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4 jet production in High Energy Factorization
The framework: off-shell amplitudes and PDFs

High-Energy-factorisation: original formulation

High-Energy-factorisation (Catani,Ciafaloni,Hautmann, 1991 / Collins,Ellis, 1991)

σh1,h2→qq̄ =

∫
d2k1⊥d2k2⊥

dx1

x1

dx2

x2
Fg (x1, k1⊥)Fg (x2, k2⊥) σ̂gg

(
m2

x1x2s
,

k1⊥
m

,
k2⊥
m

)
where the Fg ’s are the gluon densities, obeying BFKL, BK, CCFM evolution equations.

Non negligible transverse momentum is associated to small-x physics.

Momentum parameterisation:

kµ1 = x1 pµ1 + kµ1⊥ , kµ2 = x2 pµ2 + kµ2⊥ for pi · ki = 0 k2
i = −k2

i ⊥ i = 1, 2
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4 jet production in High Energy Factorization
The framework: off-shell amplitudes and PDFs

Off-shell amplitudes

Problem: general partonic processes must be described by gauge invariant amplitudes
(⇒ See A. van Hameren’s Talk)

Off-shell gauge-invariant amplitudes obtained by embedding them into on-shell
processes. For off-shell gluons: represent g∗ as coming from a q̄qg vertex, with the

quarks taken to be on-shell

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

+ +

pA pA ′

pB pB ′

k1

k2

=

pA pA ′

pB pB ′

+ · · ·

Prescriptions: K. Kutak, P. Kotko, A. van Hameren, T. Salwa (2013)

Any legs via recursion relations: P. Kotko (2014), A. van Hameren (2014)

Applications:

 production of forward dijets initiated with gluons : gg∗ → gg
production of forward dijets initiated with quarks : qq̄∗ → gg
Test of TMDs in multi-jet production : p p → n ( = 4 in this talk ) jets
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4 jet production in High Energy Factorization
The framework: off-shell amplitudes and PDFs

Our PDFs: the prescription

Survival probability without emissions

Kimber, Martin, Ryskin prescription, ’01 :

Ts (µ2, k2) = exp

(
−
∫ k2

µ2

dk ′2

k ′2
αs (k ′2)

2π

×
∑

a′

∫ 1−∆

0
dz ′Paa′ (z ′)

)
∆ =

µ

µ+ k
, µ = hard scale

F(x , k2, µ2) ∼ ∂λ2
(
Ts (λ2, µ2) x g(x , λ2)

) ∣∣
λ2=k2

DLC 2016 (Double Log Coherence)
K. Kutak, R. Maciula, M.S., A. Szczurek, A. van Hameren,

JHEP 1604 (2016) 175 (arXiv:1602.06814)
Available on request to krzysztof.kutak@ifj.edu.pl
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4 jet production in High Energy Factorization
The framework: off-shell amplitudes and PDFs

Example: central-forward dijets production

Hybrid factorization, (Deak, Hautmann, Jung, Kutak, ’09):

σh1,h2→qq̄ =

∫
d2k1⊥dx1 dx2 F(x1, k1⊥, µ) f (x2, µ) σ̂ (x1, x2, k1⊥, µ)

Kutak, Sapeta, ’12:

  14

Di-jets pt spectra 
S.Sapeta. KK ,12

Reasonable agreement.
 
No usage of traditional parton shower

Gluon emissions are unordered in pt 
and udd up to kt = Ip1+p2+.....pnI 

During evolution time incoming gluon becomes off-shell  

Crucial effect of  higher order corrections

p1 p1

p2

p1

p2

p3

kt

kt ktkt
Reasonable agreement with data
No traditional parton showers: the Unintegrated PDF as a parton shower.
Hybrid factorization formula for dijet production (fully differential) can be derived
from Color-Glass-Condensate P. Kotko, K. Kutak, C. Marquet, E. Petreska, A.
van Hameren, JHEP 1509 (2015) 106
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4 jet production in High Energy Factorization
The framework: off-shell amplitudes and PDFs

Conjectured formula for 4 jets production:

Following content based on

K. Kutak, R. Maciula, M. S., A. Szczurek, A. van Hameren, JHEP 1604 (2016) 175
&

K. Kutak, R. Maciula, M. S., A. Szczurek, A. van Hameren, in preparation

σ4−jets =
∑
i,j

∫
dx1

x1

dx2

x2
d2kT1d2kT2 Fi (x1, kT1, µF )Fj (x2, kT2, µF )

×
1
2ŝ

4∏
l=i

d3kl

(2π)32El
Θ4−jet (2π)4 δ

(
P −

4∑
l=1

ki

)
|M(i∗, j∗ → 4 part.)|2

Ansatz motivated by 2→ 2 case

PDFs and matrix elements well defined.

No proof à la Collins-Soper-Sterman around (not yet...)

Reasonable description of data justifies this formula a posteriori
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4 jet production in High Energy Factorization
Test of HE factorisation for hard central 4-jet production

Our framework

AVHLIB (A. van Hameren) : https://bitbucket.org/hameren/avhlib

complete Monte Carlo program for tree-level calculations

any process within the Standard Model

any initial-state partons on-shell or off-shell

employs numerical Dyson-Schwinger recursion to calculate helicity amplitudes

automatic phase space optimization

Flavour scheme: Nf = 5

Running αs from the MSTW68cl PDF sets

Massless quarks approximation Ecm = 7/8TeV ⇒ mq/q̄ = 0.

Scale µR = µF ≡ µ = HT
2 ≡

1
2
∑

i pi
T , (sum over final state particles)

We don’t take into account correlations in DPS: D(x1, x2, µ) = f (x1, µ) f (x2, µ).
There are attempts to go beyond this approximation:
Golec-Biernat, Lewandowska, Snyder, M.S., Stasto, Phys.Lett. B750 (2015) 559-564
Rinaldi, Scopetta, Traini, Vento, JHEP 1412 (2014) 028
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4 jet production in High Energy Factorization
Test of HE factorisation for hard central 4-jet production

4-jet production: Single Parton Scattering ( SPS )

i

j

p

p

a

b

c

d

1

We take into account all the ( according to
our conventions ) 20 channels.

Here u and d stand for different quark
flavours in the initial ( final ) state.

We do not introduce K factors,
amplitudes@LO.

∼ 95 % of the total cross section

There are 19 different channels contributing to the cross section at the parton-level:

gg → 4g , gg → qq̄ 2g , qg → q 3g , qq̄ → qq̄ 2g , qq → qq 2g , qq′ → qq′ 2g ,

gg → qq̄qq̄ , gg → qq̄q′q̄′ , qg → qgqq̄ , qg → qgq′q̄′ ,

qq̄ → 4g , qq̄ → q′q̄′ 2g , qq̄ → qq̄qq̄ , qq̄ → qq̄q′q̄′ , qq̄ → q′q̄′q′q̄′ ,

qq̄ → q′q̄′q′′q̄′′ , qq → qqqq̄ , qq → qqq′q̄′ , qq′ → qq′qq̄ ,
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4 jet production in High Energy Factorization
Test of HE factorisation for hard central 4-jet production

4-jet production: Double parton scattering ( DPS )

i

k

j

l

p

p

a

b

c

d

1

σ =
∑

i,j,a,b;k,l,c,d

S
σeff

σ(i , j → a, b)σ(k, l → c, d)

S =

{
1/2 if i j = k l and a b = c d
1 if i j 6= k l or a b 6= c d

σeff = 15mb ,

Experimental data may hint at different values of
σeff ; main conclusions not affected

In our conventions, 9 channels from 2→ 2 SPS events,

#1 = gg → gg , #6 = uū → dd̄

#2 = gg → uū , #7 = uū → gg

#3 = ug → ug , #8 = uu → uu

#4 = gu → ug , #9 = ud → ud

#5 = uū → uū

⇒ 45 channels for the DPS; only 14 contribute to ≥ 95% of the cross section :

(1, 1), (1, 2), (1, 3), (1, 4), (1, 8), (1, 9), (3, 3)

(3, 4), (3, 8), (3, 9), (4, 4), (4, 8), (4, 9), (9, 9) 10 / 21



4 jet production in High Energy Factorization
Test of HE factorisation for hard central 4-jet production

Hard jets

We reproduce all the LO results (only SPS) for p p → n jets , n = 2, 3, 4 published in
BlackHat collaboration, Phys.Rev.Lett. 109 (2012) 042001

S. Badger et al., Phys.Lett. B718 (2013) 965-978

Asymmetric cuts for hard central jets

pT ≥ 80GeV , for leading jet

pT ≥ 60GeV , for non leading jets

|η| ≤ 2.8 , R = 0.4

PDFs set: MSTW2008LO@68cl

σ(≥ 2 jets) = 958+316
−221 σ(≥ 3 jets) = 93.4+50.4

−30.3 σ(≥ 4 jets) = 9.98+7.40
−3.95

Cuts are too hard to pin down DPS and/or benefit from HEF: 4-jet case

Collinear case


9.98+7.40

−3.95 SPS

0.094+0.06
−0.036 DPS

HEF case


10.0+6.9

−5.3 SPS

0.05+0.054
−0.029 DPS
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4 jet production in High Energy Factorization
Test of HE factorisation for hard central 4-jet production

Differential cross section

Most recent ATLAS paper on 4-jet production in proton-proton collision:
ATLAS, JHEP 1512 (2015) 105
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All channels included and running αs @ NLO

Good agreement with data

DPS effects are manifestly too small for such hard cuts: this could be expected.
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4 jet production in High Energy Factorization
Collinear-factorisation vs. HEF in DPS for central 4-jet production

DPS effects in collinear and HEF

Inspired by Maciula, Szczurek, Phys.Lett. B749 (2015) 57-62
DPS effects are expected to become significant for lower pT cuts, like the ones of the

CMS collaboration, Phys.Rev. D89 (2014) no.9, 092010

pT (1, 2) ≥ 50GeV , pT (3, 4) ≥ 20GeV , |η| ≤ 4.7 , R = 0.5

CMS collaboration : σtot = 330± 5 (stat.)± 45 (syst.) nb

LO collinear factorization : σSPS = 697 nb , σDPS = 125 nb , σtot = 822 nb

LO HEF kT -factorization : σSPS = 548 nb , σDPS = 33 nb , σtot = 581 nb

In HE factorization DPS gets suppressed and does not dominate at low pT

Counterintuitive result from well-tested perturbative framework ⇒ phase space effect ?
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4 jet production in High Energy Factorization
Collinear-factorisation vs. HEF in DPS for central 4-jet production

An old problem: higher order corrections to 2-jet production
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Figure: The transverse momentum distribution
of the leading (long dashed line) and
subleading (long dashed-dotted line) jet for the
dijet production in HEF.

NLO corrections to 2-jet production suffer
from instability problem when using
symmetric cuts: Frixione, Ridolfi,
Nucl.Phys. B507 (1997) 315-333

Symmetric cuts rule out from integration
final states in which the momentum
imbalance due to the initial state non
vanishing transverse momenta gives to one
of the jets a lower transverse momentum
than the threshold.

ATLAS data vs. theory (nb) @ LHC7 for
2,3,4 jets. Cuts are defined in Eur.Phys.J.
C71 (2011) 1763; theoretical predictions
from Phys.Rev.Lett. 109 (2012) 042001

#jets ATLAS LO NLO

2 620± 1.3+110
−66 ± 24 958(1)+316

−221 1193(3)+130
−135

3 43± 0.13+12
−6.2 ± 1.7 93.4(0.1)+50.4

−30.3 54.5(0.5)+2.2
−19.9

4 4.3± 0.04+1.4
−0.79 ± 0.24 9.98(0.01)+7.40

−3.95 5.54(0.12)+0.08
−2.44 14 / 21



4 jet production in High Energy Factorization
Collinear-factorisation vs. HEF in DPS for central 4-jet production

Reconciling HE and collinear factorisation: asymmetric pT cuts

In order to open up wider region of soft final states and thereof expected that the
DPS contribution increases

pT (1) ≥ 35GeV , pT (2, 3, 4) ≥ 20GeV , |η| < 4.7 , ∆R > 0.5

LO collinear factorization : σSPS = 1969 nb , σDPS = 514 nb , σtot = 2309 nb

LO HEF kT -factorization : σSPS = 1506 nb , σDPS = 297 nb , σtot = 1803 nb
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DPS dominance pushed to even lower pT but restored in HE factorization as well
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4 jet production in High Energy Factorization
Collinear-factorisation vs. HEF in DPS for central 4-jet production

Pinning down double parton scattering: large rapidity separation
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It is interesting to look for kinematic variables which could make DPS apparent.

The maximum rapidity separation in the four jet sample is one such variable,
especially at 13 GeV.

for ∆Y > 6 the total cross section is dominated by DPS.
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4 jet production in High Energy Factorization
Collinear-factorisation vs. HEF in DPS for central 4-jet production

Pinning down double parton scattering: "min3" azimuthal separation
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Definition: ∆φmin
3 = mini,j,k[1,4]

(∣∣φi − φj

∣∣+
∣∣φj − φk

∣∣) , i 6= j 6= k

Proposed by ATLAS in JHEP 12 105 (2015) for high pT analysis

High values favour configurations closer to back-to-back, i.e. DPS

For ∆φmin
3 ≥ π/2 the total cross section is dominated by DPS
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4 jet production in High Energy Factorization
Summary and perspectives

Summary and conclusions

We have a complete framework for the evaluation of cross sections from
amplitudes with off-shell quarks and TMDs via KMR procedure obtained from
NLO collinear PDFs

HE factorisation reproduces well ATLAS data @ 7 and 8 TeV for hard central
inclusive 4-jet production. Essential agreement with collinear predictions.

HE factorisation smears out the DPS contribution to the cross section for less
central jet, pushing the DPS-dominance region to lower pT , but asymmetric cuts
are in order: initial state transverse momentum generates asymmetries in the pT

of final state jet pairs.

It would be interesting to have an experimental analysis with cuts which are
asymmetric and soft (⇒ Szymanowski’s talk).

Further insight into HE factorisation prediction will come with progress in NLO
results and with the addition of final state paton showers. Work in progress...
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4 jet production in High Energy Factorization
Summary and perspectives

Summary and conclusions

We have a complete framework for the evaluation of cross sections from
amplitudes with off-shell quarks and TMD PDFs via KMR procedure obtained
from NLO collinear PDFs

HE factorisation reproduces well ATLAS data @ 7 and 8 TeV for hard central
inclusive 4-jet production. Essential agreement with collinear predictions.

HE factorisation smears out the DPS contribution to the cross section for less
central jet, pushing the DPS-dominance region to lower pT , but asymmetric cuts
are in order: initial state transverse momentum generates asymmetries in the pT

of final state jet pairs.

It would be interesting to have an experimental analysis with cuts which are
asymmetric and soft (⇒ Szymanowski’s talk).

Further insight into HE factorisation prediction will come with progress in NLO
results and with the addition of final state paton showers. Work in progress...

Thank you for your attention !
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4 jet production in High Energy Factorization
Backup

Comparing collinear factorization and HEF
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Collinear factorization performs slightly better for intermediate values and HEF does a
better job for the last bins, except for the 4th jet.
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4 jet production in High Energy Factorization
Backup

One more interesting variable

∆S = arccos

(
~pT (jhard

1 , jhard
2 ) · ~pT (jsoft

1 , jsoft
2 )

|~pT (jhard
1 , jhard

2 )| · |~pT (jsoft
1 , jsoft

2 )|

)
, ~pT (ji , jk ) = pT ,i + pT ,j

We roughly describe the data via pQCD effects within our HEF approach which are
(equally partially) described by parton-showers and soft MPIs by CMS.

For more variables to pin down DPS ⇒ see Maciula’s talk

CMS collaboration Phys.Rev. D89 (2014) no.9, 092010
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