Belle II

Physics Prospects at Belle II

(1) Introduction
(2) Brief Belle II overview
(3) CKM matrix and the Unitarity Triangle
(9) Semitauonic B decays
(6) Lepton Flavor Violation
(Hadron spectroscopy
(3) Low multiplicity signatures

Introduction

Last decade rich harvest of Belle and BaBar

It seems the more we know the more questions arise

- SM, the best tested theory, does not explain many things
- Need for more good quality data to find answers
- Belle II plans to collect $50 \mathrm{ab}^{-1}$ integrated luminosity

Belle II / SuperKEKB luminosity projections

It seems the more we know the more questions arise

- SM, the best tested theory, does not explain many things
- Need for more good quality data to find answers
- Belle II plans to collect $50 a^{-1}$ integrated luminosity

Overview of Belle II

The Belle detector has been significantly upgraded to form Belle II. Several subdetectors have been completely replaced to support higher rates and challenging physics program.

CKM matrix and the Unitarity Triangle

Over-constraining the UT to test the SM

- Current precision leaves room for NP
- Search for new sources of CPV (disagrement between loop and tree processes)
- Better measurements of $\sin 2 \beta$

$\rightarrow \eta^{\prime} K^{0}$		$B \rightarrow \phi K^{0}$		$B \rightarrow K^{0} K^{0} K^{0}$	
Error on $\sin (2 \beta)$	tot.	Error on $\sin (2 \boldsymbol{\beta})$	tot.	Error on $\sin (2 \boldsymbol{\beta})$	tot.
B-Factories	9.4\%	B-Factories	17.8\%	B-Factories	33.9\%
Belle II 5/ab	4.2\%	Belle II 5/ab	7.9\%	Belle III 5/ab	15.1\%
Belle II 50/ab	1.6\%	Belle II 50/ab	2.7\%	Belle II 50/ab	4.9\%

CKM matrix and the Unitarity Triangle

Sizeable tension in exclusive and inclusive measurements of $\left|V_{u b}\right| \&\left|V_{c b}\right|$

CKM matrix and the Unitarity Triangle

Sizeable tension in exclusive and inclusive measurements of $\left|V_{u b}\right| \&\left|V_{c b}\right|$

Improved precision should help to resolve this tension
had. tagged
$B \rightarrow D^{*} \ell \bar{\nu}_{\ell}$
had. tagged
$B \rightarrow \pi \ell \bar{\nu}_{\ell}$
untagged
$B \rightarrow \pi \ell \bar{\nu}_{\ell}$

Error on IV VbI	stat.	tot.
B-Factories	0.6%	3.6%
Belle II $5 / \mathrm{ab}$	0.2%	1.8%
Belle II $50 / \mathrm{ab}$	0.1%	1.4%

Error on $\mathrm{IV}_{\mathrm{ub}} \mathrm{I}$	stat.	tot.
B-Factories	5.8%	10.8%
Belle II $5 / \mathrm{ab}$	2.2%	4.7%
Belle II $50 / \mathrm{ab}$	0.7%	$\mathbf{2 . 4} \%$

Error on IV ubl	stat.	tot.
B-Factories	2.7%	9.4%
Belle II $5 / \mathrm{ab}$	1.0%	4.2%
Belle II $50 / \mathrm{ab}$	0.3%	2.2%

$$
B \rightarrow X_{c} \ell \bar{\nu}_{\ell}
$$

Error on IV cb	stat.	tot.
B-Factories	1.5%	1.8%
Belle II 50/ab	0.5%	1.2%

$$
B \rightarrow X_{u} \ell \bar{\nu}_{\ell}
$$

Error on $\mathrm{IV}_{\text {ub }}$	stat.	tot.
B-Factories	4.5%	6.5%
Belle II $5 / \mathrm{ab}$	1.1%	3.4%
Belle II $50 / \mathrm{ab}$	0.4%	3%

Semitauonic B decays

$B \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}$

- Sensitive to extended Higgs sector - new physics at tree level
- About 4σ disagreement between SM expectation and observation
- Deviations not compatible with type II 2HDM
- Sensitive observables e.g. τ polarization - possible $\mathcal{O}(1)$ effects

$$
R\left(D^{(*)}\right)=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \bar{\nu}_{\tau}\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \bar{\nu}_{\ell}\right)}
$$

LFV signals are expected in many beyond SM scenarios.
Belle II will be able to improve current limits by a factor of 100 for $\tau \rightarrow 3 \ell$ and (at least) a factor of 10 for $\tau \rightarrow \ell \gamma$.

- CLEO
- BaBar

Belle

- LHCb
- Belle II

LFV signals are expected in many beyond SM scenarios.
Belle II will be able to improve current limits by a factor of 100 for $\tau \rightarrow 3 \ell$ and (at least) a factor of 10 for $\tau \rightarrow \ell \gamma$.

Many new states are observed, which do not fit in the traditional quark model. More are expected in Belle II, opening a door for exotic state studies.

Low multiplicity signatures

Belle II can probe 'dark forces' with dedicated Triggers

- 'dark forces': involving dark-matter particles that serve as 'portals' between the SM and a dark-matter sector dark photon mass coupling strength

$$
\mathcal{L}_{\text {eff }}=\mathcal{L}_{\mathrm{SM}}-\frac{1}{4} F_{\mu \nu}^{\prime} F^{\prime \mu \nu}+\frac{m_{A^{\prime}}^{\prime}}{2} A_{\mu}^{\prime} A^{\prime \mu}-\frac{\epsilon}{2} F_{\mu \nu}^{\prime} F^{\mu \nu}
$$

- Motivated by rise in cosmic-ray positron fraction (which does not necessarily have to be due to New Physics)
- Also models with dark Higgs bosons that could be produced in $\mathrm{Y}(\mathrm{nS})$ decays.

Belle Il will probe a unique piece of phase space, and even a small data sample will have a sizeable impact on todays limits
(Prompt) dilepton final state

invisible final state

- There many interesting possibilities at Belle II
- Of course, we have no monopoly for quark-flavor physics, therefore competitive or complementary studies at LHC are welcomed.

BACKUP

An example of the power of a B factory: fully reconstruct one of the B's to tag B flavor/charge, determine its momentum, and exclude decay products of this B from further analysis (exactly two B^{\prime} s produced in $\mathrm{Y}(4 \mathrm{~S})$ decays)

Powerful tool for B decays with neutrinos, used in several analyses

$$
\rightarrow \text { unique feature at B factories }
$$

Peter Križan, Ljubljana

$\mathcal{B}\left(B \rightarrow D^{*} \tau \nu\right)$ and $\mathcal{B}(B \rightarrow D \tau \nu)$

BaBar: Neither R^{*} nor R is a good match to the SM ($\tan \boldsymbol{\beta} / \mathrm{M}_{\mathrm{H}}=0$) calculation.
Both can match the type II 2HDM but not at a consistent value of $\tan \beta / \mathrm{M}_{\mathrm{H}}$.

FIG. 8. Theoretical predictions with 1σ error ranges for R (red) and R^{*} (blue) for different values of $\tan \beta / m_{H}+$ in the 2 HDM of type II. This analysis' fit results for $\tan \beta / m_{H^{+}}=$ $0.5 c^{2} / \mathrm{GeV}$ and SM are shown with their 1σ ranges as red and blue bars with arbitrary width for better visibility.

Transformation of a B-Factory into a Super B-Factory

To achieve the necessary sensitivity to further push the intensity frontier, the instantaneous luminosity needed to increase from $2.1 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \mathrm{to} 8 \times 10^{35} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$

The key to this is a beam-configuration called the nano-beam scheme that squeeze the beam to have a very small vertical spot size of about 50 nm

LER / HER	KEKB	SuperKEKB
Energy $[\mathrm{GeV}]$	$3.5 / 8$	$4.0 / 7.0$
$\boldsymbol{\beta}_{\mathrm{y}^{*}[\mathrm{~mm}]}$	$5.9 / 5.9$	$0.27 / 0.30$
$\boldsymbol{\beta}_{\mathrm{x}}{ }^{*}[\mathrm{~mm}]$	1200	$32 / 25$
$\boldsymbol{I \pm [\mathrm { A }]}$	$1.64 / 1.19$	$3.6 / 2.6$
$\zeta_{ \pm y}$	$0.129 / 0.09$	$0.09 / 0.09$
$\boldsymbol{\varepsilon}[\mathrm{~nm}]$	$18 / 24$	$3.2 / 4.6$
\# of bunches	1584	2500
Luminosity $\left[10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}\right]$	2.1	80

Major upgrade of existing accelerator needed

Lorentz factor

present KEKB (without crab)

Belle II: VXD

Belle II: CDC

- Belle II CDC will be larger than Belle CDC with smaller cells
- Improved p and $\mathrm{dE} / \mathrm{dx}$ resolution
- Stringing completed in January 2014 with 51456 wires
- Commissioning with cosmic rays

Belle II: TOP

expansion prism

- The imaging Time of Propagation subdetector (TOP or iTOP) will be used for particle identification in the barrel region of Belle II
- Each TOP module consists of two quartz bars, one mirror, one prism, and an array of photo-detectors to collect Cerenkov photons from charged tracks
- To distinguish between kaons and pions, the photo-detectors should have excellent position and timing resolution
- This is achieved by using MCP-PMTs and new waveform sampling electronics

Belle II: ARICH

- Aerogel Ring Imaging Cerenkov (ARICH) detector will be used for particle identification in the forward end cap
- 420 Hybrid Avalanche Photo Detectors (HAPD), each with 144 channels
- Two layers of aerogel lead to better photon yield, while not affecting resolution Aerogel

4 cm aerogel single index

$2+2 \mathrm{~cm}$ aerogel

\rightarrow NIM A548 (2005) 383 Structure

Hamamatsu HAPD

End-cap PID: Aerogel RICH (ARICH)

Belle II: ECL

- Upgrades for high backgrounds:
- Barrel: CsI(TI) crystals reused, new electronics for waveform sampling
- Endcaps: old crystals refurbished, bias filter is modified
- Cosmic ray test is on going

Expected Performance

12

Belle II: KLM

- Endcaps and parts of the barrel KLM RPCs of Belle will be replaced with scintillators due to increased backgrounds expected in Belle II
- Barrel KLM was the first subdetector to be installed in Belle II

