DIMENSION 4: QUANTUM ORIGINS OF SPACETIME SMOOTHNESS

PAWEŁ KLIMASARA¹ (in collaboration with Jerzy Król¹, Krzysztof Bielas¹, and Torsten Asselmeyer-Maluga²)

¹UNIVERSITY OF SILESIA IN KATOWICE KATOWICE, POLAND ²German Aerospace Center Berlin, Germany

THE LARGE-SCALE SMOOTHNESS OF THE UNIVERSE

DOES IT NEED TO BE STANDARD SMOOTHNESS?

Mathematical ambiguity

Paweł Klimasara (University of Silesia) 4D:quantum origins of spacetime smoothness

7 September 2017 2 / 17

EXOTIC \mathcal{R}^n - a differentiable manifold that is homeomorphic but not diffeomorphic to standard smooth \mathbb{R}^n

- IT DOESN'T EXIST FOR ALL $n \neq 4$.
- IN FOURTH DIMENSION THERE ARE UNCOUNTABLY MANY (NON-ISOMORPHIC ONES)!

All Exotic \mathcal{R}^4 's have necessarily non-vanishing Riemann curvature

A PHYSICAL MEANING?

Paweł Klimasara (University of Silesia) 4D:quantum origins of spacetime smoothness

Cosmological Constant Value as a topological invariant

BUT: CURVATURE DEPENDS CRUCIALLY ON EMBEDDINGS

OUR STRATEGY

EMBEDDING: (small exotic \mathcal{R}^4) $\rightarrow \mathbb{R}^4 \rightarrow M^4$

* INVARIANT PART OF THE SCALAR CURVATURE Is it even possible that appropriate M^4 exists?

 $\frac{\text{Yes!}}{K3\#\overline{CP(2)}}$

Embedding (small exotic \mathcal{R}^4) $\rightarrow K3 \# \overline{CP(2)}$ is allowed by two topology changes $\mathcal{S}^3 \rightarrow \Sigma(2,5,7) \rightarrow P \# P$ TOPOLOGICAL CALCULATIONS VERSUS PLANCK DATA

$$\Omega_{\Lambda} = \frac{c^{5}}{3hGH_{0}^{2}} \cdot \exp\left(-\frac{3}{CS(\Sigma(2,5,7))} - \frac{3}{CS(P\#P)} - \frac{\chi(A_{cork})}{4}\right)$$

$$\label{eq:OLANCK} \begin{split} \Omega_{\Lambda} &= 0.6853 \\ (\Omega_{\Lambda})_{\mathsf{PLANCK}} &= 0.683 \end{split}$$

Paweł Klimasara (University of Silesia) 4D:quantum origins of spacetime smoothness

COULD THE LARGE-SCALE SMOOTHNESS BE DEDUCED ROM-OR CONNECTED WITH—THE INITIAL QUANTUM STATE?

Paweł Klimasara (University of Silesia) 4D:quantum origins of spacetime smoothness

7 September 2017

${\mathcal H}$ - a separated complex Hilbert space

Lattice of Projections $\mathbb{L} = (\mathbb{L}(\mathcal{H}), \lor, \land)$

 $\mathbb{L}(\mathcal{H})$ contains projections on closed linear subspaces of $\mathcal H$

$$P_1 \land P_2 \equiv P_1 \cap P_2$$
$$P_1 \lor P_2 \equiv \mathsf{span}(P_1 \cup P_2)$$

 \rightarrow partially ordered by set inclusion

G. Takeuti: Two applications of logic to mathematics, lemma 1.1, p.8 For every family $\{A_i | i \in I\}$ of self-adjoint pairwise commuting operators there exists a complete Boolean algebra of projections B, such that given the spectral decompositions of each A_i :

$$A_i = \int \lambda dE_{\lambda}^i,$$

it holds that $\forall_{i \in I} dE_{\lambda}^{i} \in B$.

Let $\mathcal{H} = L^2(\mathbb{R}^n, d^n x)$ and B_Q be the complete maximal Boolean subalgebra of \mathbb{L} containing position operator \hat{Q} on \mathcal{H} . Then B_Q is atomless.

> IN FACT B_Q IS ISOMORPHIC TO MEASURE ALGEBRA: $B_Q \simeq Bor(\mathbb{R}^n)/\mathcal{N}$ \mathcal{N} - ideal of measure zero sets

BOOLEAN-VALUED MODEL OF MODEL OF ZFC RANDOM FORCING

G. Takeuti: Two applications of logic to mathematics

Real numbers R from ZFC model $Sh(B_Q)$ are in 1 - 1 correspondence with self-adjoint operators from B_Q . EXTENSION OF THE REAL LINE IN RANDOM FORCING: $R \longrightarrow R[G], \ R \subset R[G]$

PHYSICS IN LARGE SCALES:

 \mathbb{R} AS DEDEKIND COMPLETE ORDERED FIELD * All models are isomorphic

$$\begin{array}{c} \text{THE GAP} \\ \text{(1st order)} \ R, R[G] \Longrightarrow \mathbb{R} \ \text{(2nd order)} \end{array}$$

Paweł Klimasara (University of Silesia) 4D:quantum origins of spacetime smoothness

THE LARGE-SCALE SMOOTHNESS OF UNIVERSE (SPACETIME MANIFOLD)

It needs to be **exotic** smoothness on \mathbb{R}^n

* The '1st order to 2nd order gap' is filled but the smoothness structure on \mathbb{R}^n has to be exotic one

 \star they exist only for $n = 4 \rightarrow 4D$ spacetime

CANCELING OF ZERO MODES

The zero-point energy of quantum field corresponding to a particle of mass *m*:

$$rac{E}{V} = \int_{R^3} rac{d^3k}{(2\pi)^3} rac{\sqrt{\mathbf{k}^2 + m^2}}{2}, \ m \in R[G], \ \mathbf{k} \in R^3.$$

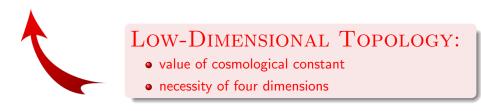
Here all such integrals equal 0 since we integrate over the null set $R^3 \subset R^3[G]$.

QM LATTICE OF PROJECTIONS:

- vanishing of zero-modes
- necessity of exotic smoothness

THE COMPLETE PICTURE

[1] Król, Asselmeyer-Maluga, Bielas, Klimasara, From Quantum to Cosmological Regime. The Role of Forcing and Exotic 4-Smoothness. Universe 2017, 3, 31.



\sim Thank You \sim for Your Attention

Paweł Klimasara (University of Silesia)

4D:quantum origins of spacetime smoothness

7 September 2017

17 / 17