

Study of Matter at Extreme Conditions with ALICE

Jacek Otwinowski

(for the ALICE Collaboration)

"Collider Physics" 2nd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society 13-15 May 2016 Katowice

Outline

- Introduction
- A Large Ion Collider Experiment (ALICE)
- Selected results (LHC Run1 and Run2)
 - Global properties
 - Anisotropic flow
 - Nuclear modification factors

What do we measure?

Properties of nuclear matter formed in the early Universe ~10 μs after Big Bang (T ~ 10¹² K) QCD phase transition: Hadron Gas <-> Quark-Gluon Plasma (QGP) (state of deconfined quarks and gluons)

LHC: $\mu_B = 0$ (net baryon density)

Lattice QCD calculations:

- phase transition (crossover)
- critical temperature: T_c~155 MeV
- critical energy density: ε_c~0.5 GeV/fm³

A. Bazavov et al. (hotQCD), Phys. Rev. D90 (2014) 094503 S. Borsanyi et al. (Budapest-Wuppertal), Phys. Lett. B730, 99 (2014)

Collider Physics

How do we measure?

Collide Pb-Pb and compare results to reference measurements in pp and p-Pb

Thermal production, flow, recombination, jet quenching and fragmentation in the Quark-Gluon Plasma (QGP).

Soft QCD and pQCD and fragmentation in vacuum. Reference for p-Pb and Pb-Pb.

Initial state effects (shadowing/gluon saturation). Reference for Pb-Pb.

Heavy-lon experiments at the LHC

ATLAS

pp: vs = 0.9 – 8 TeV (Run1), 5, 13 TeV (Run2) p-Pb: $\sqrt{s_{NN}} = 5$ TeV (Run1) Pb-Pb: Vs_{NN} = 2.76 TeV (Run1), 5 TeV (Run2) **Collider Physics**

13-May-16

Heavy-ion collision at the LHC

Time

Pb-Pb ($Vs_{NN} = 2.76 \text{ TeV}$)

Lorentz $\Gamma = 1350$ D = 14 fmL~0.01 fm

hadron sizes ~ fm 13-May-16

High p_{T} and high mass particle production – hard probes of QGP:

 $\tau < 10 \text{ fm/c}$

 $\tau_{prod} = 1/p_T$ hadrons with charm and bottom quarks

Production of low p_T

particles (bulk of matter > 95%)

Non-perturbative QCD **Collider Physics**

Chemical and kinetic

 $\tau > 10 \text{ fm/c}$

Transition from hot and interacting hadron gas to the system of free particles

6

A Large Ion Collider Experiment

- Excellent particle identification capabilities in a large p_{T} range 0.1-20 GeV/c
- Good momentum resolution ~1-5% at $p_T = 0.1-50 \text{ GeV}/c$

Collision centrality

Correlate particle multiplicity with collision geometry i.e. impact parameter, volume and shape (ALICE, Int. J. Mod. Phys. A29 (2014) 1430044)

NBD-Glauber fit: Number of participant nucleons: N_{part} Number of binary inelastic nucleon-nucleon collisions: N_{coll} Nuclear overlap function: $T_{AA} \cong N_{coll} / \sigma^{NN}_{INEL}$

<u>Pb-Pb (0-5%):</u> <N_{part}> ~ 400

GLOBAL PROPERTIES

Energy density, temperature, radial flow

Charged-particle multiplicity density vs. $\sqrt{s_{NN}}$

ALICE, arXiv:1512.06104

Measurements in Run1 and Run2.

Particle production follows the power law dependence:

• pp, pA (dA): ~s_{NN}^{0.103}

ALICE (Pb+Pb 0-5%):

- $dN_{ch} / d\eta = 1943\pm54 (Vs_{NN}=5.02 \text{ TeV})$
- $dN_{ch} / d\eta = 1601\pm60 (Vs_{NN}=2.76 \text{ TeV})$

ALICE, PRL 106, 032301 (2011)

Charged-particle multiplicity density vs. <N_{part}>

ALICE, arXiv:1512.06104

A constant factor ~1.2 increase in charged particle multiplicity density from Vs_{NN} =2.76 TeV to Vs_{NN} =5.02 TeV for all Pb-Pb centrality intervals.

Charged-particle multiplicity density vs. <N_{part}> comparison to models

ALICE, arXiv:1512.06104

HIJING 2.1 (soft QCD, gluon shadowing parameter sg = 0.28) W.-T. Deng et al. Phys. Rev. C83 (2011) 014915

EPOS LHC (soft QCD + parameterized hydro) T. Pierog et al. Phys. Rev. C 92 (2015) 034906

EKRT (pQCD + saturation + viscous hydro $\eta/s =$ 0.2) H. Niemi et al. Phys. Rev. C 93, 014912 (2016)

Saturation inspired models (pQCD):

- rcBK-MC (J. L. Albacete et al. J. Phys. Conf. Ser. 316 (2011) 012011)
- Armesto et al. Phys. Rev. Lett. 94 (2005) 022002
- Khazreev at al. Nucl. Phys. A747 (2005) 609

Transverse Energy Density vs. Vs_{NN}

ALICE, arXiv:1603.04775

ALICE Pb-Pb (0–5%) √s_{NN}=2.76 TeV:

 $dE_{T}/d\eta = 1737 \pm 6(stat.) \pm 97 (sys.) GeV$

- lower than by CMS
- Extrapolation from the lower energies underestimates data
- EKRT (pQCD + saturation + ideal hydro) overestimates data
 T. Renk et alPhys. Rev. C84 (2011) 014906
- Volume-averaged energy density J.D.Bjorken Phys. Rev. D 27, 140):

$$arepsilon=rac{1}{\mathrm{A}c au_{0}}\mathrm{J}\Big\langle rac{\mathrm{d}E_{\mathrm{T}}}{\mathrm{d}\eta}\Big
angle$$

 $τ_0 \sim 1 \text{ fm/c}$ - formation time, A - transverse area $ε = 12.3 \pm 1.0 \text{ GeV/fm}^3$ $ε >> ε_c \text{ (lattice QCD)}$

Identified Particle Yields

Equilibrium statistical hadronization model fits:

- T_{ch}~ 155 MeV
- $T_{ch} \sim T_c$ (lattice QCD)
- Largest deviation for K^{*0} resonances and protons?
- Good description for light nuclei?

Equilibrium statistical hadronization models: THERMUS: Wheaton et al, Comput.Phys.Commun, 180 (2009) 84 GSI-Heidelberg: Andronic et al, PLB 673 (2009) 142 SHARE: Petran et al, Phys.Rev., C88 (2013) 034907

Identified Hadron p_T Spectra

ALICE, Phys. Rev. C 93, 034913 (2016)

Identified Hadron p_T Ratios

ALICE, Phys. Rev. C 93, 034913 (2016)

Pb-Pb to pp comparison.

Strong radial flow develops in Pb-Pb collisions.

ANISOTROPIC FLOW

nature of the medium

Anisotropic flow

Azimuthal anisotropy in particle distribution w.r.t. reaction plane

Fourier expansion:

$$\frac{dN}{d(\varphi - \psi_n)} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos\left[n\left(\varphi - \psi_n\right)\right]$$

 v_n (p_T, η , centrality) – flow coefficient

ightarrow System with shear viscosity

Elliptic flow v₂ (from almond shape)

$$v_{2} = \frac{\left\langle p_{y}^{2} \right\rangle - \left\langle p_{x}^{2} \right\rangle}{\left\langle p_{y}^{2} \right\rangle + \left\langle p_{x}^{2} \right\rangle}$$

Particle flow in Pb-Pb at Vs_{NN}=5.02 TeV

ALICE, Phys. Rev. Lett. 116, 132302 (2016)

Anisotropic flow coefficients slightly increases from $\sqrt{s_{NN}}=2.76$ TeV to $\sqrt{s_{NN}}=5.02$ TeV Comparison to models:

[25] EKRT (pQCD + saturation + viscous hydro) H. Niemi et al. Phys. Rev. C 93, 014912 (2016)

Discriminating power between various parameterizations of η/s vs. T dependence

[27] pQCD + saturation + viscous hydro: Noronha-Hostler et al. Phys. Rev. C 93, 034912 (2016)

Predictions for integrated p_T

Collider Physics

Elliptic flow v_2 vs. $\sqrt{s_{NN}}$

ALICE, Phys. Rev. Lett. 116, 132302 (2016)

- v_2 {4} at v_{NN} =5.02 TeV compared to measurements at lower energies
- ~5% increase in v₂ observed from $\sqrt{s_{NN}}$ =2.76 TeV to $\sqrt{s_{NN}}$ =5.02 TeV

v₂ for Baryons and Mesons

ALICE, JHEP 06 (2015) 190

- $p_T < 2$ GeV/c: mass hierarchy in the meson and baryon $v_2 (p_T)$ flow equalizes velocities
- $p_T > 2 \text{ GeV/c: } v_2 \text{ determined by quark content rather than mass}$
- Scaling by n_g does not work at the LHC

NUCLEAR MODIFICATION FACTORS

Medium density, transport properties

Jet Quenching

High p_T particles (partons): $\tau_{prod} \sim 1 / p_T$ ($\tau_{prod} \sim 0.1$ fm/c for $p_T = 10$ GeV/c)

Characterize medium properties via parton energy loss
 → Modification of leading hadron and jet spectra

Collider Physics

R_{AA} for π , K, p

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{{\rm d}N_{\rm AA}/{\rm d}p_{\rm T}}{{\rm d}\sigma_{\rm pp}/{\rm d}p_{\rm T}}$$

$$\begin{split} &\mathsf{R}_{\mathsf{A}\mathsf{A}} - \text{nuclear modification factor} \\ &\mathsf{T}_{\mathsf{A}\mathsf{A}} \cong \mathsf{N}_{\text{coll}} \ / \ \sigma_{\mathsf{N}\mathsf{N}} \\ &\mathsf{R}_{\mathsf{A}\mathsf{A}} = \mathbf{1} \Leftrightarrow \text{no modification} \end{split}$$

ALICE, Phys. Rev. C 93, 034913 (2016)

Strong suppression at high p_T in central collisions for all particle species

R_{AA} for D mesons

ALICE, JHEP 03 (2016) 081, JHEP 03 (2016) 082

- Strong suppression at high \boldsymbol{p}_{T} for all D meson species
- Sign of smaller suppression of D⁺s compared to non-strange D mesons at low and intermediate $p_{\rm T}$
 - Enhanced strangeness production in QGP?
- TAMU model (heavy quark transport in expanding medium + hadronization)
 M. He et al. Phys.Rev. C86 (2012) 014903

Collider Physics

R_{AA} for light and heavy hadrons

ALICE, JHEP 03 (2016) 081

The same suppression for D and pions at high $\ensuremath{\textbf{p}_{\text{T}}}$

• Similar energy loss of heavy and light flavor in QGP?

For $p_T < 6$ GeV/c D meson R_{AA} is higher than for pions

Radial flow, hadronization ...?

R_{AA} for light and heavy hadrons vs. models

ALICE, JHEP 03 (2016) 081

- Djordjevic, CUJET3.0 (hydro) and WHDG models include collisional and radiative parton energy loss
- Vitev model includes radiative parton energy loss and in-medium dissociation process for D mesons

Recent model review A. Andronic et al. Eur. Phys. J. C 76 (2016) 107

NB. The same models underestimate v_2 at high p_T

13-May-16

_A Jets

ALICE, Phys. Lett. B 746 (2015) 1

- Similar suppression to single particle spectra
- JEWEL (elastic+radiative energy loss, Bjorken expanding medium) C. Zapp et al. JHEP03 (2013) 080
- YaJEM (parton showers modified by a medium-induced virtuality + hydro) T. Renk, Phys.Rev. C88 no. 1, (2013) 014905

Summary

- Particle production follows the power law dependence
 - pp, pA (dA): ~s_{NN}^{0.103}
 - A-A (central): $\sim s_{NN}^{0.155}$
- ~1.2x increase in charged particle multiplicity density from Vs_{NN} =2.76 TeV to Vs_{NN} =5.02 TeV independent of event centrality
- Particle production at $T_{ch} \sim 155$ MeV (from statistical hadronization model)
- Anisotropic flow observables well described by models including hydrodynamic evolution with sheer viscosity
- Sign of smaller suppression of D+s compared to non-strange D mesons at low and intermediate $\ensuremath{p_{T}}$
- Strong suppression of hadron production in Pb-Pb at high p_T compared to pp reference (independent of particle species)
- Similar suppression of high p_T jets and hadrons

Backup

What do we measure?

Properties of nuclear matter formed in the early Universe Phase transition: hadrons <-> quark-gluon plasma (QGP) (state of deconfined quarks and gluons)

Time: t = 10 μ s after Big Bang! Temperature: T ~ 10¹² K

Quantum chromo-dynamics at high temperature

Lattice QCD calculations

Critical temperature: T_c~155 MeV Critical energy density: ε_c~1 GeV/fm³

 $\mu_{\rm B} = 0$

confined

(hadrons)

many d.o.f \rightarrow deconfined (quarks and gluons)

HISQ - A. Bazavov et al. (hotQCD), Phys. Rev. D90 (2014) 094503 stou<u>ta ShaBor</u>anyi et al. (Budapest-Wuppertal), Phys. Letta B730si29 (2014)

Identified hadron p_T spectra

p_T spectra (thermal + collective)

From comparison to RHIC and hydrodynamic models → large radial flow at the LHC

From blast-wave fit (thermal + collective) to the p_T spectra:

• Kinetic freeze-out temperature:

T_{kin} ~ 95 MeV (similar to RHIC)

Radial flow velocity:
 <β_T> ~ 0.65 c (~10% larger than at RHIC)

Hydrodynamic models:

- VISH2+1 (viscous hydro)
- HKM (hydro+UrQMD)
- Kraków (viscous corr., lower T_{ch})
- EPOS (hydro+UrQMD)

 p_{T} (GeV/c)^{vsics} \rightarrow Good agreement for central collisions

ALICE, PRC 88 (2013) 044910

Identified Hadron p_T Spectra

ALICE, Phys. Rev. C 93, 034913 (2016)

13-May-16

Collider Physics

Excellent particle Identification with ALICE

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

Reconstruction of decayed particles

ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

Collider Physics

Flow in high multiplicity p-Pb?

ALICE: PLB 719 (2013) 29

ALICE, PLB 726 (2013) 164

- Double ridge in high multiplicity p-Pb collisions (similar to Pb-Pb)
- v₂ for identified hadrons shows similar pattern to Pb-Pb
- \rightarrow Indication of flow or other collective phenomenon?

R_{pPb} identified hadrons

ALICE, arXiv:1601.03658

Identified Hadron p_T Spectra

Pb-Pb

ALICE, Phys. Rev. C 93, 034913 (2016)

ALICE, arXiv:1601.03658

p-Pb

R_{AA} single particles

$$R_{\rm AA} = \frac{1}{\langle T_{\rm AA} \rangle} \frac{\mathrm{d}N_{\rm AA}/\mathrm{d}p_{\rm T}}{\mathrm{d}\sigma_{\rm pp}/\mathrm{d}p_{\rm T}}$$

R_{AA} – nuclear modification factor $T_{AA} = N_{coll} / \sigma_{NN}$ $R_{AA} = 1 \Leftrightarrow$ no modification

Particle Production at high $p_{T} > 7$ GeV/c

- Strong suppression of charged hadrons in central Pb-Pb collisions ($R_{AA} < 0.5$)
- No modification for bosons
- No modification for charged hadrons in p-Pb collisions (no centrality selection)

\rightarrow suppression is due to final state effects

ALICE, EPJ C 74 (2014) 3054

Note: R_{oPb} in minimum bias collisions

ALICE Pb-Pb data:

Phys. Lett. B 696 (2011) 30-39 (235 citations WoS, the most cited heavy-ion paper from the LHC) Phys. Lett. B 720 (2013) 52-62 13-May-16

Collider Physics

R_{AA} identified hadrons

ALICE, JHEP 03 (2016) 081

