) \\ &\times \textit{\textbf{F}}(\gamma_I)\gamma_I \textit{\textbf{V}}_I^{\gamma_I-1} \; \textit{\textbf{F}}(\gamma_F)\gamma_I \textit{\textbf{V}}_F^{\gamma_F-1} \; \; \frac{d\sigma_0}{d\Omega}\big(s(1-v_I),\theta\big) \; \big[1+\text{NIR}(v_I,v_F)\big], \\ v &= 1-(q_1+q_2)^2/s, \quad \gamma_F = 2\frac{\alpha}{\pi}\Big(\ln\frac{s}{m_f^2}-1\Big) \end{split}$$

- In KKsem $d\sigma_0/d\Omega$ is decorated with EW corrections
- For $v_{\text{max}} < 0.2$ definition of θ is not essential.
- Non-IR function NIR(v_I , v_F) from analytical integration of the MC distributions.
- $\delta(v-v_l-v_F) \rightarrow \delta(1-v-(1-v_l)(1-v_F))$ more realistic for hard emissions.

NEW formula for precision calibration of ISR+FSR+IFI

Eq.(90) in [JWW2001] and in older Frascati works, implemented recently in KKsem

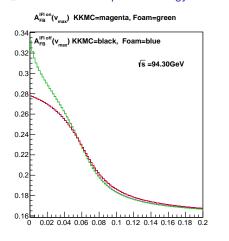


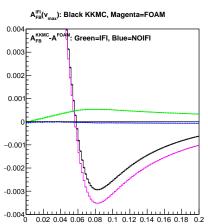
$$\begin{split} \frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) &= \sum_{V,V'=\gamma,Z} \int dv \; dv_{I} \; dv_{F} \; dv_{IF} \; dv_{FI} \; \delta(v-v_{I}-v_{F}-v_{IF}-v_{FI})\theta(v< v_{\text{max}}) \\ &\times \textit{\textbf{F}}(\gamma_{I})\gamma_{I}\textit{\textbf{V}}_{I}^{\gamma_{I}-1} \; \textit{\textbf{F}}(\gamma_{F})\gamma_{I}\textit{\textbf{V}}_{F}^{\gamma_{F}-1} \; \; \textit{\textbf{F}}(\gamma_{IF})\gamma_{IF}\textit{\textbf{V}}_{IF}^{\gamma_{IF}-1} \; \textit{\textbf{F}}(\gamma_{FI})\gamma_{FI}\textit{\textbf{V}}_{IF}^{\gamma_{FI}-1} \\ &\times e^{2\alpha\Delta B_{4}^{V}} \mathcal{M}_{V}^{(0)} \left(s(1-v_{I}-v_{IF}),\theta\right) \left[e^{2\alpha\Delta B_{4}^{V'}} \mathcal{M}_{V'}^{(0)} \left(s(1-v_{I}-v_{FI}),\theta\right)\right]^{*} \left[1 + \text{NIR}(v_{I},v_{F})\right], \end{split}$$

- Convolution of four radiator functions (instead of two)!
- \triangleright Extra virtual formfactor $\triangle B_{\perp}^{Z}$ due to IFI for resonant contrib.

New KKsem versus KKMC test at the $\delta A_{FB} \sim 10^{-4}$ level

 $v_{\text{max}} = \text{cutoff on total photon energy in units of the beam energy}$





Small difference between KKMC and 5-dim. KKsem/Foam (green curve) disappears at soft limit $v_{\text{max}} \rightarrow 0$, and is still to be explained.

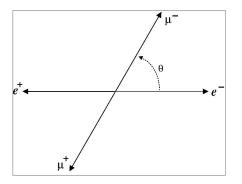
Both calculations include IFI within soft photon resummation.

Summary

- ► The influence of IFI on A_{FB} is huge, as compared to precision scale aimed at FCCee.
- ▶ Strong \sqrt{s} dependence of A_{FB} near $M_Z \pm 3.5 \, GeV$ matters (ISR).
- However, IFI could be calculated in perturbative QED very precisely, thanks to power of the soft photon resummation, similarly as huge QED correction to Z lineshape.
- ► IFI effect is strongly dependent on the type and strength of kinematic cuts, hence good quality MC implementation is mandatory, to take them out from the data.
- ▶ KKMC simulates soft (hard) real photons including IFI in an almost perfect way (virtual form-factor to be improved?).
- ▶ Main work needed to crosscheck KKMC and get more/better quantitative results with $\delta A_{FB} \sim 10^{-5}$ or better "reso;ution".
- Encouragement and feedback from Patrick Janot is appreciated!

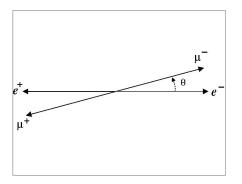
APPENDIX A: Understanding the essence IFI within a simple toy model

- ► Consider $e^-e^+ \rightarrow \gamma^* \rightarrow \mu^-\mu^+ + n\gamma$,
- with flat CMS energy \sqrt{s} dependence,
- in the high energy regime $\sqrt{s}>>m_e,m_\mu$
- first for wide muon scattering angle θ



APPENDIX A: Understanding the essence IFI within a simple toy model

- ► Consider $e^-e^+ \rightarrow \gamma^* \rightarrow \mu^-\mu^+ + n\gamma$,
- with flat CMS energy \sqrt{s} dependence,
- in the high energy regime $\sqrt{s}>>m_e,m_\mu$
- ▶ and next for small scattering angle $\theta \to 0$

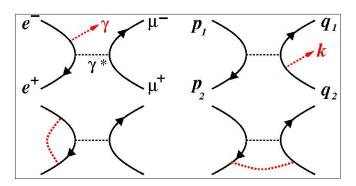


Understanding IFI – simple toy model

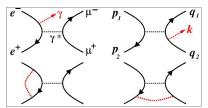
4

Diagrams and kinematics

- Our final goal is IFI in multiphoton case,
- ▶ but the essence of the IFI can be grasped analyzing single real/virtual photon emission case, with (generic) Feynman diagrams:



$$s = 2p_1 \cdot p_2, \quad t = -2p_1 \cdot q_1 = -s \tfrac{1-\cos\theta}{2}, \quad u = -2p_1 \cdot q_2 = -s \tfrac{1+\cos\theta}{2},$$



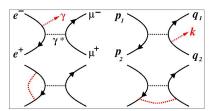
Photon emissions M.E. is $\mathcal{M}^{\mu}(k)\simeq\mathcal{M}^{\mu}_{Born}J^{\mu}(k),\ J^{\mu}(k)=J^{\mu}_{I}(k)-J^{\mu}_{F}(k)$ and

$$J_{I}^{\mu}(k) = \frac{eQ_{q}}{4\pi^{3/2}} \Big(\frac{p_{1}^{\mu} - k^{\mu}}{p_{1} \cdot k} - \frac{p_{2}^{\mu} - k^{\mu}}{p_{2} \cdot k} \Big), \quad J_{F}^{\mu}(k) = \frac{eQ_{\mu}}{4\pi^{3/2}} \Big(\frac{q_{1}^{\mu} - k^{\mu}}{q_{1} \cdot k} - \frac{q_{2}^{\mu} - k^{\mu}}{q_{2} \cdot k} \Big).$$

Adding vertex and box to real photon integrated with cut *K*:

$$\begin{split} \frac{d\sigma}{d\Omega}(c,K) &\simeq \frac{d\sigma_{Born}}{d\Omega} \Big[1 - \int d^4k \Big(J_I^\mu(k) \cdot J_I^\mu(k) + J_F^\mu(k) \cdot J_F^\mu(k) - 2J_I^\mu(k) \cdot J_F^\mu(k) \Big)_{virt.} \\ &+ \int \frac{d^3K}{k^0} \theta(K-k^0) \left(J_I^\mu(k) \cdot J_I^\mu(k) + J_F^\mu(k) \cdot J_F^\mu(k) - 2J_I^\mu(k) \cdot J_F^\mu(k) \right)_{real} \Big] \end{split}$$

where $c = \cos \theta$, $E = \sqrt{s}/2$, and $\varepsilon << 1$ is IR regulator.



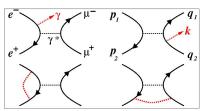
Photon emissions M.E. is $\mathcal{M}^{\mu}(k) \simeq \mathcal{M}^{\mu}_{Born}J^{\mu}(k), \ J^{\mu}(k) = J^{\mu}_{I}(k) - J^{\mu}_{F}(k)$ and

$$J_{l}^{\mu}(k) = \frac{eQ_{q}}{4\pi^{3/2}} \Big(\frac{p_{1}^{\mu} - k^{\mu}}{p_{1} \cdot k} - \frac{p_{2}^{\mu} - k^{\mu}}{p_{2} \cdot k} \Big), \quad J_{F}^{\mu}(k) = \frac{eQ_{\mu}}{4\pi^{3/2}} \Big(\frac{q_{1}^{\mu} - k^{\mu}}{q_{1} \cdot k} - \frac{q_{2}^{\mu} - k^{\mu}}{q_{2} \cdot k} \Big).$$

After integrating over photon angle:

$$\begin{split} \frac{d\sigma}{d\Omega}(c,K) &\simeq \frac{d\sigma_{\textit{Born}}}{d\Omega} \Big[1 - \int_{\varepsilon\textit{E}}^{\textit{E}} \frac{dk^0}{k_0} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{\textrm{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\textrm{\mu}}^2} - 4\frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big)_{\textit{virt.}} \\ &+ \int_{\varepsilon\textit{E}}^{\textit{K}} \frac{dk^0}{k^0} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{\textrm{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\textrm{\mu}}^2} - 4\frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big)_{\textit{real}} \Big] \end{split}$$

where $c = \cos \theta$, $E = \sqrt{s}/2$, and $\varepsilon << 1$ is IR regulator.



Photon emissions M.E. is $\mathcal{M}^{\mu}(k)\simeq\mathcal{M}^{\mu}_{Born}J^{\mu}(k),\ J^{\mu}(k)=J^{\mu}_{I}(k)-J^{\mu}_{F}(k)$ and

$$J_{l}^{\mu}(k) = \frac{eQ_{q}}{4\pi^{3/2}}\Big(\frac{p_{1}^{\mu}-k^{\mu}}{p_{1}\cdot k} - \frac{p_{2}^{\mu}-k^{\mu}}{p_{2}\cdot k}\Big), \quad J_{F}^{\mu}(k) = \frac{eQ_{\mu}}{4\pi^{3/2}}\Big(\frac{q_{1}^{\mu}-k^{\mu}}{q_{1}\cdot k} - \frac{q_{2}^{\mu}-k^{\mu}}{q_{2}\cdot k}\Big).$$

Finally, the remnant of the virtual not eaten up by real is:

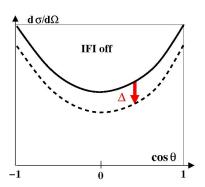
$$\frac{d\sigma}{d\Omega}(c,K) \simeq \frac{d\sigma_{\textit{Born}}}{d\Omega} \Big[1 - \int_{K}^{E} \frac{dk^0}{k_0} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{\text{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\mu}^2} - 4\frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big)_{\textit{virt}.} \Big]$$

where $c = \cos \theta$, $E = \sqrt{s}/2$, and $\varepsilon << 1$ is IR regulator.

Let us now analyze the above result!

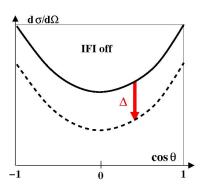
First switch IFI off, make cutoff K stronger starting from K = E ($\Delta = 0$):

$$\frac{d\sigma}{d\Omega}(c,K) \simeq \frac{d\sigma_{\textit{Born}}}{d\Omega} \Big[1 - \int_{K}^{E} \frac{dk^{0}}{k_{0}} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{e}^{2}} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\mu}^{2}} \Big)_{\textit{virt.}} = \frac{d\sigma_{\textit{Born}}}{d\Omega} \big(1 - \Delta(K/E) \big) \Big]$$



First switch IFI off, make cutoff K stronger starting from K = E ($\Delta = 0$):

$$\frac{d\sigma}{d\Omega}(c,K) \simeq \frac{d\sigma_{\textit{Born}}}{d\Omega} \Big[1 - \int_{K}^{E} \frac{dk^0}{k_0} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{\theta}^2} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\mu}^2} \Big)_{\textit{virt.}} = \frac{d\sigma_{\textit{Born}}}{d\Omega} \Big(1 - \frac{\Delta(K/E)}{m_{\theta}^2} \Big) \Big]$$

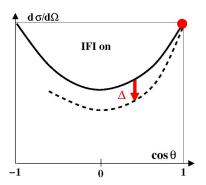


IFI is the king at $c = cos\theta = \pm 1$ ends

Now switch IFI on and look at $t \to 0$ ($c \to 1$) side, s - |t| - |u| = 0, $|u| \to s$. IFI kills bot ISR and FSR \to QED dies out in the forward scat.:

$$\Delta = \int_{\mathcal{K}}^{\mathcal{E}} \frac{dk^0}{k_0} \Big(2\frac{\alpha}{\pi} \ln \frac{s}{m_{\text{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{s}{m_{\mu}^2} - 4\frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big) \rightarrow \int_{\mathcal{K}}^{\mathcal{E}} \frac{dk^0}{k_0} \Big(2\frac{\alpha}{\pi} \ln \frac{t}{m_{\text{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{t}{m_{\mu}^2} \Big) \simeq 0.$$

i.e. $d\sigma/d\Omega$ in the forward direct. c=1, t=0, stays unchanged!

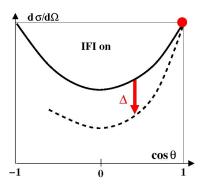


IFI is the king at $c = cos\theta = \pm 1$ ends

Now switch IFI on and look at $t \to 0$ ($c \to 1$) side, s - |t| - |u| = 0, $|u| \to s$. IFI kills bot ISR and FSR \to QED dies out in the forward scat.:

$$\Delta = \int_{\mathcal{K}}^{\mathcal{E}} \frac{\textit{d}\textit{k}^0}{\textit{k}_0} \Big(2\frac{\alpha}{\pi} \ln \frac{\textit{s}}{\textit{m}_{\text{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{\textit{s}}{\textit{m}_{\mu}^2} - 4\frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big) \rightarrow \int_{\mathcal{K}}^{\mathcal{E}} \frac{\textit{d}\textit{k}^0}{\textit{k}_0} \Big(2\frac{\alpha}{\pi} \ln \frac{t}{\textit{m}_{\text{e}}^2} + 2\frac{\alpha}{\pi} \ln \frac{t}{\textit{m}_{\mu}^2} \Big) \simeq 0.$$

i.e. $d\sigma/d\Omega$ in the forward direct. c = 1, t = 0, stays unchanged!

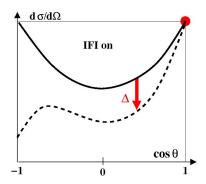


IFI is the king at $c = \cos \theta = \pm 1$

In the backward scattering: $u \to 0$ ($c \to -1$ side), s - |t| - |u| = 0, $|t| \to s$, IFI enhances total QED corr. by factor 2:

$$\Delta = \int_{\mathcal{K}}^{\mathcal{E}} \frac{d k^0}{k_0} \Big(2 \frac{\alpha}{\pi} \ln \frac{s}{m_e^2} + 2 \frac{\alpha}{\pi} \ln \frac{s}{m_\mu^2} - 4 \frac{\alpha}{\pi} \ln \frac{|t|}{|u|} \Big) \rightarrow \int_{\mathcal{K}}^{\mathcal{E}} \frac{d k^0}{k_0} \Big(4 \frac{\alpha}{\pi} \ln \frac{s}{m_e^2} + 4 \frac{\alpha}{\pi} \ln \frac{s}{m_\mu^2} \Big),$$

creating a dip in the muon angular distribution in backward direction.



Narrow resonance changes pattern of QED cancellations a lot...

In particular the role for IFI changes

Let us analyze simpler/cleaner example of $e^-e^+ \to R \to \mu^-\mu^+$, at the resonance position $\sqrt{s} = M_R$:

- ► ISR: Virtual $\sim -\frac{2\alpha}{\pi} \ln \frac{s}{m_e^2} \ln \frac{E}{\lambda}$, as without resonance; Real $\sim +\frac{2\alpha}{\pi} \ln \frac{s}{m_e^2} \ln \frac{\Gamma_R}{\lambda}$ cut by resonance; $\sigma(K)$ suppressed by $\left[1 - \frac{2\alpha}{\pi} \ln \frac{M_R}{\Gamma_R}\right]$ for any cut $K > \Gamma_R$.
- ► FSR as without resonance: $\sigma(K)$ suppressed by $1 \frac{2\alpha}{\pi} \ln \frac{s}{m_u^2} \ln \frac{s}{K}$
- ▶ IFI: Virtual $\sim -\frac{4\alpha}{\pi} \ln \frac{t}{u} \ln \frac{\Gamma_B}{\lambda}$ cut by resonance!!! Real $\sim +\frac{4\alpha}{\pi} \ln \frac{t}{u} \ln \frac{\Gamma_B}{\lambda}$ cut by resonance; $d\sigma(K)/d\Omega$ suppressed strongly by Γ_B/M_B for any cut $K > \Gamma_B$! And by milder $\left[1 \frac{2\alpha}{\pi} \ln \frac{t}{u} \ln \frac{\Gamma_B}{K}\right]$ for $K < \Gamma_B$.

Away from resonance one goes gradually to the previous non-resonant case, and the QED calculation with the photon resummation at the amplitude level is mandatory. It is not trivial but feasible, because soft photon approximation can be exploited.

Appendix B

Definition of $v_{ALEPH} = 1 - z_{ALEPH}$ deduced from muon angles (acollinearity) according to 1996 ALEPH note:

$$z_{ALEPH} = \frac{\sin \theta_1 + \sin \theta_2 - |\sin \theta_1 + \theta_2|}{\sin \theta_1 + \sin \theta_2 + |\sin \theta_1 + \theta_2|}.$$

Definition of muon scattering angle according to Phys.Lett. B219, 103 (1989):

$$\cos\theta_{PL} = (E_1\cos\theta_1 - E_2\cos\theta_2)/(E_1 + E_2)$$

Definition of muon scattering angle according to Phys.Rev. D41, 1425 (1990):

$$\begin{aligned} y_1 &= \sin\theta_2/(\sin\theta_1 + \sin\theta_2), \quad y_2 &= \sin\theta_1/(\sin\theta_1 + \sin\theta_2), \\ &\cos\Theta_{PRD} &= y_1\cos\theta_1 - y_2\cos\theta_2. \end{aligned}$$

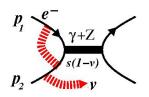
Appendix C

Semianalytical formulas for MC (KKMC) calibration

Step by step: ISR, ISR+FSR and ISR+FSR+IFI.

High precision Z-lineshape QED ISR formula used at LEP

decades of work by: Yennie, Frautschi, Suura, Gribov Lipatov, Kuraev, Fadin, Greco, Pancherini, Srivastava, Jackson, Martin, Berends, Burgers, Jadach, Skrzypek, Ward,...



$$\sigma(s, v_{\text{max}}) = \int_0^{v_{\text{max}}} dv \ F(\gamma_I) \gamma_I v^{\gamma_I - 1} \ \sigma_B(s(1 - v)) \ \left[1 + \text{NIR(v)} \right],$$
$$F(\gamma) \equiv \frac{e^{-C_E \gamma}}{\Gamma(1 + \gamma)}, \quad \gamma_I = 2 \frac{\alpha}{\pi} \left(\ln \frac{s}{m_s^2} - 1 \right)$$

- Non-infrared perturbative function NIR(v), for $\delta\sigma/\sigma \simeq 2 \times 10^{-4}$ precision, to be found in J.S.+Skrzypek+Pietrzyk Phys.Lett.B280(1992)129.
- ▶ One can add Electroweak corrections to σ_B , 1st order FSR, generalize to $d\sigma/d\Omega$ etc. as it was done in ZEITTER.

KKMC extensively tested with ISR+FSR (IFI off) formula

implemented in semianalytical program KKsem, part of KKMC distribution



$$\begin{split} \frac{d\sigma}{d\Omega}(s,\theta,v_{\text{max}}) &= \int dv_I \ dv_F \ \delta(v-v_I-v_F)\theta(v < v_{\text{max}}) \\ &\times F(\gamma_I)\gamma_I v_I^{\gamma_I-1} \ F(\gamma_F)\gamma_I v_F^{\gamma_F-1} \ \frac{d\sigma_0}{d\Omega}(s(1-v_I),\theta) \ \big[1 + \text{NIR}(v_I,v_F)\big], \\ v &= 1 - (q_1+q_2)^2/s, \quad \gamma_F = 2\frac{\alpha}{\pi} \Big(\ln\frac{s}{m_f^2} - 1\Big) \end{split}$$

- In KKsem $d\sigma_0/d\Omega$ is decorated with EW corrections
- For $v_{\text{max}} < 0.2$ definition of θ is not essential.
- Non-IR function NIR(v_I , v_F) from analytical integration of the MC distributions.
- $\delta(v-v_l-v_F) \rightarrow \delta(1-v-(1-v_l)(1-v_F))$ more realistic for hard emissions.