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1. BSM → SUSY

Still the best candidate for BSM is softly broken MSSM:

solves problem of quadratic corrections to mh0

dark matter candidate → LSP

better unification of gauge couplings at 1016 GeV→ hint for GUT model



2. LHC searches for SUSY

no SUSY signal so far

relevant exclusions only for 1st and 2nd family

still t̃, . . . can be as light as 500 GeV
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Figure 6: Exclusion limits for a simplified phenomenological MSSM scenario with only strong produc-
tion of gluinos and first- and second-generation squarks (of common mass), with direct decays to jets
and lightest neutralinos. Three values of the lightest neutralino mass are considered: mχ̃0

1
= 0, 395 and

695 GeV. Exclusion limits are obtained by using the signal region with the best expected sensitivity at
each point. The dashed lines show the expected limits at 95% CL, with the light (yellow) band indicating
the 1σ experimental and background-theory uncertainties on the mχ̃0

1
= 0 limit. Observed limits are

indicated by solid curves. The dotted lines represent the mχ̃0
1
= 0 observed limits obtained by varying the

signal cross-section by the theoretical scale and PDF uncertainties. Previous results for mχ̃0
1
= 0 from

ATLAS at 7 TeV [17] are represented by the shaded (light blue) area. Results at 7 TeV are valid for
squark or gluino masses below 2000 GeV, the mass range studied for that analysis.

In Fig. 7 limits are shown for three classes of simplified model in which only direct production of
(a) gluino pairs, (b) light-flavour squarks and gluinos or (c) light-flavour squark pairs is kinematically
possible, with all other superpartners, except for the neutralino LSP, decoupled. This forces each light-
flavour squark or gluino to decay directly to jets and an LSP. Cross-sections are evaluated assuming
decoupled light-flavour squarks or gluinos in cases (a) and (c), respectively. In all cases squarks of the
third generation are decoupled. In case (b) the masses of the light-flavour squarks are set to 0.96 times
the mass of the gluino. The expected limits for case (c) do not extend substantially beyond those obtained
from the previous published ATLAS analysis [17] because the events closely resemble the predominant
W/Z + 2-jet background, leading the background uncertainties to be dominated by systematics.

In Fig. 8 limits are shown for pair produced gluinos each decaying via an intermediate χ̃±1 to two
quarks, a W boson and a χ̃0

1, and pair produced light squarks each decaying via an intermediate χ̃±1 to
a quark, a W boson and a χ̃0

1. Results are presented for models in which either the χ̃0
1 mass is fixed to

60 GeV, or the mass splitting between the χ̃±1 and the χ̃0
1, relative to that between the squark or gluino

and the χ̃0
1, is fixed to 0.5.

In Fig. 9 the results are interpreted in the context of a Non-Universal Higgs Mass model with gaugino
mediation (NUHMG) [73] with parameters tan β = 10, µ > 0, m2

H2
= 0, and A0 chosen to maximize the

mass of the lightest Higgs boson. The two remaining free parameters of the model m1/2 and m2
H1

are
chosen such that the next-to-lightest SUSY particle (NLSP) is a tau-sneutrino with properties satisfying
Big Bang Nucleosynthesis constraints.

In Fig. 10(left) limits are presented for a simplified phenomenological SUSY model in which pairs
of gluinos are produced, each of which then decays to a top squark and a top quark, with the top squark
decaying to a charm quark and χ̃0

1.
In addition to these interpretations in terms of SUSY models, an alternative interpretation in the

context of the minimal universal extra dimension (mUED) model [75] with similar phenomenological
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3. SUSY challenges

Challenges:

one needs additional sectors: SUSY breaking and mediation

fine-tuning

hard to explain the 750 GeV diphoton excess in the 13 TeV LHC data
[Djouadi et al., arXiv:1605.01040]

a lot of parameters (soft terms) → explain them using RGE and some simple
set of initial conditions at high scale → GUT model



4. Gauge Mediated Supersymmetry Breaking

φ, V X
Y, Y

sobota, 31 marca 2012

visible sector messengers hidden sector
SUSY breaking

perturbative coupling to spurion(s) XY Y

singlet 〈X〉 = M + θ2F → spontaneous SUSY breaking, F/M ∼ 105 GeV

messengers have large masses e.g. M ∼ 108 − 1014 GeV



5. Gauge Mediated Supersymmetry Breaking

[Giudice&Rattazzi, arXiv: 9801271]
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Figure 1: Feynman diagrams contributing to supersymmetry-breaking gaugino (λ) and sfermion
(f̃) masses. The scalar and fermionic components of the messenger fields Φ are denoted by
dashed and solid lines, respectively; ordinary gauge bosons are denoted by wavy lines.
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for F/M2 � 1

Mr = NY
g2r

(4π)2
F

M
, m2

f̃
= 2NY

3∑
r=1

c2(f ; r)
g4r

(4π)4

(
F

M

)2

,

soft terms are flavour universal

spectrum depends on the details of the hidden and messenger sector

bino or stau NLSP

predictive but quite rigid scenario → more general approach?



6. Idea of General Gauge Mediation

[Meade et al., arXiv: 0801.3278]
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Fig. 1: The graphical description of the contributions of the two point functions

to the soft masses. (a) represents the gaugino mass contribution from ⟨jαjβ⟩. In

(b)-(e) the various contributions to the soft scalar masses are given: (b) ⟨J⟩, (c)

⟨JJ⟩, (d) ⟨jαjα̇⟩, and (e) ⟨jµjν⟩. It should be stressed that the blobs in the figures

represent hidden sector correlation functions. The leading contribution in theories

with messengers arises from one loop of the messengers, but in general when there

are no messengers, it is more complicated.

So far we have discussed the simpler case of a single U(1) gauge group here, in the

case of the actual MSSM one has to consider the separate SU(3), SU(2) and U(1) gauge

groups. We will label the gauge groups by r = 3, 2, 1, respectively. If we want the gauge

couplings to unify, then the value of c(r) = c must be independent of r (assuming SU(5)

normalization of the U(1) factor of course) and we want the thresholds C̃
(r)
a (0) to depend

weakly on r. Moreover, if we want perturbative unification, then there is an upper bound

on the magnitude of c. These are examples of some completely general constraints on the

SUSY breaking sector that can be derived using our formalism.

Now, it is straightforward to find the sfermion and gaugino masses of the MSSM.

In Figure 1 we show the diagrams involving the current correlation functions which are

responsible for the MSSM soft masses.

The gaugino masses arise at tree level in the effective theory (3.2); to leading order
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7. Parametrization of soft terms in GGM

no need to specify hidden/messenger sector

Mr = g2rMB̃
(r)
1/2

(0), m2
f̃

=
3∑
r=1

c2(f ; r)g4rArM
2,

Ar = − 1

16π2

∫
dy
(

3C̃
(r)
1 (y)− 4C̃

(r)
1/2

(y) + C̃
(r)
0 (y)

)
7 independent mass scales: (ΛGr ,ΛSr ,M)

Mr =
g2r

(4π)2
ΛGr , m2

f̃
= 2

3∑
r=1

c2(f ; r)
g4r

(4π)4
Λ2
Sr

standard GMSB
2B̃

(r)
1/2

(0)2 = NY Ar



8. Universal features of GGM phenomenology

Assuming R-parity:

all events contain high pT objects +MET

G̃ is always LSP, m
G̃

= F/
√

3MP

NLSP x̃ has a universal decay to SM partner x + gravitino G̃

Γ(x̃→ xG̃) =
m5
x

16π(
√

3MPmG̃)2
(prompt or delayed)

mass sum rules: Tr(Y m2) = Tr[(B − L)m2] = 0

m2
Hu

= m2
Hd

= m2
L

m2
Q − 2m2

U +m2
D −m2

L +m2
E = 0

2m2
Q −m2

U −m2
D − 2m2

L +m2
E = 0

Phenomenology:

does not depend on the details of the messenger/hidden sector

mostly determined by the nature of the NLSP and the production mechanism



9. Collider signals

[Kats et al., arXiv:1110.6444]An Observation

production

cascade
NLSP

G̃

SM partner

cascade
NLSP

G̃

SM partner

cascade
NLSP SM partner

G̃

cascade
NLSP SM partner

G̃

Consider the diagrams in Fig. 1. We’ve already observed that the one at left is problematic: it’s a
renormalization of an external line, so we don’t want to include it when we compute a loop amplitude. In
shamplitude calculations, it shows up as unpleasant 1

s12...(n�1)
! � factors in the amplitudes we’re trying

to build the shamplitude out of, which we are currently removing by hand.
The other kind of bubble diagram with one gluon connected at one end is shown on the right in Fig. 1.

It has a two-particle vertex at the other end. As a result, it has the structure:
�

d4`

(2�)4
�1µ (2`µ + kµ

1 ) J(k2, . . . kj) · J(kj+1, . . . kn)

(`2 � m2)((` + k1)2 � m2)
. (1)

Notice that this always contributes 0 to the loop integral: �1 · k1 = 0, and the bubble integral, linear in `µ,
can only be proportional to kµ

1 , because all dependence on the other momenta factors out of the integrand.

1

Figure 1: Schematic Feynman diagram for a GMSB event. The typical production will be of colored
superpartners, e.g., gluinos. Their cascade decays will produce jets and possibly other particles
(depicted here as green wedges), and will end in the NLSP. The NLSP will always decay to its SM
partner plus an invisible gravitino.

Tevatron-era work on gauge mediated phenomenology [43–48].
A typical GMSB topology is shown in Fig. 1. This figure illustrates a number of important

features of GMSB. First, the gravitino is always the LSP. Second, the identity of the next-
to-lightest-superpartner (NLSP) dictates much of the phenomenology, because it appears at
the bottom of every cascade decay and always decays to its SM partner and the gravitino.
(We assume R-parity throughout.) Correspondingly, we will partition the parameter space of
GMSB primarily via the NLSP identity.

An important feature of the GGM framework is that it allows almost any superpartner to
be the NLSP. We will thoroughly investigate all NLSP types: neutralino (bino, wino, Z-rich
higgsino, h-rich higgsino), chargino, right-handed slepton, sneutrino, gluino, squark, stop, and
sbottom. As we will see, by studying the signatures that arise from every NLSP type in GGM,
we will naturally be led to consider most, if not all, of the current LHC searches. In Table 2
we have listed the final states relevant for the various NLSP types. The table serves as a useful
guide for understanding which analyses might be useful for each NLSP type and facilitates
a more general application of our results to other models with similar final states. As the
table illustrates, GGM is a very e↵ective “signature generator”: it provides a nice unifying
framework through which to view the myriad results at the LHC.

In addition to the NLSP type, the SUSY production mechanism is important for specifying
the relevant phenomenology. Here we could consider either production of colored superpartners

3

NLSP type Relevant final states (+MET)

bino ��, �+jets

wino �`, ��, �+jets, `+jets, jets

Z-rich higgsino Z(`+`�)+jets, Z(`+`�)Z(`0+`0�), SS dileptons, jets

h-rich higgsino b-jets, SS dileptons, jets

chargino SS dileptons, OS dileptons, `+jets, jets

slepton multileptons, SS dileptons, OS dileptons, `+jets, jets

squark/gluino jets

stop SS dileptons, OS dileptons, b-jets, `+jets, ` + b-jets, tt, jets

sbottom b-jets, jets

Table 2: An overview of GGM phenomenology and the relevant final states. Certain final states
in this table are relevant not because of the NLSP decay, but because of the transition from the
production channel to the NLSP in the simplified spectra that we will consider.

(as shown in Fig. 1), or electroweak superpartners. There are very important di↵erences
between the two at the LHC. To illustrate this and other points, we have shown in fig. 2 the
NLO cross sections (computed using Prospino 2.1 [49]) for wino production (left) and gluino
production (right). The former proceeds via electroweak gauge bosons while the latter goes
through gluons; all other SUSY particles are decoupled.

Fig. 2 allows us to understand the “kinematic limits” at the Tevatron and LHC for
electroweak and colored SUSY production. These are approximate idealized limits where an
experiment throughout its lifetime would collect O(10) events before any analysis cuts. (In
practice much higher rates will be needed for most experimental analyses, which means the
actual reach in mass will often be lower.) We see that the LHC has a huge advantage over
the Tevatron for colored production, and much less advantage for electroweak production. In
particular, the 7 TeV LHC with 1/fb of data can probe winos up to just ⇠ 500 GeV, which
is only slightly beyond the ⇠ 400 GeV reach of the Tevatron. Thus for early LHC running,
it makes sense to concentrate on constraining colored production where the corresponding
numbers are ⇠ 1000 GeV vs. ⇠ 600 GeV. Seeing electroweak production will typically require
more data (and will also be more di�cult in terms of separating signal from background).
With O(10/fb), the 7 TeV LHC can probe up to ⇠ 700 GeV in wino mass, and ⇠ 1200 GeV
in gluino mass. Finally, with O(100/fb), the LHC at 14 TeV will probe wino masses up to
⇠ 1500 GeV, and gluino masses up to ⇠ 2500 GeV.

The 7 TeV numbers of ⇠ 700 GeV for wino production and ⇠ 1200 GeV for gluino
production set a yardstick with which to measure the current progress. Among the simplified
models that we will benchmark are parameter spaces consisting of either gluino or squark
mass vs. NLSP mass (with everything else decoupled), and gluino vs. squark mass (with
fixed NLSP mass and everything else decoupled). We will also consider additional simplified
models with electroweak production. These options will allow us to consider the e↵ects of
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Figure 2: NLO production cross sections for wino pairs (left) and gluino pairs (right). The dashed
lines indicate 10 fb, 1 fb and 0.1 fb, while the blue, red and green curves correspond to Tevatron,
7 TeV LHC, and 14 TeV LHC. The 10 fb rate roughly corresponds to the kinematic reach of the
current 1/fb LHC searches. The 1 fb rate corresponds to the kinematic limit for the Tevatron and the
7 TeV LHC, both of which will collect O(10 fb�1) of data in their complete runs. Finally, the 0.1 fb
rate corresponds to the kinematic limit for the 14 TeV LHC, which is expected to collect O(100 fb�1)
in total.

di↵erent jet multiplicities and kinematics in determining the limits. We will find that for
NLSPs with the cleanest final states (bino NLSP with ��+MET; slepton co-NLSPs with
same-sign dileptons+MET), the limits on gluino mass are nearly 1000 GeV. So already with
1/fb we are very close to the kinematic limit for 7 TeV LHC in these scenarios. Most of
the discovery potential at 7 TeV has already been used up here. For more complicated cases
(squeezed spectra, multiple final states, third generation), the limits on the gluino mass are
much weaker, ranging typically from 600-800 GeV. So there is considerable room for growth
and improvement here. Finally, we find that the only existing LHC searches that constrain
electroweak production are the ATLAS and CMS ��+MET searches, which constrain winos
decaying to bino NLSPs. There is a large amount of growth possible in probing electroweak
production of new particles.

There is already a large literature (too large to review here) interpreting LHC results as
SUSY limits, so it is worthwhile to make some remarks on our motivation and how our work fits
into that broader context. Most of the existing work studies spectra involving all the MSSM
particles, often from a top-down point of view (such as the CMSSM) or in high-dimensional
parameter spaces. These models have an abundance of possible production modes and decays,
and it is di�cult to isolate the physics that goes into setting limits.

We believe that, at this point, a study in terms of simplified spectra is sorely needed, and
substantially di↵erent from studies of the full MSSM. In the absence of any discovery, our main
goal in studying LHC limits on supersymmetry is twofold: first, to obtain a global picture of

5



10. Collider signals
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Figure 6: NLO+NLL gluino pair production cross section with squarks decoupled as a function of mass at
√

s =
14 TeV in the wider (upper plot) and narrower (lower plot) mass range. The different styled black (red) lines
correspond to the cross section and scale uncertainties predicted using the CTEQ6.6 (MSTW2008) PDF set. The
yellow (dashed black) band corresponds to the total CTEQ6.6 (MSTW2008) uncertainty, as described in the text.
The green lines show the final cross section and its total uncertainty.
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Figure 7: NLO+NLL gluino pair production cross section with squarks decoupled as a function of mass at
√

s =
33 TeV in the wider (upper plot) and narrower (lower plot) mass range. The different styled black (red) lines
correspond to the cross section and scale uncertainties predicted using the CTEQ6.6 (MSTW2008) PDF set. The
yellow (dashed black) band corresponds to the total CTEQ6.6 (MSTW2008) uncertainty, as described in the text.
The green lines show the final cross section and its total uncertainty.
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Figure 8: NLO+NLL gluino pair production cross section with squarks decoupled as a function of mass at
√

s =
100 TeV in the wider (upper plot) and narrower (lower plot) mass range. The different styled black (red) lines
correspond to the cross section and scale uncertainties predicted using the CTEQ6.6 (MSTW2008) PDF set. The
yellow (dashed black) band corresponds to the total CTEQ6.6 (MSTW2008) uncertainty, as described in the text.
The green lines show the final cross section and its total uncertainty.
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[Borschensky et al., arXiv:1407.5066]



11. NLSP vs. parameter space of GGM
5

FIG. 3: (color online). Same as Fig. (2), except with M = 107 GeV. The dashed line show models equivalent to GMSB models
with Λ = 105 GeV, Mmess = 107 GeV, and N5 = 1 to 30.

N5 from 1 to 30, and with mf̃/mg̃ ≃ O(1), since xi is small and g(xi) ≈ f(xi) ≈ 1. For models that preserve gauge
coupling perturbativity up to the GUT scale, N5 is necessarily smaller. In the case of low energy SUSY breaking
with Λ ∼ Mmess ∼ 105 GeV the ratio of corresponding GGM parameters A and B is very sensitive to the value of
x = F/M2 and can vary by a factor of 2. This is taken into account in Fig. (2).

There are also regions where GGM parameters lead to spectra that are markedly different than those of traditional
GMSB models (Table 1). In this table we show the spectra of three GGM models (which we will refer to as GGM1,
GGM2, and GGM3 respectively) and also two models of traditional gauge mediation (which we will refer to as
GMSB1, GMSB2 respectively). In particular, we find that gauge mediation models do not have to obey the typical
low-energy hierarchy of mℓ̃R

< m
χ̃0

1
< mν̃L ≃ mℓ̃L

< m
χ̃0

2
< mq̃ for the case of a stau NLSP (cf. GMSB 1), or

m
χ̃0

1
< mℓ̃R

< mν̃L ≃ mℓ̃L
< m

χ̃0
2

< mq̃ in the case of a bino NLSP (cf. GMSB 2). For example, the model GGM1

has both gaugino masses and sfermion mass squareds as approximately 1-loop suppressed relative to the messenger
scale M = 105 GeV, and leads to a SUSY spectrum with all gauginos lighter than all scalars. Model GGM2, on the
other hand, has gaugino masses approximately 1/(128π3) suppressed, while the sfermions start nearly massless, and
all sleptons stay lighter than all gauginos after RG evolution. Clearly, the phenomenology of such situations would be
radically different from traditional GMSB scenarios. In the case of GGM1, squark production is heavily suppressed
at the LHC from kinematics and the parton momenta fraction, and hence SUSY production is dominated by gluino
pair production. The allowed modes for gluino decay are then a three-body final state of q + q + χ̃0

i with 2 hard jets
and missing energy (and a likely Z from χ̃0

2 → χ̃0
1 decay) or a two-body decay of g̃ → g + G. On the other hand, for

GGM2, long cascade decay chains with lots of leptons are possible. These simple examples demonstrate two notably
distinct sets of signals, both originating from the general gauge mediation framework. We also present model GGM3,
which sets both gaugino and sfermion masses to be nearly tree-level in the theory, and because of a large cancelation
in the diagonalization of the gaugino mixing matrices, the NLSP is a chargino.

As pointed out in [17] another interesting feature of GGM parameter space is that it interpolates between the
phenomenology of GMSB and g̃MSB models. In fact, GGM admits even more general phenomenology. Indeed,
while existing models of g̃MSB [31, 33] have a large hierarchy between sfermion and and gaugino masses at the
compactification scale (usually taken to be close to the GUT scale), this hierarchy is washed out at the TeV scale due
to the effects of long RG evolution. As expected, GGM easily reproduces the spectra of such models. On the other
hand, the bottom-up approach of GGM allows one to take an effective messenger scale to be as low as 104 GeV leading
to a “pure g̃MSB” spectrum at the electroweak scale with the 4π suppression factor between sfermion and gaugino
masses intact. The differences between low-scale and high-scale g̃MSB are highlighted by a few representative spectra
in Table 2. We note that because of the relatively small running scale, low-scale g̃MSB models, like GGM4 and
GGM5, characteristically have slepton NLSPs, and hence a low-scale g̃MSB model with a bino NLSP is disfavored.

[Rajaraman et al., arXiv:0903.0668]



12. 1-loop corrections to mh0

dominant contribution from top quarks and stops (due to yt ∼ 1):
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Figure 7.1: A contour map of the Higgs potential, for a typical case with tanβ ≈ − cotα ≈ 10.
The minimum of the potential is marked by +, and the contours are equally spaced equipotentials.
Oscillations along the shallow direction, with H0

u/H0
d ≈ 10, correspond to the mass eigenstate h0, while

the orthogonal steeper direction corresponds to the mass eigenstate H0.

∆(m2
h0) =

h0

t

+
h0

t̃

+ h0

t̃

Figure 7.2: Contributions to the MSSM lightest Higgs mass from top-quark and top-squark one-loop
diagrams. Incomplete cancellation, due to soft supersymmetry breaking, leads to a large positive
correction to m2

h0 in the limit of heavy top squarks.

and is traditionally chosen to be negative; it follows that −π/2 < α < 0 (provided mA0 > mZ). The
Feynman rules for couplings of the mass eigenstate Higgs scalars to the Standard Model quarks and
leptons and the electroweak vector bosons, as well as to the various sparticles, have been worked out
in detail in ref. [182, 183].

The masses of A0, H0 and H± can in principle be arbitrarily large since they all grow with b/ sin(2β).
In contrast, the mass of h0 is bounded above. From eq. (7.20), one finds at tree-level [184]:

mh0 < mZ | cos(2β)| (7.23)

This corresponds to a shallow direction in the scalar potential, along the direction (H0
u −vu,H0

d −vd) ∝
(cos α,− sin α). The existence of this shallow direction can be traced to the fact that the quartic Higgs
couplings are given by the square of the electroweak gauge couplings, via the D-term. A contour map
of the potential, for a typical case with tanβ ≈ − cotα ≈ 10, is shown in figure 7.1. If the tree-level
inequality (7.23) were robust, the lightest Higgs boson of the MSSM would have been discovered at
LEP2. However, the tree-level formula for the squared mass of h0 is subject to quantum corrections
that are relatively drastic. The largest such contributions typically come from top and stop loops, as
shown‡ in fig. 7.2. In the simple limit of top squarks that have a small mixing in the gauge eigenstate
basis and with masses mt̃1

, mt̃2
much greater than the top quark mass mt, one finds a large positive

one-loop radiative correction to eq. (7.20):

∆(m2
h0) =

3

4π2
cos2α y2

t m
2
t ln

(
m

t̃1
m

t̃2
/m2

t

)
. (7.24)

This shows that mh0 can exceed the LEP bounds.

‡In general, one-loop 1-particle-reducible tadpole diagrams should also be included. However, they just cancel against
tree-level tadpoles, and so both can be omitted, if the VEVs vu and vd are taken at the minimum of the loop-corrected
effective potential (see previous footnote).
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m2
h0 = m2

Z cos2 2β +
3m4

t

4π2v2

[
ln
M2
S

m2
t

+
X2
t

M2
S

(
1− X2

t

12M2
S

)]
≈ (125GeV)2,

MS =
√
mt̃1

mt̃2

Xt = At − µ cotβ

Large A-terms or heavy stops!

A-terms:

Vsoft ⊃ ytAtHuQ̃3Ũ3 −→ ytAth0t̃1t̃2

2

as it captures many of the qualitative features that we
will see. We have characterized the scale of superpart-

ner masses with MS ≡
(
mt̃1

mt̃2

)1/2
. First, we see that

decreasing tanβ always decreases the Higgs mass, inde-
pendent of all the other parameters (keeping in mind that
tanβ ! 1.5 for perturbativity). So we expect to find a
lower bound on tanβ coming from the Higgs mass. Sec-
ond, we see that the Higgs mass depends on Xt/MS as
a quartic polynomial, and in general it has two peaks at
Xt/MS ≈ ±

√
6, the “maximal mixing scenario” [10]. So

we expect that mh = 125 GeV intersects this quartic in
up to four places, leading to up to four preferred values
for Xt/MS . Finally, we see that for fixed Xt/MS , the
Higgs mass only increases logarithmically with MS itself.
So we expect a mild lower bound on MS from mh = 125
GeV.

Now let’s demonstrate these general points with de-
tailed calculations using FeynHiggs. Shown in fig. 1 are
contours of constant Higgs mass in the tanβ, Xt/MS

plane, for mQ = mU = 2 TeV (where mQ and mU

are the soft masses of the third-generation left-handed
quark and right-handed up-type quark scalar fields). The
shaded band corresponds to mh = 123 − 127 GeV, and
the dashed lines indicate the same range of Higgs masses
but with mt = 172 − 174 GeV. (The central value in all
our plots will always be mh = 125 GeV at mt = 173.2
GeV.) From all this, we conclude that to be able to get
mh ≈ 125 GeV, we must have

tanβ ! 3.5 (2)

So this is an absolute lower bound on tanβ just from the
Higgs mass measurement. We also find that the Higgs
mass basically ceases to depend on tanβ for tanβ beyond
∼ 20. So for the rest of the paper we will take tanβ = 30
for simplicity.

Fixing tanβ, the Higgs mass is then a function of Xt

and MS . Shown in fig. 2 are contours of constant mh vs
MS and Xt. We see that for large MS , we want

Xt

MS
≈ −3, −1.7, 1.5, or 3.5 (3)

We also see that the smallest the A-terms and the SUSY-
scale can absolutely be are

|Xt| ! 1000 GeV, MS ! 500 GeV. (4)

It is also interesting to examine the limits in the plane
of physical stop masses. Shown in fig. 3 are plots of the
contours of constant Xt in the mt̃2

vs. mt̃1
plane. Here

the values of Xt < 0 and Xt > 0 were chosen to satisfy
mh = 125 GeV, and the solution with smaller absolute
value was chosen. In the dark gray shaded region, no
solution to mh = 125 GeV was found. Here we see that
the t̃1 can be as light as 200 GeV, provided we take t̃2 to
be heavy enough. We also see that the heavy stop has to
be much heavier in general in the Xt < 0 case.
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FIG. 1. Contour plot of mh in the tanβ vs. Xt/MS plane.
The stops were set at mQ = mU = 2 TeV, and the result is
only weakly dependent on the stop mass up to ∼ 5 TeV. The
solid curve is mh = 125 GeV with mt = 173.2 GeV. The band
around the curve corresponds to mh =123-127 GeV. Finally,
the dashed lines correspond to varying mt from 172-174.
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FIG. 2. Contours of constant mh in the MS vs. Xt plane,
with tanβ = 30 and mQ = mU . The solid/dashed lines and
gray bands are as in fig. 1.

III. IMPLICATIONS FOR THE SUSY
BREAKING SCALE

Having understood what mh ≈ 125 GeV implies for
the weak-scale MSSM parameters, we now turn to the
implications for the underlying model of SUSY-breaking
and mediation. In RG running down from a high scale,
for positive gluino mass M3, the A-term At decreases.
The gluino mass also drives squark mass-squareds larger

Draper et al. 1112.3068



13. A-terms in GGM

in GGM A-terms = 0 at messenger scale
5
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FIG. 5. Messenger scale required to produce sufficiently large |At| for mh = 123 GeV (left) and mh = 125 GeV
(right) through renormalization group evolution.

At = 0 at the messenger scale. Clearly this is not com-
pletely set in stone, and it would be interesting to look for
models of GMSB (or more generally flavor-blind models)
with large At at the messenger scale. This may be pos-
sible in more extended models, for instance in [37] where
the Higgses mix with doublet messengers.
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Appendix A: Comments on “heavy SUSY” scenarios

Although we have focused on mixed stops which can
be light enough to be produced at the LHC, let us briefly
consider the case of stops without mixing. For small
MS , we can compute the Higgs mass with FeynHiggs.
For larger MS , we use a one-loop RGE to evolve the
SUSY quartic down to the electroweak scale, computing
the physical Higgs mass by including self-energy correc-
tions [38, 39]. In Figure 6, we plot the resulting value of
mh as a function of MS , in the case of zero mixing. We
plot the FeynHiggs output only up to 3 TeV, at which
point its uncertainties become large and the RGE is more
trustworthy. One can see from the plot that accommo-

dating a 125 GeV Higgs in the MSSM with small A-terms
requires scalar masses in the range of 5 to 10 TeV.

A variation on this “heavy stop” scenario is Split Su-
persymmetry [40, 41], in which gauginos and higgsinos
have masses well below MS and influence the running of
λ. In this case, the running below MS is modified by the
light superpartners, and the preferred scalar mass scale
for a 125 GeV Higgs can be even larger [42–44].
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FIG. 6. Higgs mass as a function of MS , with Xt = 0. The
green band is the output of FeynHiggs together with its as-
sociated uncertainty. The blue line represents 1-loop renor-
malization group evolution in the Standard Model matched
to the MSSM at MS . The blue bands give estimates of errors
from varying the top mass between 172 and 174 GeV (darker
band) and the renormalization scale between mt/2 and 2mt

(lighter band).

[Draper et al., arXiv:1112.3068]

µ
dAt

dµ
∼ y2tAt + g23M3

hard to reconcile in GMSB

mh0 & 123GeV

light stops

Mg̃ . 2.5GeV



14. GGM vs. Higgs mass
[Grajek et al., arXiv: 1303.0870]

Ensure mh ∼ 125 GeV through large MS =
√
mt̃1mt̃2 :

large ΛG3

large mg̃ and mq̃ → colored sector typically beyond the reach of
the LHC
pure EW production of sparticles, low cross-sections

large ΛS3

large mq̃

gluino can be light
(even NLSP)
4j + X + MET signal

Figure 1: Logarithmic plot in the ⇤G,⇤S plane. Explanations of the colors is in the text. The black,

red, dashed-red contour plots identify the gluino, lightest stop, first generation masses respectively. The

scales of the contours are 500 GeV, (1, 2, 5) TeV for the gluino and (1.5, 3, 5) TeV for the stop and for

the first generation squarks.

the messenger mass and basically independent on tan �. For tan � > 5.3 the tree level

upper bound on the Higgs mass is already saturated as can be seen from (12). As a

consequence the parameter space is only slightly enlarged for large tan �. A more im-

portant role is played by Mmess, a large value of which helps to satisfy the Higgs mass

bound by generating along the flow larger squark masses and sizable A-terms through

loop corrections controlled by the gluino mass. As a consequence, the allowed region for

the parameters ⇤G,⇤S gets larger for large Mmess and the stop mass can be smaller to

some extent.

The stop is always the lightest of the squarks, and the first generation squarks are as

17

if Bµ = At = 0 at messenger scale → always mU3 & 1.5 TeV [Knapen et al.,
arXiv: 1507.04364]



15. µ/Bµ problem in GGM

Problems:

A(M) = 0, Bµ = 0

extra mechanism fo generation of µ/Bµ needed

Departing from GGM → Yukawa interactions between hidden and Higgs sector

W = λuHuOu + λdHdOd

Consequences:

m2
Hu,d

= m2
EL
±∆2

u,d

Any uncolored sparticle can be the NLSP in some region of the GGM
parameter space

selectron/smuon co-NLSP → 4l+MET signal



16. Conclusions

Attractive features of General Gauge Meditation scenario:

flavour universal soft terms

relatively small number of parameters

nicely fits in GUT scheme

provides consistent benchmarks for many channels analyzed by
the ATLAS and CMS


