

#### Status of exotic four-quark mesons

"Collider Physics" 2nd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society

13-15/5/2016, Katowice, Poland



#### Outline



Introduction: mesons

Four-quark states in the low-energy sector (< 1 GeV).

Intermezzo: glueballs.

Four-quark states in the high-energy sector (>2 GeV)



#### Introductory remarks



The QCD Lagrangian contains 'colored' quarks and gluons. However, no ,colored' state has been seen.

Confinement: physical states are white and are called hadrons.

Hadrons can be:

Mesons: bosonic hadrons

Baryons: fermionic hadrons



Definition(s):

- 1) A meson is a strongly interacting particle with integer spin.
- 2) A meson is a strongly interacting particle with zero baryon number.

A meson is **not necessarily** a quark-antiquark state. A quark-antiquark state is a conventional meson.

# Example of conventional quark-antiquark states: the $\rho$ and the $\pi$ mesons





Rho-meson

$$m_{\rho^+} = 775 \text{ MeV}$$

Pion  $m_{\pi^+} = 139 \text{ MeV}$ 

$$m_{\mu} + m_{d} \approx 7 \text{ MeV}$$

Mass generation in QCD is a nonpert. penomenon based on SSB.

#### Quark model(s) and their QFT extensions



Mesons in a Relativized Quark Model with Chromodynamics S. Godfrey, Nathan Isgur Published in Phys.Rev. D32 (1985) **189-231** 

QCD phenomenology based on a chiral effective Lagrangian Tetsuo Hatsuda, Teiji Kunihiro Published in **Phys.Rept. 247 (1994) 221-367** 

NJL: quark-based model with chiral symmetry and SSB chiral condensate Effective quark mass Mesons as quarkonia (pion: ok)

2\*\* 2\*\* 2\*\* 3\*\* 3\*\* 4\*\* 4\*\* 4\*\* 5\*\*

1<sup>3</sup>G<sub>3</sub>(2.37)

The Infrared behavior of QCD Green's functions: Confinement dynamical symmetry breaking, and hadrons as relativistic bound states Reinhard Alkofer, Lorenz von Smekal Published in **Phys.Rept. 353 (2001) 281** 

#### DS:

0\*\* 1\*\*

GeV

2.40

200

1.60 1.20 0.80

> quarks and gluons propagators from QCD Condensates Effective quark and gluon masses Spectra of mesons as quarkonia (pion: ok) and baryons as qqq states

#### Quark-antiquark states: the large-Nc limit



As Isgur-Godrey have shown, the quark model works. Theoretical justification relies on the large-Nc expansion.

Baryons in the 1/n Expansion Edward Witten Published in Nucl.Phys. B160 (1979) 57

$$\left| \rho^{+} \right\rangle \propto \left| u \bar{d} \right\rangle + \frac{1}{N_{c}} \left( \left| \pi^{+} \pi^{0} \right\rangle + ... \right)$$

where

 $\left| u \bar{d} \right\rangle = \left| \text{valence } u + \text{valence } \bar{d} + \text{gluons} \right\rangle$ 

Mesons beyond q-qbar: the first term in the first expansion is of non-quarkonium type





#### Four-quark states: low-energy

The light scalar mesons



### $a_0(980) k(800) f_0(980) f_0(500)$

 $J^{PC} = 0^{++}$ 

Many low-energy QCD) approaches show that these states are not quark-antiquark states!!!

| $J^{PC} = 0^{++}$ | M < 1 GeV             | Main contribution |
|-------------------|-----------------------|-------------------|
| <i>I</i> = 1      | $a_0(980)$            | KK                |
| $I = \frac{1}{2}$ | k(800)                | πK                |
| I = 0             | $f_0(500)$<br>f_(980) | ΠΠ                |
|                   | France                | esco Giacosa      |

#### Existence and pole position of fo(500)



From 2010 to 2012: update...



J.R. Pelaez e-Print: arXiv:1510.00653 From controversy to precision on the sigma meson: a review on the status of the non-ordinary f0(500) resonance

#### The very peculiar case of the f0(500)



Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014) (URL: http://pdg.lbl.gov)



 $I^{G}(J^{PC}) = 0^{+}(0^{+})$ 

A REVIEW GOES HERE – Check our WWW List of Reviews

| f <sub>0</sub> (50                                 | 0) T-MATRIX PO | LE √s |         |
|----------------------------------------------------|----------------|-------|---------|
| Note that $\Gamma\approx 2~\text{Im}(\sqrt{s_{ }}$ | pole).         |       |         |
| VALUE (MeV)                                        | DOCUMENT ID    | TECN  | COMMENT |

(400–550)-*i*(200–350) OUR ESTIMATE

It is a kind of four-quark object which arises due to pion-pion interaction and due to mesonic loops.

It is NOT a quark-antiquark state (large-Nc, quark-based and hadron based models,...). Hence it is not the chiral partner of the pion.

It has a long, problematic and interesting history.

#### The scalar kaonic resonace K0\*(800)/1



Citation: K.A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014) and 2015 update



$$I(J^P) = \frac{1}{2}(0^+)$$

OMITTED FROM SUMMARY TABLE Needs confirmation. See the mini-review on scalar mesons under  $f_0(500)$  (see the index for the page number).

#### K\*(800) MASS

VALUE (MeV)EVTSDOCUMENT IDTECNCOMMENT682 ±29OUR AVERAGEError includes scale factor of 2.4. See the ideogram below.

#### The scalar kaonic resonace K<sub>0</sub>\*(800)/2



The Lag. contains a kingle scalar kaon corresponding to K0\*(1430).

$$\mathcal{L}_{int} = aK_0^{*+}K^-\pi^0 + bK_0^{*+}\partial_\mu K^-\partial^\mu \pi^0 + \dots$$



K0\*(800) is not in the Lag.!!! Role of loops crucial.

Correct description of pion-kaon scattering data





T. Wolkanowski, M. Soltysiak, F. G., arxiv: 1512.01071 Francesco Giacosa

#### The scalar kaonic resonace K<sub>0</sub>\*(800)/3





T. Wolkanowski, M. Soltysiak, F. G., arxiv: 1512.01071 Francesco Giacosa  $K_0^*(1430)$  : 1.412760 - 0.126770i  $K_0^*(800)$  : 0.744805 - 0.263056i

#### The resonance ao(980) as a companion pole



$$\mathcal{L}_{a_0\eta\pi} = A_1 a_0^0 \eta \pi^0 + B_1 a_0^0 \partial_\mu \eta \partial^\mu \pi^0 , \mathcal{L}_{a_0\eta'\pi} = A_2 a_0^0 \eta' \pi^0 + B_2 a_0^0 \partial_\mu \eta' \partial^\mu \pi^0 , \mathcal{L}_{a_0K\bar{K}} = A_3 a_0^0 (K^0 \bar{K}^0 - K^- K^+) + B_3 a_0^0 (\partial_\mu K^0 \partial^\mu \bar{K}^0 - \partial_\mu K^- \partial^\mu K^+)$$

Here:  $a_0 = a_0(1450)$  is the unique seed state present in the Lagrangian.



# Uniwersytet

# $\lambda = 0.1$ $\lambda = 0.4$ $\lambda = 0.4$ $\lambda = 1.0$ x [GeV]

Spectral function of the ao sector

The  $a_0(980)$  revisited

Thomas Wolkanowski<sup>a</sup>, Francesco Giacosa<sup>a,b</sup> and Dirk H. Rischke<sup>a</sup>

<sup>a</sup>Institut für Theoretische Physik, Goethe-Universität Frankfurt am Main, 60438 Frankfurt am Main, Germany <sup>b</sup>Institute of Physics, Jan Kochanowski University, 25406 Kielce, Poland

#### Phys.Rev. D93 (2016) no.1, 014002

Francesco Giacosa

Here, a<sub>0</sub>(980) is a threshold-effect at the kaon-kaon threshold but corresponds to a pole! It is a state, it is a kind of molecular object.



#### Intermezzo - Gueballs

#### Glueballs



Bound state of gluons. Where are they?



# Scalars above 1 GeV and scalar glueball candidate



fo(1370) is compatible with a quark-antiquark substructure.

Yet, a large glueball component is expected in f0(1500) and/or in f0(1710).

Latest studies actually point toward fo(1710) as being predominantly gluonic.

#### The scalar glueball



The calculation within a chiral model (eLSM) of the full mixing problem in the I=J=0 sector shows that:

$$\begin{pmatrix} f_0(1370) \\ f_0(1500) \\ f_0(1710) \end{pmatrix} = \begin{pmatrix} 0.91 & -0.24 & 0.33 \\ 0.30 & 0.94 & -0.17 \\ -0.27 & 0.26 & 0.93 \end{pmatrix} \begin{pmatrix} \sigma_N \equiv nn = \sqrt{1/2}(\bar{u}u + \bar{d}d) \\ \sigma_S \equiv \bar{s}s \\ G \equiv gg \end{pmatrix}$$



Ergo: fo(1710) is predominantly a glueball! ...and fo(1370) is the chiral partner of the pion fo(1500) is predominantely a hidden-strange state

Details in S. Janowski, F.G, D. H. Rischke, **Phys.Rev. D90 (2014) 11, 114005** arXiv: 1408.4921 See also: L. -C. Gu et al, **Phys. Rev. Lett. 110 (2013) 021601** [arXiv:1206.0125 [hep-lat]] Pseudoscalar glueball



Up to now we do not know where it is. A light pseudoscalar glueball was not found yet. Here also the candidates are not so easily found.

 $\eta(1405)$  and  $\eta(1475)$ (but much lighter than the lattice value of 2.6 GeV)

X(2370) (BES)

#### The pseudoscalar glueball



$$\mathcal{L}_{\tilde{G}\text{-mesons}}^{int} = ic_{\tilde{G}\Phi}\tilde{G}\left(\det\Phi - \det\Phi^{\dagger}\right)$$

| Quantity                                                               | Value   |
|------------------------------------------------------------------------|---------|
| $\Gamma_{\tilde{G} \to KK\eta} / \Gamma_{\tilde{G}}^{tot}$             | 0.049   |
| $\Gamma_{\tilde{G} \to K K \eta'} / \Gamma_{\tilde{G}}^{tot}$          | 0.019   |
| $\Gamma_{	ilde{G} ightarrow\eta\eta\eta}/\Gamma_{	ilde{G}}^{tot}$      | 0.016   |
| $\Gamma_{	ilde{G}  ightarrow \eta \eta \eta'}/\Gamma_{	ilde{G}}^{tot}$ | 0.0017  |
| $\Gamma_{	ilde{G} 	o \eta \eta' \eta'} / \Gamma_{	ilde{G}}^{tot}$      | 0.00013 |
| $\Gamma_{\tilde{G} \to KK\pi} / \Gamma_{\tilde{G}}^{tot}$              | 0.46    |
| $\Gamma_{	ilde{G} 	o \eta \pi \pi} / \Gamma_{	ilde{G}}^{tot}$          | 0.16    |
| $\Gamma_{	ilde{G} 	o \eta' \pi \pi} / \Gamma_{	ilde{G}}^{tot}$         | 0.094   |
|                                                                        |         |

 $\mathbf{I}_{\tilde{G}\to\pi\pi\pi}$ 

$$\begin{array}{|c|c|c|c|c|} & \text{Quantity} & \text{Value} \\ \hline & \Gamma_{\tilde{G} \to KK_S} / \Gamma_{\tilde{G}}^{tot} & 0.059 \\ \hline & \Gamma_{\tilde{G} \to a_0 \pi} / \Gamma_{\tilde{G}}^{tot} & 0.083 \\ \hline & \Gamma_{\tilde{G} \to \eta \sigma_N} / \Gamma_{\tilde{G}}^{tot} & 0.028 \\ \hline & \Gamma_{\tilde{G} \to \eta \sigma_S} / \Gamma_{\tilde{G}}^{tot} & 0.012 \\ \hline & \Gamma_{\tilde{G} \to \eta' \sigma_N} / \Gamma_{\tilde{G}}^{tot} & 0.019 \\ \hline \end{array}$$



Future experimental search, e.g. at BES and PANDA

=0

Details in:

- W. Eshraim, S. Janowski, F.G., D. Rischke, Phys.Rev. D87 (2013) 054036. arxiv: 1208.6474 .
- W. Eschraim, S. Janowski, K. Neuschwander, A. Peters, F.G., Acta Phys. Pol. B, Prc. Suppl. 5/4, arxiv: 1209.3976

#### Other glueballs



Here it is fog...

The resonance  $f_J(2220)$  could be a candidate, if J=2 will be confirmed.

So on for the other glueballs...definitely, both experiment and theory are needed.

Plan: make predictions for decays of (almost all) glueballs in the list.



#### Discussion on heavy non-quarkonium mesons



#### **X(3872)** $M_x = 3871.52 \pm 0.2 \text{ MeV}, \Gamma = 1.3 \pm 0.6 \text{ MeV}, J^{PC} = 1^{++}$

Various works (see Brambilla et al, EPJ C (2011) 71): tetraquark or molecular states the most probable intepretations. (Mass too light when compared to quark-antiquark predictions)

Possibilities: tetraquark? a D-D\* molecular state? It could arise due to mesonic loops as a companion pole. The starting seed state is a regular charm-anticharm object. Loops do the rest.



#### Four-quark states above 2 GeV



D\*so(2317): too light to be a cs, cs quarkonium. J<sup>P</sup> = 0<sup>+</sup>, Mass = 2317.8 ± 0.6 MeV

It is a good candidate to be a molecular state / dynamically generated state...

In arXiv: 1405.5861 we find that the quarkonium state of 2.47 GeV and a very large width. Loop effects and companion pole?



#### **X(3872)** $M_x = 3871.52 \pm 0.2 \text{ MeV}, \Gamma = 1.3 \pm 0.6 \text{ MeV}, J^{PC} = 1^{++}$

Various works (see Brambilla et al, EPJ C (2011) 71): tetraquark or molecular states the most probable intepretations. (Mass too light when compared to quark-antiquark predictions)

Possibilities: tetraquark? a D-D\* molecular state? It could arise due to mesonic loops as a companion pole. The starting seed state is a regular charm-anticharm object. Loops do the rest.

#### X,Y,Z states



| State          | $m ({ m MeV})$         | $\Gamma$ (MeV)         | $J^{PC}$   | Process (mode)                                     | References                    |
|----------------|------------------------|------------------------|------------|----------------------------------------------------|-------------------------------|
| X(3872)        | $3871.69 {\pm} 0.17$   | <1.2                   | 1++        | $B \to K(\pi^+\pi^- J/\psi)$                       | Belle [10, 32], BaBar [36],   |
|                |                        |                        |            |                                                    | LHCb [34, 72]                 |
|                |                        |                        |            | $p\bar{p} \rightarrow (\pi^+\pi^- J/\psi) + \dots$ | CDF [31, 73, 74], D0 [75]     |
|                |                        |                        |            | $e^+e^- \rightarrow \gamma(\pi^+\pi^- J/\psi)$     | BES III [76]                  |
|                |                        |                        |            | $B \to K(\omega J/\psi)$                           | Belle [77], BaBar [33]        |
|                |                        |                        |            | $B \to K(D^{*0}\bar{D}^0)$                         | Belle [38, 78], BaBar [37]    |
|                |                        |                        |            | $B \to K(\gamma J/\psi)$ and                       | Belle [29], BaBar [30],       |
|                |                        |                        |            | $B \to K(\gamma \psi(2S))$                         | LHCb $[40]$                   |
| $Z_c(3900)^+$  | $3888.7\pm3.4$         | $35 \pm 7$             | 1+         | $e^+e^- \rightarrow (J/\psi \ \pi^+)\pi^-$         | Belle $[43]$ , BES III $[55]$ |
|                |                        |                        |            | $e^+e^- \rightarrow (DD^*)^+\pi^-$                 | BES III [56]                  |
| X(3915)        | $3915.6\pm3.1$         | $28 \pm 10$            | $0/2^{?+}$ | $B \to K(\omega J/\psi)$                           | Belle $[79]$ , BaBar $[33]$   |
|                |                        |                        |            | $e^+e^- \to e^+e^-(\omega J/\psi)$                 | Belle [80], BaBar [81]        |
| X(3940)        | $3942^{+9}_{-8}$       | $37^{+27}_{-17}$       | ??+        | $e^+e^- \rightarrow J/\psi(DD^*)$                  | Belle [82]                    |
|                |                        |                        |            | $e^+e^- \rightarrow J/\psi ()$                     | Belle [83]                    |
| Y(4008)        | $3891 \pm 42$          | $255\pm42$             | 1          | $e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$             | Belle [42, 43]                |
| $Z_c(4050)^+$  | $4051_{-43}^{+24}$     | $82^{+51}_{-55}$       | ?          | $B \to K(\pi^+ \chi_{c1}(1P))$                     | Belle [53], BaBar [54]        |
| $X(4050)^+$    | $4054\pm3$             | 45                     | ?          | $e^+e^- \to (\pi^+\psi(2S))\pi^-$                  | Belle [84]                    |
| Y(4140)        | $4143.4 \pm 3.0$       | $15^{+11}_{-7}$        | ??+        | $B \to K(\phi J/\psi)$                             | CDF [71],D0 [85]              |
| X(4160)        | $4156^{+29}_{-25}$     | $139^{+113}_{-65}$     | ??+        | $e^+e^- \rightarrow J/\psi(DD^*)$                  | Belle [82]                    |
| $Z_c(4200)^+$  | $4196^{+35}_{-32}$     | $370^{+99}_{-149}$     | ?          | $B \to K(\pi^+ J/\psi)$                            | Belle [86]                    |
| $Z_c(4250)^+$  | $4248^{+185}_{-45}$    | $177^{+321}_{-72}$     | ?          | $B \to K(\pi^+ \chi_{c1}(1P))$                     | Belle [53], BaBar [54]        |
| Y(4260)        | $4263\pm 5$            | $108\pm14$             | 1          | $e^+e^- \to \gamma(\pi^+\pi^- J/\psi)$             | BaBar [41, 87], CLEO [88],    |
|                |                        |                        |            |                                                    | Belle $[42, 43]$              |
|                |                        |                        |            | $e^+e^- \rightarrow (\pi^+\pi^- J/\psi)$           | CLEO $[47]$ , BES III $[56]$  |
|                | 81.52                  | 100000                 |            | $e^+e^- \to (\pi^0\pi^0 J/\psi)$                   | CLEO [47]                     |
| X(4350)        | $4350.6^{+4.6}_{-5.1}$ | $13.3^{+18.4}_{-10.0}$ | ??+        | $e^+e^- \rightarrow e^+e^-(\phi J/\psi)$           | Belle [89]                    |
| Y(4360)        | $4361 \pm 13$          | $74 \pm 18$            | 1          | $e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$            | BaBar [44], Belle [45, 84]    |
| $Z_c(4430)^+$  | $4485^{+36}_{-25}$     | $200^{+49}_{-58}$      | 1+         | $B \to K(\pi^+\psi(2S))$                           | Belle [49, 51, 52],           |
|                |                        |                        |            |                                                    | BaBar [50], LHCb [21]         |
|                |                        |                        |            | $B \to K(\pi^+ J/\psi)$                            | Belle [86], BaBar [50]        |
| X(4630)        | $4634^{+\ 9}_{-11}$    | $92^{+41}_{-32}$       | 1          | $e^+e^- \to \gamma(\Lambda_c^+\Lambda_c^-)$        | Belle [90]                    |
| Y(4660)        | $4664 \pm 12$          | $48 \pm 15$            | 1          | $e^+e^- \to \gamma(\pi^+\pi^-\psi(2S))$            | Belle [45]                    |
| $Z_b(10610)^+$ | $10607.2 \pm 2.0$      | $18.4 \pm 2.4$         | 1+         | $e^+e^- \rightarrow (bb \ \pi^+)\pi^-$             | Belle [20]                    |
| $Z_b(10610)^0$ | $10609 \pm 4 \pm 4$    | N.A.                   | 1+-        | $e^+e^- \rightarrow (\Upsilon(2,3S)\pi^0)\pi^0$    | Belle [23]                    |
| $Z_b(10650)^+$ | $10652.2 \pm 1.5$      | $11.5 \pm 2.2$         | 1+         | $e^+e^- \rightarrow (bb \ \pi^+)\pi^-$             | Belle [20]                    |
| $Y_b(10888)$   | $10888.4 \pm 3.0$      | $30.7^{+8.9}_{-7.7}$   | 1          | $e^+e^- \to (\pi^+\pi^-\Upsilon(nS))$              | Belle [60, 62]                |

#### Hosaka et al, arxiv: 1603.09229

#### Z states



|      | State             | $M \ ({\rm MeV})$   | $\Gamma \ ({\rm MeV})$ | $J^{PC}$ | Decay modes                         | $1^{\rm st}$ observation |
|------|-------------------|---------------------|------------------------|----------|-------------------------------------|--------------------------|
| 2.07 | $Z_c^+(3885)$     | $3883.9 \pm 4.5$    | $24.8 \pm 11.5$        | $1^{+?}$ | $D^{*+}\bar{D}^0, D^+\bar{D}^{*0}$  | BESIII 2013              |
|      | $Z_{c}^{+}(3900)$ | $3898\pm5$          | $51 \pm 19$            | ??-      | $J/\psi \pi^+$                      | BESIII 2013              |
|      | $Z_{c}^{+}(4020)$ | $4022.9\pm2.8$      | $7.9\pm3.7$            | ??-      | $h_c(1P) \pi^+, D^{*+}\bar{D}^{*0}$ | BESIII 2013              |
|      | $Z_1^+(4050)$     | $4051_{-43}^{+24}$  | $82^{+51}_{-55}$       | $?^{?+}$ | $\chi_{c1}(1P) \pi^+$               | Belle $2008$             |
|      | $Z_2^+(4250)$     | $4248^{+185}_{-45}$ | $177^{+321}_{-72}$     | ??+      | $\chi_{c1}(1P) \pi^+$               | Belle $2008$             |
|      | $Z^{+}(4430)$     | $4443_{-18}^{+24}$  | $107^{+113}_{-71}$     | $1^{+-}$ | $\psi(2S) \pi^+$                    | Belle 2007               |



From M. Kavatsyuk for BES, eQCD 2015





## States beyond the quark-antiquark picture have been experimentally found!!!

Theoretical models have to be improved to describe them

Exotic Hadrons with Heavy Flavors – X, Y, Z and Related States –

March 31, 2016

Atsushi Hosaka<sup>1,2</sup>, Toru Iijima<sup>3,4</sup>, Kenkichi Miyabayashi<sup>5</sup>, Yoshihide Sakai<sup>6,7</sup>, Shigehiro Yasui<sup>8</sup>

arxiv:1603.09229

The hidden-charm pentaquark and tetraquark states

Hua-Xing Chen1a,b, Wei Chen1c, Xiang Liud,c,\*, Shi-Lin Zhua,f,g,\*\*

arxiv:1601.02092

#### Summary



QCD: well defined part of the Standard Model

...still: resonances long since long time are not yet understood (light scalar states).

On the contrary, many theoretically expected resonances have not been found. Glueballs: still missing!. The state fo(1710) is a good candidate. Many others shall be found.

Region of charm-anticharm states: experimental proof of non-quarkonium states (Z states are four-quark states!) ... but different models exist.

In conclusion: Ongoing and future experiment. Active theoretical activity (both from lattice and modelling).



#### Thank You

#### Recall: Spontnaeous Symmetry Breaking (SSB)



 $SSB: \ SU(3)_R \times SU(3)_L \rightarrow SU(3)_{V=R+L} \quad \text{Chiral symmetry} \Rightarrow \text{Flavor symmetry}$ 

$$\left\langle \overline{q}_{i}q_{i}\right\rangle = \left\langle \overline{q}_{i,R}q_{i,L} + \overline{q}_{i,L}q_{i,R}\right\rangle \neq 0$$



 $m \approx m_u \approx m_d \approx 5 \text{ MeV} \rightarrow m^* \approx 300 \text{ MeV}$ 

Nonperturbative propagators, running coupling, and the dynamical quark mass of Landau gauge QCD C. S. Fischer and R. Alkofer Phys. Rev. D 67, 094020 – Published 27 May 2003



#### Masses revisited



$$m^* \approx 300 \text{ MeV}$$
  
 $m_p \approx 3m^*$   
 $m_\rho \approx 2m^*$   
 $m_\pi << 2m^*$ 

Pion: (quasi) Goldstone boson.

$$m_{\pi}^2 \propto (m_u + m_d) \langle \overline{q}q \rangle$$

| $J^{PC} = 0^{++}$ | M < 1 GeV                | Tetraquark interpretation wersytet                                                                                                             |
|-------------------|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| <i>I</i> = 1      | $a_0(980)$               | $[u,s][\overline{d},\overline{s}], [\overline{u},\overline{s}][d,s],$ $([u,s][\overline{u},\overline{s}]-[d,s][\overline{d},\overline{s}])$    |
| $I = \frac{1}{2}$ | k(800)                   | $[u,d][\overline{d},\overline{s}], \ [\overline{u},\overline{d}][d,s],$ $[u,d][\overline{u},\overline{s}], \ [\overline{u},\overline{d}][u,s]$ |
| I = 0             | $f_0(500)$<br>$f_0(980)$ | $\approx [\overline{u}, \overline{d}][u, d]$ $\approx ([u, s][\overline{u}, \overline{s}] + [d, s][\overline{d}, \overline{s}])$               |
|                   | France                   | sco Giacosa                                                                                                                                    |



The light scalars can be interpeted as tetraquark state

A tetraquark is the bound state of two diquarks

An example of "good diquark" is:

$$|qq\rangle = |Space: L=0\rangle |Spin:(\uparrow\downarrow-\downarrow\uparrow\rangle)|f:(ud-du)\rangle |c:(RB-BR)\rangle$$

Example: 
$$a_0^+(980) = -[\overline{d}, \overline{s}][u, s]$$
 (and not  $u\overline{d}$ )