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Interpreting data needs precise background estimation

Double Drell-Yan process

An interesting observation on the impact of lack of precise QCD
background knowledge [Krasny, Placzek ’15]:

Two conclusions:

precise knowledge of QCD background crucial in correctly
interpreting collider data!

but there is not enough experimental data to constrain Double
Parton Distributions ⇒ Lattice QCD!
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Lattice QCD in two slides

Basics

Lattice QCD is based on analytic continuation to imaginary time:

it → τ

S =

∫
dx4(T − V )→ i

∫
dx4

E (T + V ) ≡ iSE

e iS → e−SE

QFT→ statistical system

Baryons

One needs combinations of field operators which have the wanted
quantum numbers, e.g. for the nucleon

B̂α(t, ~p) =
∑
~x

e i~p~xεijk û
i
α(x)ûjβ(x)(C−1γ5)βγ d̂

k
γ (x)
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Lattice QCD in two slides

Hadronic matrix elements

Compute correlation functions

〈N(P)|ψ̄qγ
{µiDµ1}ψq|N(P ′)〉 =

= ψ̄q

{∑
i

αµ,µ1

i Aq
2,i (Q

2) +
∑
i

βµ,µ1

i Bq
2,i (Q

2)
}
ψq

which allow to estimate the Generalized Form Factors Aq
2,i and Bq

2,i .
⇒ nucleon’s total angular momentum

Ju−d =
1

2

(
Au−d

2,0 (Q2 = 0) + Bu−d
2,0 (Q2 = 0)

)
.

Hand on actual work to supercomputers

use Monte Carlo methods to estimate path integrals

use Markov chains to generate representative configurations with
Boltzmann probability distribution

⇒ rough idea of the cost: 100 M core × hours ≈ 1 core × 11500 years
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Computing resources

Overview of the usage of Europe’s largest supercomputers

JUQUEEN is an IBM BlueGene/Q installation in Juelich Supercomputing
Center: 458000 cores with peak performance 5.8 PFlops/s.
⇒ 11th place on TOP500 @ Nov. 2015, 3rd in Europe
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Ingredients of precision

Lattice QCD became a precision tool for QCD, since today we have at
our disposal:

better computer architectures

better algorithms

better observables

better control over the systematics

⇒ LQCD provides precise results for QCD processes with all systematics
under control!
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Ingredients of precision

New computer architectures

Intel Xeon Phi processor (codename Knights Landing):

64 cores, 256 hardware threads, shared L2 cache, AVX512 instruction set,
2 vector units/core, 16 GB MCDRAM ⇒ > 3 TFlops/s double precision
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Ingredients of precision

New algorithms

Invertions of the Dirac operator contribute significantly to the total
numerical cost.

Domain Decomposition Adaptive Algebraic Multigrid Solver (DD-αAMG)
is the state-of-the-art solver developed and implemented by
mathematicians and physicists from Univ. of Wuppertal and Regensburg.

Piotr Korcyl Lattice QCD: a numerical tool for precision physics 8/ 24



Ingredients of precision

New observables

Observables defined with Wilson flow [Lüscher ’13-’15] provide excellent
statistical precision. Wilson flow is defined by introducing a fictitious
time dimension and along which the gauge fields are evolved according to

d

dt
Bµ(x , t) = DνGµν(x , t) = − δSYM[B]

δBµ(x , t)
, Bµ(x , 0) = Aµ(x)

For example one can define the renormalized coupling constant in a finite
volume scheme [ALPHA ’16] and compute the Λ parameter in a theory
with 3 dynamical quarks with a 2% precision

L0Λ = 0.0303(8)

The scale L0 will be linked to dimensionfull quantities in the upcoming
simulations.
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Control over the systematics

In order to get the final number:

Translating a hadron matrix element obtained from a numerical
simulation to the continuum MS scheme involves the following
systematic effects:

List of systematics

finite volume, nowadays mπL > 4

chiral extrapolation, nowadays mu,d = mphysical
u,d

continuum extrapolation, nowadays a ≈ 0.045fm− 0.05fm

renormalization, nowadays fully non-perturbative

⇒ perturbative estimates of the renormalization constants contribute the
most significant part to the final result’s uncertainty!
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Non-perturbative renormalization of lattice QCD

To define QCD as a QFT beyond perturbation theory it is not enough to
write down its classical Lagrangian:

LQCD(x) =
1

2g2
tr
{
Fµν(x)Fµν(x)

}
+

Nf∑
i=1

ψ̄i

(
/D + mi

)
ψi (x)

One needs to define the functional integral:

Introduce a Euclidean space-time lattice and discretise the
continuum action such that the doubling problem is solved

Consider a finite space-time volume ⇒ the functional integral
becomes a finite dimensional ordinary or Grassmann integral

Take the infinite volume limit L→ 1

Take the continuum limit a→ 0

From asymptotic freedom expect

g2
0 = g2

0 (a)
a→0∼ −1

2b0 ln a

Piotr Korcyl Lattice QCD: a numerical tool for precision physics 11/ 24



Non-perturbative renormalization of lattice QCD

LQCD(x) =
1

2g2
tr
{
Fµν(x)Fµν(x)

}
+

Nf∑
i=1

ψ̄i

(
/D + mi

)
ψi (x)

The basic parameters of QCD are g0 and m0,i , i = u, d , . . .

To renormalise QCD one must impose a corresponding number of
renormalisation conditions

If we only consider gauge invariant observables ⇒ no need to
renormalize quark, gluon, ghost field and gauge parameter.

All physical information (particle masses and energies, particle
interactions) is contained in the (Euclidean) correlation functions of
gauge invariant composite, local fields φi (x)

〈φ1(x1) . . . φn(xn)〉

a priori each φi requires renormalisation, and thus further
renormalisation conditions.
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Non-perturbative renormalization of lattice QCD

How to renormalize QCD in a hadronic scheme?

Sketch of the procedure, using e.g. hadronic observables Fπ, mπ, mK ,
mD :

1 Choose a value of the bare coupling g2
0 = 6/β; this determines the

lattice spacing (i.e. mass independent scheme); choose some inital
values for the bare quark mass parameters and a spatial lattice
volume (L/a)3 that is large enough to contain the hadrons;

2 tune the bare quark mass parameters such that mπ/Fπ, mK/Fπ,
mD/Fπ take their desired values (e.g. experimental)

3 the lattice spacing is obtained from a(β) =
(
aFπ

)
(β)/Fπ|exp.

4 reduce the value of g2
0 (i.e. increase β) and increase L/a accordingly
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Non-perturbative renormalization of lattice QCD

for g2
0 (or β) in some interval one obtains:

Fπ,mπ,mK ,mD ⇒ g0, am0,l(g0), am0,s(g0), . . .

these are bare parameters

SM for energies � mW reduces to QCD + QED + tower of effective
weak interaction vertices (4-quark operators, 6-quark operators, . . . )

the structure of this effective ”weak hamiltonian” is obtained
perturbatively e.g. in the MS scheme

How can we relate the bare lattice parameters to the renormalized
ones in, say, the MS scheme

⇒ introduce an intermediate renormalization scheme which can be
evaluated both perturbatively and non-perturbatively
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Non-perturbative renormalization of lattice QCD

We have a hierarchy of scales

The renormalization scale µ must reach the perturbative regime:
µ� ΛQCD

the lattice cutoff must still be larger: µ� a−1

The volume must be large enough to contain pions: L� 1/mπ

L/a� µL� mπL� 1⇒ L/a ≈ O(103)

⇒ widely different scales cannot be resolved simultaneously on a
finite lattice! ⇒ window problem
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Method

Consider the correlation functions of flavor non-singlet bilinear quark
operators of the form 〈OΓ(x)OΓ(0)〉 , where:

OΓ(x) = ψ̄(x)Γψ(x), Γ = {1, γ5, γµ, γµγ5}.

Impose the following coordinate space conditions in the chiral limit:

lim
a→0
〈OX

Γ (x)OX
Γ (0)〉

∣∣
x2=x2

0
= 〈OΓ(x0)OΓ(0)〉free,massless

cont .

The renormalized operator is

OX
Γ (x , x0) = ZX

Γ (x0)OΓ(x),

x0 is the renormalization point, which must satisfy:

a� x0 � Λ−1
QCD

to keep the discretization & non-perturbative effects under control.
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ZMS
P (µ = 2GeV) = 0.503(1)(3)(2) = 0.503(6)
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[P.K., K. Cichy, K. Jansen, ’13]
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Step scaling

The running of the renormalization constants can be estimated
non-perturbatively on the lattice by calculating the step scaling function,
i.e. the ratio

ΣΓ(µ, 2µ) = lim
a→0

ZΓ(2µ, a)

ZΓ(µ, a)

Example:

ZΓ(
√
X 2 = 0.0196fm)

ZΓ(
√
X 2 = 0.0392fm)

=
ZΓ(µ = 10GeV)

ZΓ(µ = 5GeV)

∣∣∣
β=7.90

,
∣∣∣
β=8.62

,
∣∣∣
β=9.00

,
∣∣∣
β=9.50

On the lattice this corresponds to the ratios:

ZΓ(X = {1, 1, 1, 1})
ZΓ(X = {2, 2, 2, 2})

∣∣∣
β=7.90

,
ZΓ(X = {2, 2, 2, 2})
ZΓ(X = {4, 4, 4, 4})

∣∣∣
β=8.62

,

ZΓ(X = {3, 3, 3, 3})
ZΓ(X = {6, 6, 6, 6})

∣∣∣
β=9.00

,
ZΓ(X = {4, 4, 4, 4})
ZΓ(X = {8, 8, 8, 8})

∣∣∣
β=9.50
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Non-perturbative running of ZS
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[P.K., K. Cichy, K. Jansen, in prep]
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Improvement

Suppose we have renormalised lattice QCD non-perturbatively, how is the
the continuuum limit approached?
Symanzik’s effective continuum theory:

purpose: render the a-dependence of lattice correlation functions
explicit. ⇒ structural insight into the nature of cutoff effects

at scales far below the cutoff a−1, the lattice theory is effectively
continuum like, the influence of cutoff effects is expanded in powers
of a:

Seff = S0 + aS1 + a2S2 + . . . ,S0 = Scont
QCD

Sk =

∫
d4xLk(x)

At small distances one expects that there is neither explicit nor
spontaneous chiral symmetry breaking: the dominant effects are the
discretization errors ⇒ difference between the massless and massive
correlation functions are the mass dependent discretization errors.
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bP coefficient

(
ψ̄(x)γ5ψ(x)

)R, impr
= ZP

(
1 + bPm

)
ψ̄(x)γ5ψ(x)
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[P.K., G. Bali, in prep]
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Applications

Nucleons mass splittings [BMW collab. ’16]

⇒ simulations of QCD + QED!
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Applications

Generalized Form Factors [RQCD collab. ’16]
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⇒ Ju−d(mphysical
π ) = 0.238(8)
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Summary

Lattice QCD is a precision tool!

Lattice QCD allows to compute hadronic matrix elements with all
systematic errors under control

With more computer resources and improved algorithms more
challenging problems can be now addressed

Stay tuned! Even more interesting results will come!
⇒ LATTICE’16 @ Southampton

Thank you for your attention!
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