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tt̄ production at the LHC

LHC σ(tt) [pb] L [fb−1] Nevent
7 TeV 172.676 5 8,6× 105

8 TeV 246.652 19.7 4,8× 106

13 TeV 807.296 2.3 1,8× 106
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This give us a strong motivation to test, develop and improve pQCD for this process.
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Status of pQCD for tt̄ production
Only one complete NNLO calculation of inclusive and differential cross section, improved
by NNLL resummation,
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FIG. 3: Top-antitop pT distribution in LO, NLO and NNLO
QCD. Error bands from scale variation only.

variation has not been included in these results (or in any
other results shown in this Letter). For clarity, in Figs. 1
and 2 the scale variation is only shown for the NNLO
correction. When computing various perturbative orders
we always use PDFs of matching order.

No overflow events are included in any of the bins
shown in this Letter. The normalizations of the distri-
butions in Figs. 1 and 2 are derived in such a way that
the integral over the bins shown in these figures yields
unity. Because of a slight difference in the bins, we note
a small mismatch with respect to the measurements we
compare to: for the top-quark pT distribution CMS has
one additional bin 400 GeV < pT < 500 GeV (not shown
in Fig. 1). This bin contributes only around 4 per mil
to the normalization of the data and we neglect it in the
comparison. The yt distribution computed by us extends
to |yt| < 2.6. This last bin differs slightly from the cor-
responding CMS bin which extends to |yt| < 2.5. This
mismatch is shown explicitly in Fig. 2.

We observe that the inclusion of NNLO QCD correc-
tions in the pT,t distribution brings SM predictions closer
to CMS data in all bins. In fact the two agree within er-
rors in all bins but one (recall that the PDF error has not
been included in Fig. 2). The case of the yt distribution
is more intriguing; we observe in Fig. 2 that the NNLO
and NLO central values are essentially identical in the
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FIG. 4: As in Fig. 3 but for the top pair invariant mass.

whole rapidity range (this is partly related to the size of
the bins). Given the size of the data error, it does not
appear that there is any notable tension between NNLO
QCD and data. The apparent stability of this distri-
bution with respect to NNLO radiative corrections will
clearly make comparisons with future high-precision data
very interesting.

We do not compare with the CMS data for the mtt̄

and ytt̄ distributions since the mismatch in binning is
more significant. Instead, in Figs. 4 and 5 we present
the NNLO predictions for the absolute normalizations
of these distributions. We stress that the bin sizes we
present are significantly smaller than the ones in the ex-
isting experimental publications. This should make it
possible to use our results in a variety of future experi-
mental and theoretical analyses. For this reason, in Fig. 3
we also present the absolute prediction for the top-quark
pT distribution with much finer binning compared to the
one in Fig. 1.

In Figs. 3,4, and 5 we show the scale variation for each
computed perturbative order, together with the NLO and
NNLO K factors. In all cases one observes a consistent
reduction in scale variation with successive perturbative
orders. Importantly, we also conclude that our scale vari-
ation procedure is reliable, since NNLO QCD corrections
are typically contained within the NLO error bands (and
to a lesser degree for NLO with respect to LO). We also
notice that the NNLO corrections do not affect the shape

Overall good agreement. Scale uncertainty varies with kinematics: within 5 % for regions of
interest for run I and II, JHEP 04 (17) 071. Other theoretical uncertainties for the total
cross-section are: PDF ∼ 2− 3 %, αs ∼ 1,5 %,m ∼ 3 % for the total XS.
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Status of pQCD for tt̄ production

There are other results for top production at O(α2
s) and beyond but they are partial or

approximate:

Abelof et. al. 2015. Leading Nc total cross-section NNLO.

Catani , et. al, 2015. Partial results for NNLO +resummation. Small-qT resummation
+ qT subtraction. Missing piece: soft NNLO evolution.

Broggio et. al. 2014, Ahrens et.al, 2010 (SCET). Threshold resummation + RG.

Kidonakis 2015. Approximate NNNLO, soft gluon corrections to single top production.
See also 2012, NNLL threshold resummation.

Making comparisons is highly non-trivial.

In this talk: New approach to tt̄ production @ NNLO in the small q⊥(= pt + pt̄)⊥ region.
Our approach is numerical and highly automated (graph independent) and has the potential
to be extend to other processes (e.g. gg → H @ NNNLO).
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Why to look at the small qT region?

Top pair production with qT = 0 only occurs for Born kinematics and this implies that
(Catani & Grazzini 2007, 2015)

dσtt̄NNLO

∣∣∣∣∣
q⊥=q0⊥>0

= dσtt̄+jet
NLO

∣∣∣∣∣
q⊥=q0⊥

Hence, cross-sections (distributions) integrated over q⊥ can be written as

σtt̄NNLO =

∫ q0⊥
dq⊥dσtt̄NNLO +

∫
q0⊥

dq⊥dσtt̄+jet
NLO

The NLO results exists (e.g. Catani et. al. 2002, Czakon 2010) for tt+ jet. The first part is
missing and we aim for it!
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Soft collinear Effective Theory for tt̄ at small q⊥
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P1
p1 =ξ1P1

P2
p2 =ξ2P2

pt̄

pt }q = pt + pt̄
θ(tt̄ at rest)

Y

X

ΛQCD � q2
⊥ � m2,

s = (p1 + p2)2, q2,

(p1 − pt)2 −m2,

(p1 − pt̄)2 −m2

Leading radiation (X) factorises as (Xing Zhu, et. al PRD 88 (13) 074004)

dσ
dq2dq2

⊥dθdY
=
∑
X

B1 ⊗B2 ⊗H ⊗ S +O

(
Λ2
QCD

q2
⊥

,
Λ2
QCD

q2

)

i.e. covers wide range of differential observables.

Bi and H known at NNLO (Gehrmann et. al. (‘14) and Czakon et. al. (‘13)). We aim for S.

Advatages of this approach: recycles the most and it is generable!



SCET factorisation

In the small q⊥ limit, four regions are not power suppressed by λ =
√
q2
⊥/q

2 are
(k+, k−, k⊥)

Hard (1, 1, 1)

Collinear (1, λ2, λ)

Anti-collinear (λ, 1, λ)

Soft (λ, λ, λ1⊥)

After azimuthal averaging the cross section factorises as

d4σ

dq2
⊥ dy dq2 d cos θ

∼
∫

dξ1 dξ2 dx⊥(...)×
∑

i=q,q̄,g

BLTi (ξ1, x
2
⊥)BLTī (ξ2, x

2
⊥) · Tr

[
HLT
īi (q2,m,~vt)

∫
dΩd−3

xT
Sīi(~x⊥, ~vt)

]
+O(α3

s)

where ~vt is the top momenta in the tt̄ rest frame, i.e.
pt = (p0

t , ~vt)

t̄ X
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īi (q2,m,~vt)

∫
dΩd−3

xT
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Beam functions
Generalisation of PDF, characteristic of measurements involving two scales
µΛQCD � µB � µH , where µB constrains the energy in forward direction

Bi(x
′
⊥, x, µB) =

∑
j

∫ 1

x

dξ
ξ
Iij(x′⊥,

x

ξ
, µB)

PDF︷ ︸︸ ︷
fj(ξ, µB)

µΛ µB µHchanging x changing t

(a)

ℓ−

Soft

Soft

ℓ+

Pa Pb

Jet b Jet a

(b)

Figure 2: (a) Physics described by the beam function. Starting at a low hadronic scale µΛ the proton

is described by a PDF f . At the scale µB, the proton is probed by measuring radiation in the final

state, identifying a parton j described by fj(ξ, µB). Above µB , the initial state becomes an incoming

jet described by Iij(t, x/ξ, µ) for an off-shell parton i with spacelike virtuality −t, which enters the

hard interaction at µH . (b) Schematic picture of the final state for isolated Drell-Yan.

virtuality t′ of the parton i, while leaving its identity and momentum fraction unchanged,

µ
d

dµ
Bi(t, x, µ) =

∫
dt′ γi

B(t − t′, µ)Bi(t
′, x, µ) . (1.3)

This evolution stops at the hard scale µH , where the off-shell parton i enters the hard partonic

collision. For µ ≥ µB the initial state is also sensitive to soft radiation as shown by the orange

wider angle gluons in Fig. 2(a). For cases where the beam function description suffices this

soft radiation eikonalizes, and the corresponding soft Wilson line is one component of the soft

function S that appears in the factorized cross section.

In general, a beam function combines the PDF with a description of all energetic initial-

state radiation that is collinear to the incoming proton direction up to t ≪ Q2. The parton’s

virtuality t effectively measures the transverse spread of the radiation around the beam axis.

The specific type of beam function may depend on details of the measurements, much as

how jet functions depend on the algorithm used to identify radiation in the jet [7, 8, 9].

Our discussion here will focus on the most inclusive beam function, which probes t through

the measurement of hadrons in the entire forward hemisphere corresponding to the proton’s

direction. The utility of beam functions is that for a class of cross sections they provide a

universal description of initial-state radiation that does not need to be modeled or computed

on a case by case basis.

An example of a factorization theorem that involves beam functions is the “isolated Drell-

Yan” process, pp → Xℓ+ℓ−. Here, as depicted in Fig. 2(b), X is allowed to contain forward

energetic radiation in jets about the beam axis, but only soft wide-angle radiation with no

central jets. The presence of energetic forward radiation is an unavoidable consequence for

processes involving generic parton momentum fractions x that are away from the threshold

– 4 –

JHEP 1009 (2010) 005

Iij accounts for nearly collinear radiation with wide-spread x⊥ ≤
1

f(q⊥, q∗)

µ
d

dµ
Bi(x

′
⊥, x, µ) =

∫
dx′⊥γ

i
B(x⊥ − x′⊥, µ)Bi(x

′
⊥, x, µ)
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Hard function

Roughly speaking, the hard function is the finite loop corrections to the born processM.
More precisely, the matching condition is (Ahrens et. al. 1003.5827)

H(q2,m,~v3, µ) =
12

8(4π)2dR

∑
i=q,q̄,g

Z−1(ε, µ) |Mren〉 〈Mren|Z−1 †(ε, µ)

where Z−1 is an operator that removes the poles (d = 4− 2ε) the infrared part of on-shell
scatterings.

It has a perturbative expansion and for m = 0 it can be easily related to the Catani
operators that factorises infrared poles

Z(1) = 2I(1)finite, Z(2) = I(2) − 2I(1)Z(1) + finite.
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Soft function in momentum space
Soft radiation with at fixed qT for the on-shell (crossing the red cut):

S(~q⊥, ~vt, µ) =

∑
Xs

∫

{ki}



1, n+

2, n̄−

t, (1, βv̂t)

t̄, (1,−βv̂t)

×

× .
..

×

×.
..

Xs

t

t̄

1

2


δd−2

(
~q⊥ −

∑
i

~ki⊥

)∏
i

δ+(ki)

(k+)α

Feynman rules for the blob are exact, and this is connect to the hard subprocess in the
Eikonal approximation:

pi

µ, a××× × ×

pi ± q

gsT
a
i p

µ
i

pi · q ± (i0, 0)......
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Azimuthally averaged soft function
The qT dependence factorises in general, i.e.

S(~q⊥, ~vt, µ) =

∫
dΩd−3

q

Ωd−3
q

S(~q⊥, ~vt, µ) =

∑
Xs

2(q2
⊥)Gxs



∫

{ki}

1, n+

2, n̄−

t, (1, βv̂t)

t̄, (1,−βv̂t)

×

× .
..

×

×.
..

Xs

t

t̄

1

2


δ

(
1−
∣∣∣∣∣∑
i

~ki⊥

∣∣∣∣∣
2)∏

i

δ+(ki)

(k+)α

where Gxs power and (v̂t = (cos θ, ~vt⊥)).

The integrand is now dimensionless, and Lorentz invariance implies that

S(~q⊥, ~vt, µ) = S(q2
⊥, β, cos θ, µ)
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Soft function @ NLO

Its calculation neglects recoil⇒ many integrals become scaleless. Only graphs involving
massive partons contribute

S(q⊥, θ, β, µ)

∣∣∣∣∣
αs

1

2

t

t̄

t

t̄

1

2

+

1

2

t

t̄

t

t̄

1

2

+

1

2

t

t̄

t

t̄

1

2

+ (1↔ 2, t↔ t̄)
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Rapidity divergences

The price paid for neglecting recoil is introducing spurious singularities at intermediate
stages

1

2

t

t̄

t

t̄

1

2

∝
∫

ddk
δ+(k)

(k+)α
δ(1− k2

⊥)

k+(1− ~k · ~vt)

Over the region (k+ ∼ λ, k− ∼ λ−1, k⊥ ∼ λ0) this integral has a rapidity divergence

∼
∫ ∞ dk+

(k+)1+α
(1)

This is a consequence of using soft approximations for high energy modes (k0 ∼ λ−1), but
such regions cancel at cross section level.

A complex α regulate divergences preserving gauge invariance and keep scaleless
integrals scaleless.
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Soft function @ NNLO
The same regularisation procedure can be used and only graphs that involve at least one
top quark contribute

S(q⊥, θ, β, µ)

∣∣∣∣∣
α2
s

=


1

2

t

t̄

t

t̄

1

2

+

1

2

t

t̄

t

t̄

1

2

+ . . .


Double cuts

+


1

2

t

t̄

t

t̄

1

2

+

1

2

t

t̄

t

t̄

1

2

+ . . .


Single cuts

The loop has been integrated out analytically (Bierenbaum et. al. 2011). We focus on the
double cuts (higher dimensional integrals).
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Integration strategy

We designed, and automated, a method which can be applied to all double cuts.

Non-trivially, this is possible because all graphs share a common structure that can be
algorithmically exploited:

1 Identify ALL divergences.

2 Map integration variables to hypercubes

3 Splittings/Power counting

4 Sector decomposition

5 Outside of the boundary: weighing the boundary

6 Numerical integration, send to Cuba (Hahn, Comput. Phys. C. 168 (05) 78)
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Preliminaries

In general, every double cut graph G, of the NNLO soft function, can be written as a
product of a infrared part and a weight part:

G ∝
∫

ddk1ddk2
δ+(k1)δ+(k2)

(k+
1 k

+
2 )α

δ
(
1− |k1⊥ + k2⊥|2

)
︸ ︷︷ ︸

common

IG ×WG︸ ︷︷ ︸
graph part

,

the defining property ofW is that remains finite no matter the kinematics top pair.
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Boundary and its divergences

We define as boundary the region in particular kinematics where both top quarks are
produced at rest pt = pt̄ = (m,~0) and this impliesWG = cte

G ∝
∫

ddk1ddk2 (...)︸ ︷︷ ︸
common

IG

For any graph divergences appear when (k±, k∓, k⊥):
Soft ∼ (λ, λ, λ),

Initial state collinear ∼ (λ2, 1, λ),
Final state collinear k1 · k2 = 0,
Rapidity divergence (λ, λ−1, 1),

Azimuthal integrable singularity (∼ λ−1/2) of the measure ~k2⊥ · ~k2⊥/(k1⊥k2⊥)→ λ,
Divergent regions overlap!
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Example

Integrating out deltas and irrelevant angles, one end up with a four dimensional integral, e.g.

1

2

t

t̄

t

t̄

1

2

3

∫
dk+1dk+2dk1T dk2T

k1+α
1+ kα−1

2+ [k2
2+ + k2

2T ]

k1T k2T

[[
1− (k1T − k2T )2

][
1− (k1T + k2T )2

]]− 1
2
−ε[

k2
1T k1+k2+ + k2

2T k1+k2+ + k2
1T k

2
2+ + k2

2T k
2
1+ − k1+k2+

]
The integrand diverges when:

k1+ → 0,
k2+ → 0 and k1+ → 0,
k1+ → 0 and k1⊥ → 0,
k1 · k2 → 0.
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Mappings
Before SD can be applied, integration variables should be mapped to hypercubes,∫

[0,∞)4]

dk1+dk2+dk1⊥dk2⊥ (...) =

N∑
n=0

∫
[0,1]4

dx1 . . . dx4ĨG,

with the additional constraint that ĨG should have at most end-point singularities.

This is not trivial since there are singularities occurring on a manifold,

1

k1 · k2
→∞⇔

Not unique way, but power counting methods allow us to keep N ≤ 4.
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Sector decomposition

Method to factorise singularities of divergent (k−αi d4−2εki),

∫
[0,1]n

dn~x I(~x, ε, α) =
∑
r,s

1

αrεs

∫
dn~x Frs(~x)︸ ︷︷ ︸

finite
Analytically / Numerically

,

The concept existed for some time (Hepp 1966) but the quest for efficiency and automation
continues (e.g. Borowka et. al. ’16).

We use our on implementation based on Binoth & Heinrich ’00.

Rene Angeles-Martinez (IFJ PAN, Kraków ) A new approach to ttbar @ NNLO September 2017 20 / 31



Example
1.- Disentangle overlapping singularities

1∫
0

dx

1∫
0

dy

Weight part︷ ︸︸ ︷
W(x, y)

(x+ y)2+ε︸ ︷︷ ︸
Infrared part

=

1∫
0

dx

1∫
0

dt
W(x, t x)

(1 + t)2+εx1+ε
+

1∫
0

dt

1∫
0

dy
W(y t, y)

(1 + t)2+εy1+ε

y

x

−→ + −→(2)

(1)

+

y

x

t

t

Figure 1: Sector decomposition schematically.

+

∫ 1

0

dy y−1−(a+b)ϵ

∫ 1

0

dt t−1−aϵ
(
1 + (1 − y) t

)−1

. (2)

We observe that the singularities are now factorised such that they can be read off
from the powers of simple monomials in the integration variables, while the polynomial
denominator goes to a constant if the integration variables approach zero. The same
concept will be applied to N -dimensional parameter integrals over polynomials raised
to some power, where the procedure in general has to be iterated to achieve complete
factorisation.

3 The algorithm for multi-loop integrals

3.1 Feynman parameter integrals

A general Feynman graph Gµ1...µR

l1...lR
in D dimensions at L loops with N propagators

and R loop momenta in the numerator, where the propagators can have arbitrary, not
necessarily integer powers νj , has the following representation in momentum space:

Gµ1...µR

l1...lR
=

∫ L∏

l=1

dDκl

kµ1

l1
. . . kµR

lR
N∏

j=1

P
νj

j ({k}, {p}, m2
j)

dDκl =
µ4−D

iπ
D
2

dDkl , Pj({k}, {p}, m2
j) = (q2

j − m2
j + iδ) , (3)

where the qj are linear combinations of external momenta pi and loop momenta kl.
Introducing Feynman parameters according to

1
∏N

j=1 P
νj

j

=
Γ(Nν)

∏N
j=1 Γ(νj)

∫ ∞

0

N∏

j=1

dxj x
νj−1
j δ

(
1 −

N∑

i=1

xi

) 1
[∑N

j=1 xjPj

]Nν
, (4)

where Nν =

N∑

j=1

νj , leads to

Gµ1...µR

l1...lR
=

Γ(Nν)
∏N

j=1 Γ(νj)

∫ ∞

0

N∏

j=1

dxj x
νj−1
j δ

(
1 −

N∑

i=1

xi

) ∫
dDκ1 . . .dDκL

kµ1

l1
. . . kµR

lR

⎡
⎣

L∑

i,j=1

kT
i Mij kj − 2

L∑

j=1

kT
j · Qj + J + i δ

⎤
⎦

−Nν

, (5)

4

The algorithm is independent ofW!!!

2.- Use plus prescription (add a clever zero)

1∫
0

1∫
0

dxdt
W(x, t x)

x1+ε(1 + t)2+ε
=W(0, 0)

1∫
0

1∫
0

dxdt
x1+ε

+

1∫
0

1∫
0

dxdt
[W(x, t x)−W(0, 0)]

x1+ε(1 + t)2+ε︸ ︷︷ ︸
c0+ε c1+ε2 c2+...
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Key steps of sector decomposition

1.- Disentangle and factorise singularities (k−αi d4−2εki)∫
[0,1]n

dn~x f(~x, ε, α) =
∑
i

∫
[0,1]n

dn~x Fi(~x, ε, α)
∏
j

1

x
ri+siα+tiε
j

with ri, si, ti ∈ R and Fi(~x, ε, α) integrable.

2.-Plus prescription

∫ 1

0

dxj
Fi(. . . , xj , ε, α)

x
rij+sijα+tijε

j

=

|rij |−1∑
n=0

F(n)
i (. . . , 0, ε, α)

n!

= 1
n−rij−sijα−tijε+1︷ ︸︸ ︷∫ 1

0

dxj x
n−rij−sijα−tijε
j

+

∫ 1

0

dxj
Fi(. . . , xj , ε, α)−

∑|rij |−1

n=0

F(n)
i (...,0,ε,α)xnj

n!

x
rij+sijα+tijε

j

After this is done for all {xi} one can expand in (α, ε).
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Re-weighting

All the previous steps (mapping, power counting, sector decomposition and ε and α
expansion) are valid for any weight!

G ∝
∫

ddk1ddk2
δ+(k1)δ+(k2)

k+
1 k

+
2

δ
(
1− |k1⊥ + k2⊥|2

)
︸ ︷︷ ︸

common

IG ×WG︸ ︷︷ ︸
graph part

,

but, in principle the situation is far more difficult because of the angles between
{~vt⊥, ~k1⊥, ~k2⊥}.

There is way round this, we can recycle the angles chosen over the boundary using that:

IG( 6= vt⊥), G(v2
t⊥) =

1

Ωd−3

∫
dΩd−3G(v2

t⊥).
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Cross-Check 1: Cancellation of alpha poles
Only graphs with a fermion loop are proportional to nf , hence cancellation of α poles must
occur within this subset:

Fij ≡

1

2

t

t̄

i

j

t

t̄

1

2

F1t = nfT1 ·Tt
( c
α

+ . . .
)
, F2t = −nfT1 ·Tt

( c
α

+ . . .
)

F1t̄ = nfT1 ·Tt̄
( c
α

+ . . .
)
, F2t̄ = −nfT1 ·Tt̄

( c
α

+ . . .
)
,

c(analytically) = − 8

3αε
− 8(3γ + 5− 3 log(2))

9α

c(numerically) = −4,13

α
− 2,66

αε
+O(10−3)

The sum of α poles cancels due to colour conservation and the fact initial state parton has
the same flavour:

(T1 −T2) · (Tt + Tt̄) = (T2
1 −T2

2) = 0
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Cross-check 2: SCET renormalisation

The ε poles can be removed by SCET infrared renormalisation. Hence, they should be
equal and opposite

S(µ) = Z†s(µ, ε)Sbare(ε)Zs(µ, ε)

S(µ) = S(0)(µ) + αs(µ)S(1)(µ) +O(α3
s)

Zs(µ) = Z
(0)
s (µ) + αs(µ)Z

(1)
s (µ) +O(α3

s)

Z has an universal structure, its soft part Zs(ε) for tt̄ production is already known (Xing Zhu
et. al. PRL 110.082001).

We checked the cancellation of ε poles for the fermion bubble!
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Cross-check 3: Analytic vs numeric fermion bubble

By means of the partial differential equations approach, we have been able to solve
analytically the fermion bubble up to order ε0α0,

Fij ≡

1

2

t

t̄

i

j

t

t̄

1

2

The kinematical part of graphs connecting top quarks yields

2Ftt̄ − Ftt − Ftt̄
∣∣∣
kinematical

∝
−8

ε

((
β2 + 1

)
ln
(

1−β
β+1

)
+ 2β

)
3β

+

8

9β

[
−
(
β

2
+ 1

)
Ln
[

2

β + 1
− 1

](
3γ + 24Ln

[
1

256
cos

(
θ

2

)]
+ 5

)

+ β

[
12Ln

[ √
2(1− β2)

1− β2 cos2 θ

]
− 10− 6γ

]
+ 6

[
β

2
+ 1

] Li2

 (β − 1) tan2
(
θ
2

)
β + 1

− Li2

 (β + 1) tan2
(
θ
2

)
β − 1

]
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Cross-check 3: Analytic vs numeric fermion bubble

Our numerical evaluation, with absolute accuracy of (O)(10−3), shows agreement
numerics/analytics of the pole part (yellow) and the finite part (blue)

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20
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Graphs (θ = 0) vs β

0.0 0.5 1.0 1.5 2.0 2.5 3.0

15.5

16.0

16.5

17.0

17.5

Graphs (β = 0,9) vs θ

pt =
m√

1− β2
(1, β cos θ, ptT ) is the top momentum in the tt̄ rest frame.
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Conclusions

Show progress on a corroboration of the tt cross sections at
NNLO.

We use a SCET and note that its evaluation can be automated.

Integration strategy is graph independent.

Our approach recycles a maximal number of well tested strategies
in the literature.

Validation using fermion bubble: 1) α poles cancel, 2) ε poles
renormalised and 3) agreement with analytics (partial differential
equations).

This approach can be generalised to other processes, e.g.
gg → H at NNNLO.
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In general, the beam functions associated to gluon parent partons have a non-trivial
Lorentz structure, e.g.

Bµνg =
gµν⊥
2
Bg +

(
gµν⊥
2

+
xµ⊥x

ν
⊥

x2
⊥

)
B′g ,

Bg(z, x2
⊥, µ) =

∞∑
i=0

(αs
2π

)i
B

(i)
g

B′g(z, x2
⊥, µ) =

∞∑
i=2

(αs
2π

)i
B
′(i)
g

where gµν⊥ = gµν − (pµ1 p
ν
2 − pµ2 pν1)/p1 · p2. Moreover, up to NNLO only the transverse part

contributes since∫
dd−2x⊥ f(x2

⊥)

(
gµν⊥
2

+
xµ⊥x

ν
⊥

x2
⊥

)
H

(0)
µναβ(q2,m,~v3, µ) gαβ⊥ = 0 (2)
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Simplified factorisation up to NNLO
Azimuthal integration commutes past the hard and beam functions, see A. Adler Master
thesis,

d4σ

dq2
⊥ dy dq2 d cos θ

=
Ωd−3cε β

s
√
q2

∫
dξ1 dξ2 xd−3

T dx⊥ J0(x⊥q⊥)

∑
i=q,q̄,g

(
x2
⊥q

2

4e−2γE

)−Fiī(x2
⊥µ

2)

Bi(ξ1, x
2
⊥, µ)Bī(ξ2, x

2
⊥, µ)

× Tr
[
Hīi(q

2,m,~vt, µ)

∫
dΩd−3

Ωd−3
Sīi(~x⊥, ~vt, µ)

]
+O

(
α3
s

)
,
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Figura: J0(q⊥x⊥)
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