Effective particles in quantum field theory

Stanisław D. Głazek

Faculty of Physics, University of Warsaw

The concept of effective particles is introduced in the Minkowski space-time Hamiltonians in quantum field theory using a new kind of the relativistic renormalization group procedure that does not integrate out high-energy *modes* but instead integrates out the large *changes* of invariant mass. The new procedure is explained using examples of known interactions. Some applications in phenomenology, including processes measurable in colliders, are briefly presented.

Outline

Renormalization group procedure for effective particles (**RGPEP**)

in quantum field theory, is illustrated with a few examples

- asymptotic freedom in QCD
- jet production in TeV pion-nucleus collisions

Insights mentioned concerning: ridge effect in pp collisions, proton radius in QED and CQM potential in AdS/QCD.

Basic premise

QCD is a laboratory for studying problems concerning mass generation, symmetry breaking, and confinement, with potential implications in other areas of particle theory.

Basic theoretical issues: size of quanta and RG scale

Drawback of the concept of a quantum field operator

FIG. 1: Quantum field operators are blind to the size of individual quanta.

Canonical quantization of the YM field

$$\mathcal{L} = -\frac{1}{2} \operatorname{tr} F^{\mu\nu} F_{\mu\nu}$$

$$F^{\mu\nu} = \partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu} + ig[A^{\mu}, A^{\nu}]$$

$$\mathcal{T}^{\mu\nu} = -F^{a\mu\alpha} \partial^{\nu} A^{a}_{\alpha} + g^{\mu\nu} F^{a\alpha\beta} F^{a}_{\alpha\beta}/4$$

$$P^{\nu} = \int d\sigma_{\mu} \mathcal{T}^{\mu\nu}$$

$$\mathcal{H} = \mathcal{T}^{00}$$

$$\mathcal{H}_{YM}=\mathcal{H}_{A^2}+\mathcal{H}_{A^3}+\mathcal{H}_{A^4}$$

quantization
$$\hat{A}^{\mu} = \sum_{\sigma c} \int_{k} \left[t^{c} \varepsilon^{\mu}_{k\sigma} a_{k\sigma c} e^{-ikx} + t^{c} \varepsilon^{\mu*}_{k\sigma} a^{\dagger}_{k\sigma c} e^{ikx} \right]_{on \Sigma}$$

 $\hat{H}_{YM} = \int_{\Sigma} : \mathcal{H}_{YM}(\hat{A}) :$

$\mathcal{H}_{A^3} = g \; i \partial_lpha A^a_eta \; [A^lpha, A^eta]^a$

$$\hat{H}_{A^3} = \int_{x \in \Sigma} : g \; i \partial_\alpha A^a_\beta(x) \; [A^\alpha(x), A^\beta(x)]^a :$$

FIG. 2: Nonlocality is approximated by a local interaction for wavelengths greater than s. The particle size s is the scale parameter in the RGPEP.

$$\hat{H}_{A^{3},s} = \int_{x_{i} \in \Sigma} g_{s}(x_{1}, x_{2}, x_{3}) : i\partial_{\alpha}A^{a}_{\beta}(x_{1}, s) \ [A^{\alpha}(x_{2}, s), A^{\beta}(x_{3}, s)]^{a} :$$

$$g_s(x_1, x_2, x_3) = ?$$

SDG, K. G. Wilson, Phys. Rev. D 48, 5863 (1993)
K. G. Wilson *et al.*, Phys. Rev. D 49, 6720 (1994)
F. J. Wegner, Ann. Phys. (Leipzig) 3, 77 (1994)
...
SDG, Acta Phys. Pol. B 43, 1843 (2012)

M. Gomez-Rocha, SDG, Phys. Rev. D 92, 065005 (2015)

RGPEP initial condition at s = 0 for local QCD

$$\begin{split} \hat{H}_{A^{3},s=0} &= \int_{x \in \Sigma} :g \; i\partial_{\alpha}A^{a}_{\beta}(x,0) \; [A^{\alpha}(x,0),A^{\beta}(x,0)]^{a} :\\ \hat{A}^{\mu}(x,s=0) &= \sum_{\sigma c} \int_{k} \left[t^{c} \, \varepsilon^{\mu}_{k\sigma} \, a_{k\sigma c,s=0} \, e^{-ikx} + t^{c} \, \varepsilon^{\mu*}_{k\sigma} \, a^{\dagger}_{k\sigma c,s=0} \, e^{ikx} \right]_{on \; \Sigma} \end{split}$$

$$\hat{H}_{A^{3},s=0} = \sum_{123} \int_{123} \delta_{12.3} \left[g Y_{123} \ a_{1,0}^{\dagger} \ a_{2,0}^{\dagger} \ a_{3,0} + g Y_{123}^{*} \ a_{3,0}^{\dagger} \ a_{2,0} \ a_{1,0} \right]$$

RGPEP

$$H_0(a_0) = \sum_{n=2}^{\infty} \sum_{i_1, i_2, \dots, i_n} c_0(i_1, \dots, i_n) \ a_{i_1, 0}^{\dagger} \cdots a_{i_n, 0}$$
$$\boxed{c_0 = \text{the initial condition, including } CT_R}$$
$$H_s(a_s) = \sum_{n=2}^{\infty} \sum_{i_1, i_2, \dots, i_n} c_s(i_1, \dots, i_n) \ a_{i_1, s}^{\dagger} \cdots a_{i_n, s}$$
$$\boxed{c_s = ?}$$

 $g_s(i_1, i_2, i_3)$, among others

RGPEP generator and non-perturbative QCD

$$H_s(a_s) = H_0(a_0)$$
$$a_s = U_s a_0 U_s^{\dagger}$$
$$H_s = H_f + H_I$$
$$H'_s = [G_s, H_s]$$
$$G_s = [H_f, \tilde{H}_s]$$

NP QCD
$$\rightarrow$$
 $H'_s = \left[[H_f, \tilde{H}_s], H_s \right]$
AF pQCD \rightarrow $H_s = H_f + gH_{1s} + g^2H_{2s} + g^3H_{3s} + \dots$

FIG. 3: Third-order contributions to the three-gluon vertex

$$H_{A^{3}(1+3)s} = \sum_{123} \int_{123} \delta_{12.3} e^{-s^{4} \mathcal{M}_{12}^{4}} \left[V_{s123} a_{1,s}^{\dagger} a_{2,s}^{\dagger} a_{3,s} + V_{s123}^{*} a_{3,s}^{\dagger} a_{2,s} a_{1,s} \right]$$

RGPEP Hamiltonian $\beta(s)$

$$g_s = g_0 + \frac{g_0}{48\pi^2} N_c \, 11 \, \ln \frac{g}{s_0}$$

$$\leftrightarrow \quad \text{Gross-Wilczek-Politzer } \beta(\lambda)$$

Minkowskian $s \leftrightarrow 1/\lambda$ Euclidean

 \leftrightarrow four-dimensional length

M. Gomez-Rocha, SDG, Phys. Rev. D 92, 065005 (2015)

stglazek@fuw.edu.pl

three-dimensional length

Effective-particle picture of nucleons

FIG. 4: The RGPEP scale-dependent proton picture

Effective-particle color arrangement

FIG. 5: Nucleon white interior with colored boundary coupling to mesons

Ridge effect in *pp* **collisions** from 7 TeV to 13 TeV

P. Kubiczek, SDG, Lith. J. Phys. 55, 155 (2015)

Proton radius in QED

How do we go from QFT to the Schrödinger equation

$$\mathcal{L} = -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \bar{\psi} (i\partial \!\!\!/ - eA\!\!\!/ - m)\psi$$

$$\mathcal{L} \to \mathcal{H} \to \hat{H} = \int d^3x \, \hat{\mathcal{H}} \to \hat{H}_R = \int d^3x \, \hat{\mathcal{H}}_R \to \hat{H}_R + \hat{H}_{CT} \to \hat{H}_s$$

Family of effective Hamiltonians: \hat{H}_{QEDs}

s = 0 in canonical theory

$$\hat{H}_{QEDs}|\psi_s\rangle = E|\psi_s\rangle \quad \rightarrow \quad \hat{H}_{Sch} = ?$$

How does the parameter s enter in \hat{H}_{Sch} ?

The RGPEP interpretation of atomic valence constituents

SDG, Phys.Rev. D 90, 045020 (2014).

"True" Schrödinger equation in QED $\hat{H}_{QEDs} |\psi_s\rangle = E |\psi_s\rangle$

$$\frac{\vec{p}^2}{2\mu}\psi_s(\vec{p}\,) + \int \frac{d^3k}{(2\pi)^3} V_s(\vec{p},\vec{k}\,)\,\psi_s(\vec{k}\,) = -E_B\,\psi_s(\vec{p}\,)$$

$$V_s(\vec{p}, \vec{k}) = e^{-s^4(\vec{p}^2 - \vec{k}^2)^2/c^4} \frac{-4\pi}{(\vec{p} - \vec{k})^2} G_E(\vec{q}^2) \qquad \mathbf{4\%} !$$

definition of \vec{p} in atoms matches AdS/QFT SDG, Acta Phys. Pol. B 42, 1933 (2011)

$$\beta = m_l/(m_p + m_l)$$
, $c = \sqrt{m_l m_p}/(m_l + m_p)$, $x = p_l^+/(p_l^+ + p_p^+)$

$$p^{\perp} = c \left[(1-x) p_l^{\perp} - x p_p^{\perp} \right] / \sqrt{x(1-x)}$$
Brodsky – de Teramond
$$p^z = c \left(m_l + m_p \right) (x-\beta) / \sqrt{x(1-x)}$$
holography

CQM potential in AdS/QCD

A. Trawiński, SDG, Model of the AdS/QFT duality, Phys. Rev. D 88, 105025 (2013)

Hadron masses at maximal separation of effective $q\bar{q}$ pair

A. Trawiński, S. Głazek, S. Brodsky, G. de Teramond, H. Dosch, Phys. Rev. D 90, 074017 (2014).

Jet production in pion-nucleus collisions

A. P. Trawiński, PhD Thesis, UW 2016

FIG. 6: Pion is wedged into two quark jets by a nucleus.

The RGPEP pion with U_{eff} from AdS/QCD

The RGPEP pion of ~ 1 fm quarks with U_{eff} from AdS/QCD

Data: A. R. Amendolia, Nucl. Phys. B 277, 168 (1986) Theory: A. P. Trawiński, PhD Thesis, UW 2016

 $|\pi\rangle = |q_{s_c}\bar{q}_{s_c}\rangle$ in terms of quarks and gluons with $1/s \sim 100 \text{ GeV}$

FIG. 7: Examples of pion splitting on gluons in a nucleus, described using H_{QCDs} with $1/s \sim 100$ GeV.

Jet counts distribution $\phi(x, k_T)$, for jets induced by pions impinging on Pt, in two jet- k_T bins.

Data from E791, Phys. Rev. Lett. 86, 4768 (2001); theory from A. P. Trawiński, PhD Thesis, UW 2016.

PTF Symposium Collider Physics, US, Katowice, 14 maja 2016

Conclusion:

RGPEP opens new options for developing **QFT**

$\begin{array}{ll} & & & \text{PTF Symposium Collider Physics, UŚ, Katowice, 14 maja 2016} \\ & & \hat{H}_{A^3} \rightarrow \hat{H}_{A^3\,R} \end{array}$

Regularization

$$\hat{H}_{A^3} = \sum_{123} \int_{123} \delta_{12.3} \left[g \, Y_{123} \, a_1^{\dagger} a_2^{\dagger} a_3 + g \, Y_{123}^* \, a_3^{\dagger} a_2 a_1 \right]$$
$$\hat{H}_{A^3 R} = \sum_{123} \int_{123} \delta_{12.3} R \left[g \, Y_{123} \, a_1^{\dagger} a_2^{\dagger} a_3 + g \, Y_{123}^* \, a_3^{\dagger} a_2 a_1 \right]$$

$$\begin{array}{ccc} p_1 \\ p_2 \\ p_3 \\ p_2 \end{array} \begin{array}{c} x_1 = p_1^+ / p_3^+ = x \\ x_2 = p_2^+ / p_3^+ = 1 - x \end{array} \begin{array}{c} k_1^\perp = p_1^\perp - x_1 p_3^\perp = \kappa^\perp \\ k_2^\perp = p_2^\perp - x_2 p_3^\perp = -\kappa^\perp \end{array}$$

$$r_{i} = x_{i}^{\delta} e^{-k_{i}^{\perp 2}/\Delta^{2}} \quad i = 1, 2, 3 \qquad x_{3} = 1 \qquad k_{3}^{\perp} = 0^{\perp}$$
$$\boxed{R = \prod_{i=1}^{3} r_{i}}$$
$$Y_{123} = i f^{c_{1}c_{2}c_{3}} \left[\varepsilon_{1}^{*}\varepsilon_{2}^{*} \cdot \varepsilon_{3}\kappa - \varepsilon_{1}^{*}\varepsilon_{3} \cdot \varepsilon_{2}^{*}\kappa_{\frac{1}{x_{2}}} - \varepsilon_{2}^{*}\varepsilon_{3} \cdot \varepsilon_{1}^{*}\kappa_{\frac{1}{x_{1}}} \right]$$

Suggestion concerning glueballs

 $|gg\rangle + |ggg\rangle + \dots = |g_sg_s\rangle + |g_sg_sg_s\rangle + \dots$

QCD bound states and QED Hydrogen atom analogy

$$V_c = -\frac{\alpha_{\text{atom}}}{r} \sim \alpha_{\text{atom}} = \alpha(s_{\text{atom}})$$

$$\psi(\vec{r}) \sim e^{-\alpha_{\text{atom}}\mu|\vec{r}|} \qquad \tilde{\psi}(\vec{k}) \sim \frac{1}{[\vec{k}^2 + \alpha_{\text{atom}}^2\mu^2]^2}$$

$$\left[P^{+}\hat{H}_{QED}(s_{atom}) - P^{\perp 2}\right]|\psi_{\rm atom}\rangle = M_{\rm atom}^{2}|\psi_{\rm atom}\rangle$$

 $H_{QCD} \neq H_{QED}$ in the RGPEP $m_g(s) =? \rightarrow$ hadrons Eigenvalue problem \leftrightarrow Operators creating hadrons

$$\begin{split} \mathbf{NP} &\to H'_t = \left[[H_f, \tilde{H}_t], H_t \right] \\ \mathbf{AF} &\to H_t = H_f + g H_{1t} + g^2 H_{2t} + g^3 H_{3t} + \dots \\ H'_{1t} = \left[[H_f, \tilde{H}_{1t}], H_f \right] \\ H'_{1t\,mn} &= -(\mathcal{M}_m^2 - \mathcal{M}_n^2)^2 H_{10\,mn} \\ H_{1t} &= f_t \ H_{10} \\ f_t &= e^{-t(\mathcal{M}_c^2 - \mathcal{M}_a^2)^2} \\ H_{A^3\,1t} &= \sum_{123} \int_{123} \delta_{12.3} \ e^{-t \ \mathcal{M}_{12}^4} \ \left[Y_{123} a_{t1}^{\dagger} a_{t2}^{\dagger} a_{t3} + Y_{123}^* a_{t3}^{\dagger} a_{t2} a_{t1} \right] \end{split}$$

