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|DPS vs SPS for pp→ cc̄ cc̄|
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• production of cc̄ cc̄ is a good place to study DPS effects
 Luszczak, Maciu la, Szczurek 2012

• DPS cc̄ cc̄ cross section approaches cc̄ cross section for
large energies

• DPS cc̄ cc̄ cross section is orders of magnitude larger
than LO SPS cc̄ cc̄ cross section
Schäfer, Szczurek 2012, Maciu la, Szczurek, AvH 2014

• LHCb measured a surprisingly large cross section for the
production of D-meson pairs JHEP 06 141 (2012)
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|DPS vs SPS for pp→ cc̄ cc̄| Maciu la, Szczurek, AvH 2014

Simple factorized model

dσDPS(pp→ cc̄ cc̄X) =
1

2σeff
dσSPS(pp→ cc̄X1)dσ

SPS(pp→ cc̄X2)

with σeff = 15mb.
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|DPS vs SPS for pp→ cc̄ cc̄| Maciu la, Szczurek, AvH 2014
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|High Energy Factorization| a.k.a. kT -factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

σh1,h2→QQ =

∫
d2k1⊥

dx1

x1
F(x1, k1⊥)d

2k2⊥
dx2

x2
F(x2, k1⊥) σ̂gg

(
m2

x1x2s
,
k1⊥

m
,
k2⊥

m

)
• reduces to collinear factorization for s� m2 � k2⊥, but holds al so for s� m2 ∼ k2⊥

• typically associated with small-x physics, forward physics, saturation, heavy-ions . . .

• allows for higher-order kinematical effects at leading order

• requires matrix elements with off-shell
initial-state partons with k2i = k

2
i⊥ < 0

k1 = x1pA + k1⊥

k2 = x2pB + k2⊥

• k⊥-dependent F may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, . . .
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|High Energy Factorization| a.k.a. kT -factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

σh1,h2→QQ =

∫
d2k1⊥

dx1

x1
F(x1, k1⊥)d

2k2⊥
dx2

x2
F(x2, k1⊥) σ̂gg

(
m2

x1x2s
,
k1⊥

m
,
k2⊥

m

)
• reduces to collinear factorization for s� m2 � k2⊥, but holds al so for s� m2 ∼ k2⊥

• typically associated with small-x physics, forward physics, saturation, heavy-ions . . .

• allows for higher-order kinematical effects at leading order

• requires matrix elements with off-shell
initial-state partons with k2i = k

2
i⊥ < 0

k1 = x1pA + k1⊥

k2 = x2pB + k2⊥

• k⊥-dependent F may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, . . .

• in particular KMR-type unintegrated pdfs (Kimber, Martin, Ryskin 2000) contain es-
sential hard scale dependence via Sudakov resummation

Ta(k
2, µ2) = exp

(
−

∫µ2

k2

dp2

p2
αS(p

2)

2π

∑

b

∫ k/(µ+k)

0

dzPba(z)

)
Fa(x, k

2, µ2) = ∂λ
[
Ta(λ, µ

2) xga(x, λ)
]
λ=k2
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|kT vs collinear for pp→ cc̄ cc̄| Maciu la, Szczurek,
AvH 2015
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|Four jets with kT -factorization| Maciu la, Szczurek,
Kutak, Serino, AvH 2016
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• ∆S is the azimutal angle between the sum of the two
hardest jets and the sum of the two softest jets.

• This variable has no distribution at LO in collinear
factorization: pairs would have to be back-to-back.

• Our (KMR-type) updfs DLC2016 describe data remarkably well.

∆S
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|Gauge invariance|
In order to be physically relevant, any scattering amplitude following the constructive
definition given before must satisfy the following

Freedom in choice of gluon propagator:





−i

k2

[
gµν − (1− ξ)

kµkν

k2

]
−i

k2

[
gµν −

kµnν + nµkν

k·n + (n2 + ξk2)
kµkν

(k·n)2
]

Ward identity:

µk
µ = 0µε

µ(k) →

• Only holds if all external particles are on-shell.

• kT -factorization requires off-shell initial-state momenta kµ = pµ + kµT .

• How to define amplitudes with off-shell intial-state momenta?
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

Hadron momenta p1, p2:

p1 ·pA = p1 ·pA ′ = p1 ·k1 = 0
p2 ·pB = p2 ·pB ′ = p2 ·k2 = 0
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·
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j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

+ += + · · ·

pA pA ′

pB pB ′

pA pA ′

pB pB ′

k1

k2

pA pA ′

pB pB ′

k2

pA pA ′

pB

pB ′

j

i

= −i δi,j u(p1)

µ, a

j i

= −i Ta
i,j p

µ
1

K = δi,j
i

p1·Kj i

+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q
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|Amplitudes with off-shell partons|
AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.
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pA pA ′
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j

i
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µ, a
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= −i Ta
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i
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+ += + · · ·

qA γA

q

X
g g

γA

q

qA

q(k1)

g

qA γA

q

g

qA γA

q

x
xxIn agreement with the effective action approach of xx
xxLipatov 1995, Antonov, Lipatov, Kuraev, Cherednikov 2005 xx
xxLipatov, Vyazovsky 2000, Nefedov, Saleev, Shipilova 2013 xx
xxand the Wilson-line approach of xx
xxKotko 2014 xx
x
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|BCFW recursion| for on-shell amplitudes Britto, Cachazo,
Feng, Witten 2005

Gives compact expression through recursion of on-shell amplitudes.

p2

pi

1

K̂(z)2

pµ
1 + zeµ pµ

n − zeµ

K̂µ(z) = pµ
1 + · · ·+ pµ

i + zeµ

= −pµ
i+1 − · · ·− pµ

n + zeµ

pi+1

pn−1

K̂(z)2 = 0 ⇔ z = −
(p1 + · · ·+ pi)2
2(p2 + · · ·+ pi)·e

A(1+, 2, . . . , n−1, n−) =

n−1∑

i=2

∑

h=+,−

A(1̂+, 2, . . . , i,−K̂h1,i)
1

K21,i
A(K̂−h

1,i , i+1, . . . , n−1, n̂
−)

eµ = 1
2
〈p1|γµ|pn]

A(1+, 2−, 3−) =
〈23〉3
〈31〉〈12〉 , A(1−, 2+, 3+) =

[32]3

[21][13]
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|BCFW recursion| for off-shell amplitudes AvH 2014

The BCFW recursion formula becomes

1̂ n̂

n− 12 =

n−2∑

i=2

∑

h=+,−

Ai,h +

n−1∑

i=2

Bi + C + D ,

Ai,h =

1̂

i

1

K2
1,i

h

n̂

i+ 1

−h
Bi =

1̂

i

1

2pi·Ki,n

n̂

i
i− 1 i+ 1

C =

1̂ n̂

n− 12
1

κ1
D =

1̂ n̂

n− 12
1

κ∗1

The hatted numbers label the shifted external gluons.
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|BCFW recursion| with (off-shell) quarks AvH, Serino 2015

• on-shell case treated in Luo, Wen 2005

• any off-shell parton can be shifted: propagators of “external” off-shell partons give the
correct power of z in order to vanish at infinity

• different kinds of contributions in the recursion

gets contributions from and

• many of the MHV amplitudes come out as expected

• some more-than-MHV amplitudes do not vanish, but are sub-leading in kT

A(1+, 2+, . . . , n+, q̄∗, q−) =
−〈q̄q〉3

〈12〉〈23〉 · · · 〈nq̄〉〈q̄q〉〈q1〉

• off-shell quarks have helicity

A(1, 2, . . . , n, q̄∗(+), q∗(−)) 6= A(1, 2, . . . , n, q̄∗(−), q∗(+))
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|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 − κε −Λp1 − κ
∗ε∗

ε·ε = ε·p1 = 0 , k⊥ = −κε− κ∗ε∗
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|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 + αq
+βk⊥

−Λp1 − αq
+(1− β)k⊥

q·k⊥ = 0 α =
−β2k2⊥

(Λ+ 1)(p1 + q)2
β =

√
Λ+ 1√

Λ+ 1+
√
Λ
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|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 − κε −Λp1 − κ
∗ε∗

Divide amplitude by Λ (each auxiliary quark spinor gives factor
√
Λ) and take Λ→ ∞.



99921

|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 − κε −Λp1 − κ
∗ε∗

Divide amplitude by Λ (each auxiliary quark spinor gives factor
√
Λ) and take Λ→ ∞.

This can also be done with complete(ly summed) matrix elements at tree-level:

1

Λ2
M
(
q, g2, g3, g4, q̄

)[ sq,q̄ → k2⊥

sq,i → 2Λp1 ·pi , sq̄,i → −2Λp1 ·pi

]
=⇒M

(
g∗1, g2, g3, g4

)
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|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 − κε −Λp1 − κ
∗ε∗

Divide amplitude by Λ (each auxiliary quark spinor gives factor
√
Λ) and take Λ→ ∞.

This can also be done with complete(ly summed) matrix elements at tree-level:

1

Λ2
M
(
q, g2, g3, g4, q̄

)[ sq,q̄ → k2⊥

sq,i → 2Λp1 ·pi , sq̄,i → −2Λp1 ·pi

]
=⇒M

(
g∗1, g2, g3, g4

)
Trying the same with one-loop expressions (eg. from Ellis, Sexton 1986) leads to terms
with logΛ, which can be traced back to integrals with linear denominators

∫
d4−2εl

[p1 ·l] [l2] [(l+ p2)2] · · ·
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|Towards NLO| with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

k = p1 + k⊥ (Λ+ 1)p1 − κε −Λp1 − κ
∗ε∗

Divide amplitude by Λ (each auxiliary quark spinor gives factor
√
Λ) and take Λ→ ∞.

This can also be done with complete(ly summed) matrix elements at tree-level:

1

Λ2
M
(
q, g2, g3, g4, q̄

)[ sq,q̄ → k2⊥

sq,i → 2Λp1 ·pi , sq̄,i → −2Λp1 ·pi

]
=⇒M

(
g∗1, g2, g3, g4

)
Trying the same with one-loop expressions (eg. from Ellis, Sexton 1986) leads to terms
with logΛ, which can be traced back to integrals with linear denominators

∫
d4−2εl

[p1 ·l] [l2] [(l+ p2)2] · · ·

Tree-level matrix elements have denominators ∝ p1 ·pi, i.e. there are singularities despite
off-shellness. Corresponding splitting function is given by (1− x)3/x.
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|Conclusions|

• Double-parton scattering gives an important contribution to the cross section for the
process pp→ cc̄ cc̄.

• This is confirmed by comparing with single-parton scattering at tree-level both in
collinear factorization and kT -factorization.

• kT -factorization allows for the description of kinematical situations inaccessible with
LO collinear factorization with parton shower, eg. ∆S for four jets.

• Factorization prescriptions with explicit kT dependence in the pdfs ask for hard matrix
elements with off-shell initial-state partons.

• The necessary amplitudes can be defined in a manifestly gauge invariang manner that
allows for Dyson-Schwinger recursion and BCFW recursion, both for off-shell gluons
and off-shell quarks.

• Upgrade to NLO in progress.
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|Public programs| http://bitbucket.org/hameren/

AVHLIB (A Very Handy LIBrary)

• complete Monte Carlo program for tree-level calculations

• any process within the Standard Model

• any initial-state partons on-shell or off-shell

• employs numerical Dyson-Schwinger recursion to calculate helicity amplitudes

• automatic phase space optimization

• flexibility at the cost of user-friendliness

AMP4HEF (AvH, M.Bury, K.Bilko, H.Milczarek, M.Serino)

• only provides tree-level matrix elements (or color-ordered helicity amplitudes)

• available processes (plus those with fewer on-shell gluons and fewer off-shell partons):

∅→ g∗ g∗ + 5g ∅→ q̄ q∗ + 3g ∅→ q̄∗ q∗ + 2g

∅→ q̄∗ q+ 3g ∅→ g∗ q̄∗ + qg

∅→ g∗ + q̄ q+ 2g ∅→ q∗ g∗ + g q̄

• employs BCFW recursion to calculate color-ordered helicity amplitudes

• easy to use, both in Fortran and C++
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|Backup|
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p

Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2

〈p|γµ|q]
[pq]

−
κ∗

2

〈q|γµ|p]
〈qp〉 with κ =

〈q|k/|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
and n directions p1, p2, . . . , pn, satisfying the conditions

kµ1 + k
µ
2 + · · ·+ kµn = 0 momentum conservation

p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p

Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2

〈p|γµ|q]
[pq]

−
κ∗

2

〈q|γµ|p]
〈qp〉 with κ =

〈q|k/|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.

〈q|k/|p]
〈qp〉 =

〈q|k/|p]〈pr〉
〈qp〉〈pr〉 =

〈q|k/p/|r〉
〈qp〉〈pr〉 =

〈q|2k·p− p/k/|r〉
〈qp〉〈pr〉 = −

〈qp〉[p|k/|r〉
〈qp〉〈pr〉 =

〈r|k/|p]
〈rp〉
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|Amplitudes with off-shell gluons|

n-parton amplitude is a function of n momenta k1, k2, . . . , kn
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p21 = p
2
2 = · · · = p2n = 0 light-likeness

p1 ·k1 = p2 ·k2 = · · · = pn ·kn = 0 eikonal condition

With the help of an auxiliary four-vector qµ with q2 = 0, we define

kµT (q) = k
µ − x(q)pµ with x(q) ≡ q·k

q·p

Construct kµT explicitly in terms of pµ and qµ:

kµT (q) = −
κ

2

〈p|γµ|q]
[pq]

−
κ∗

2

〈q|γµ|p]
〈qp〉 with κ =

〈q|k/|p]
〈qp〉 , κ∗ =

〈p|k/|q]
[pq]

k2 = −κκ∗ is independent of qµ, but also individually κ and κ∗ are independent of qµ.

Besides the spinors of directions and light-like momenta, κ and κ∗ will show up in expres-
sions for off-shell amplitudes.
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|Example of a 4-gluon amplitude|

A(1∗, 2−, 3∗, 4+) =
〈13〉3[13]3

〈34〉〈41〉〈1|k/3 + p/4|3]〈3|k/1 + p/4|1][32][21]

+
1

κ∗1κ3

〈12〉3[43]3
〈2|k/3|4]〈1|k/3 + p/4|3](k3 + p4)2

+
1

κ1κ
∗
3

〈23〉3[14]3
〈2|k/1|4]〈3|k/1 + p/4|1](k1 + p4)2

• Eventual matrix element needs factor k21k
2
3 = |κ1|

2|κ3|
2.

This must not be included at the amplitude level not to spoil analytic structure.

• Last two terms dominate for |k1| → 0 and |k3| → 0, and give the on-shell helicity
amplitudes in that limit.

A(1∗, 2−, 3∗, 4+)
|k1|,|k3|→0−→ 1

κ∗1κ3
A(1−, 2−, 3+, 4+) +

1

κ1κ
∗
3

A(1+, 2−, 3−, 4+)

• Coherent sum of amplitudes becomes incoherent sum of squared amplitudes via angular
integrations for ~k1T and ~k3T .


