Advances in amplitudes with off-shell partons

Andreas van Hameren

- Institute of Nuclear Physics Polish Academy of Sciences Kraków
presented at
"Collider Physics" 2nd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society 15-05-2016, Katowice

Outline

- DPS vs SPS for $p p \rightarrow c \bar{c} c \bar{c}$
- k_{T}-factorization vs collinear factorization for $\mathrm{pp} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{c} \overline{\mathrm{c}}$
- $\mathrm{pp} \rightarrow 4 \mathrm{j}$ with k_{T}-factorization
- Off-shell amplitudes
- BCFW recursion for amplitudes with off-shell partons
- Towards NLO
- Conclusions

DPS vs SPS for $\mathrm{pp} \rightarrow \mathrm{cc} c \bar{c}$

- production of $c \bar{c} c \bar{c}$ is a good place to study DPS effects Łuszczak, Maciuła, Szczurek 2012
- DPS c̄̄ cē cross section approaches cē cross section for large energies
- DPS cc̄ccicross section is orders of magnitude larger than LO SPS cā cē cross section Schäfer, Szczurek 2012, Maciuła, Szczurek, AvH 2014
- LHCb measured a surprisingly large cross section for the production of D-meson pairs JHEP 06141 (2012)

DPS vs SPS for $\mathrm{pp} \rightarrow \mathrm{c} \bar{c} c \bar{c}$

Simple factorized model

$$
\mathrm{d} \sigma^{\mathrm{DPS}}(\mathrm{pp} \rightarrow \mathrm{c} \overline{\mathrm{c}} \mathrm{c} \overline{\mathrm{c}} \mathrm{X})=\frac{1}{2 \sigma_{\mathrm{eff}}} \mathrm{~d} \sigma^{\mathrm{SPS}}\left(\mathrm{pp} \rightarrow \mathrm{c} \overline{\mathbf{c}} X_{1}\right) \mathrm{d} \sigma^{\mathrm{SPS}}\left(\mathrm{pp} \rightarrow \mathrm{c} \bar{c}_{2}\right)
$$

with $\sigma_{\text {eff }}=15 \mathrm{mb}$.

DPS vs SPS for $p p \rightarrow c \bar{c} c \bar{c}$

High Energy Factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

$$
\sigma_{h_{1}, h_{2} \rightarrow Q Q}=\int d^{2} k_{1 \perp} \frac{d x_{1}}{x_{1}} \mathcal{F}\left(x_{1}, k_{1 \perp}\right) d^{2} k_{2 \perp} \frac{d x_{2}}{x_{2}} \mathcal{F}\left(x_{2}, k_{1 \perp}\right) \hat{\sigma}_{g g}\left(\frac{m^{2}}{x_{1} x_{2} s}, \frac{k_{1 \perp}}{m}, \frac{k_{2 \perp}}{m}\right)
$$

- reduces to collinear factorization for $s \gg m^{2} \gg k_{\perp}^{2}$, but holds al so for $s \gg m^{2} \sim k_{\perp}^{2}$
- typically associated with small-x physics, forward physics, saturation, heavy-ions ...
- allows for higher-order kinematical effects at leading order
- requires matrix elements with off-shell initial-state partons with $\mathrm{k}_{\mathrm{i}}^{2}=\mathrm{k}_{\mathrm{i} \perp}^{2}<0$

$$
\begin{aligned}
& k_{1}=x_{1} p_{A}+k_{1 \perp} \text { みை } \\
& k_{2}=x_{2} p_{B}+k_{2 \perp} \text { os }
\end{aligned}
$$

- k_{\perp}-dependent \mathcal{F} may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, ...

High Energy Factorization

a.k.a. k_{T}-factorization

Catani, Ciafaloni, Hautmann 1991 Collins, Ellis 1991

$$
\sigma_{h_{1}, h_{2} \rightarrow Q Q}=\int d^{2} k_{1 \perp} \frac{d x_{1}}{x_{1}} \mathcal{F}\left(x_{1}, k_{1 \perp}\right) d^{2} k_{2 \perp} \frac{d x_{2}}{x_{2}} \mathcal{F}\left(x_{2}, k_{1 \perp}\right) \hat{\sigma}_{g g}\left(\frac{m^{2}}{x_{1} x_{2}}, \frac{k_{1 \perp}}{m}, \frac{k_{2 \perp}}{m}\right)
$$

- reduces to collinear factorization for $s \gg m^{2} \gg k_{\perp}^{2}$, but holds al so for $s \gg m^{2} \sim k_{\perp}^{2}$
- typically associated with small-x physics, forward physics, saturation, heavy-ions ...
- allows for higher-order kinematical effects at leading order
- requires matrix elements with off-shell initial-state partons with $\mathrm{k}_{\mathrm{i}}^{2}=\mathrm{k}_{\mathrm{i} \perp}^{2}<0$

$$
\begin{aligned}
& k_{1}=x_{1} \mathrm{p}_{\mathrm{A}}+\mathrm{k}_{1 \perp} \\
& \mathrm{k}_{2}=\mathrm{x}_{2} \mathrm{p}_{\mathrm{B}}+\mathrm{k}_{2 \perp} \text { as }
\end{aligned}
$$

- k_{\perp}-dependent \mathcal{F} may satisfy BFKL-eqn, CCFM-eqn, BK-eqn, KGBJS-eqn, ...
- in particular KMR-type unintegrated pdfs (Kimber, Martin, Ryskin 2000) contain essential hard scale dependence via Sudakov resummation

$$
\begin{gathered}
T_{a}\left(k^{2}, \mu^{2}\right)=\exp \left(-\int_{k^{2}}^{\mu^{2}} \frac{d p^{2}}{p^{2}} \frac{\alpha_{S}\left(p^{2}\right)}{2 \pi} \sum_{b} \int_{0}^{k /(\mu+k)} d z P_{b a}(z)\right) \\
\mathcal{F}_{a}\left(x, k^{2}, \mu^{2}\right)=\partial_{\lambda}\left[T_{a}\left(\lambda, \mu^{2}\right) x g_{a}(x, \lambda)\right]_{\lambda=k^{2}}
\end{gathered}
$$

K_{\top} vs collinear for $\mathrm{pp} \rightarrow c \bar{c} c \bar{c}$

Four jets with k_{\top}-factorization

- $\Delta \mathrm{S}$ is the azimutal angle between the sum of the two hardest jets and the sum of the two softest jets.
- This variable has no distribution at LO in collinear factorization: pairs would have to be back-to-back.

- Our (KMR-type) updfs DLC2016 describe data remarkably well.

Gauge invariance

In order to be physically relevant, any scattering amplitude following the constructive definition given before must satisfy the following

Freedom in choice of gluon propagator:

Ward identity:

- Only holds if all external particles are on-shell.
- k_{T}-factorization requires off-shell initial-state momenta $k^{\mu}=p^{\mu}+k_{T}^{\mu}$.
- How to define amplitudes with off-shell intial-state momenta?

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013:

Embed the process in an on-shell process with auxiliary partons

Hadron momenta p_{1}, p_{2} :
$p_{1} \cdot p_{A}=p_{1} \cdot p_{A^{\prime}}=p_{1} \cdot k_{1}=0$
$p_{2} \cdot p_{B}=p_{2} \cdot p_{B^{\prime}}=p_{2} \cdot k_{2}=0$

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013:

Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

Hadron momenta p_{1}, p_{2} :
$p_{1} \cdot p_{A}=p_{1} \cdot p_{A^{\prime}}=p_{1} \cdot k_{1}=0$
$p_{2} \cdot p_{B}=p_{2} \cdot p_{B^{\prime}}=p_{2} \cdot k_{2}=0$

μ, a

$$
j \xrightarrow[\rightarrow]{\mathrm{K}} \ldots \mathrm{i}=\delta_{i, j} \frac{i}{p_{1} \cdot K}
$$

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

 $+\cdots$

Amplitudes with off-shell partons

AvH, Kutak, Kotko 2013, AvH, Kutak, Salwa 2013:
Embed the process in an on-shell process with auxiliary partons and eikonal Feynman rules.

BCFW recursion for on-shell amplitudes

Gives compact expression through recursion of on-shell amplitudes.

$$
\begin{aligned}
\hat{\mathrm{K}}^{\mu}(z) & =p_{1}^{\mu}+\cdots+p_{i}^{\mu}+z e^{\mu} \\
& =-p_{i+1}^{\mu}-\cdots-p_{n}^{\mu}+z e^{\mu}
\end{aligned}
$$

$$
\left.\left.e^{\mu}=\frac{1}{2}\left\langle p_{1}\right| \gamma^{\mu} \right\rvert\, p_{n}\right]
$$

$$
\hat{\mathrm{K}}(z)^{2}=0 \quad \Leftrightarrow \quad z=-\frac{\left(\mathrm{p}_{1}+\cdots+\mathrm{p}_{\mathrm{i}}\right)^{2}}{2\left(\mathrm{p}_{2}+\cdots+\mathrm{p}_{\mathrm{i}}\right) \cdot e}
$$

$\mathcal{A}\left(1^{+}, 2, \ldots, n-1, n^{-}\right)=\sum_{i=2}^{n-1} \sum_{h=+,-} \mathcal{A}\left(\hat{1}^{+}, 2, \ldots, i,-\hat{K}_{1, i}^{h}\right) \frac{1}{K_{1, i}^{2}} \mathcal{A}\left(\hat{K}_{1, i}^{-h}, i+1, \ldots, n-1, \hat{n}^{-}\right)$

$$
\mathcal{A}\left(1^{+}, 2^{-}, 3^{-}\right)=\frac{\langle 23\rangle^{3}}{\langle 31\rangle\langle 12\rangle} \quad, \quad \mathcal{A}\left(1^{-}, 2^{+}, 3^{+}\right)=\frac{[32]^{3}}{[21][13]}
$$

BCFW recursion for off-shell amplitudes

The BCFW recursion formula becomes

The hatted numbers label the shifted external gluons.

BCFW recursion

- on-shell case treated in Luo, Wen 2005
- any off-shell parton can be shifted: propagators of "external" off-shell partons give the correct power of z in order to vanish at infinity
- different kinds of contributions in the recursion

gets contributions from

and

- many of the MHV amplitudes come out as expected
- some more-than-MHV amplitudes do not vanish, but are sub-leading in k_{T}

$$
\mathcal{A}\left(1^{+}, 2^{+}, \ldots, \mathrm{n}^{+}, \overline{\mathrm{q}}^{*}, \mathrm{q}^{-}\right)=\frac{-\langle\overline{\mathrm{q}} \mathrm{q}\rangle^{3}}{\langle 12\rangle\langle 23\rangle \cdots\langle\mathrm{n} \overline{\mathrm{q}}\rangle\langle\overline{\mathrm{q} q}\rangle\langle\mathrm{q} 1\rangle}
$$

- off-shell quarks have helicity

$$
\mathcal{A}\left(1,2, \ldots, n, \overline{\mathrm{q}}^{*(+)}, \mathrm{q}^{*(-)}\right) \neq \mathcal{A}\left(1,2, \ldots, n, \overline{\mathrm{q}}^{*(-)}, \mathrm{q}^{*(+)}\right)
$$

Towards NLO momme

Go back to derivation of eikonal Feynman rules for off-shell gluons:

TOMar@S N with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

$$
\left.\begin{array}{l}
k=p_{1}+k_{\perp} \sim
\end{array} \begin{array}{c}
(\Lambda+1) p_{1}+\alpha q \\
+\beta k_{\perp}
\end{array}\right)
$$

TOMar@S N with O. Gituliar

Go back to derivation of eikonal Feynman rules for off-shell gluons:

Divide amplitude by Λ (each auxiliary quark spinor gives factor $\sqrt{\Lambda}$) and take $\Lambda \rightarrow \infty$.

Go back to derivation of eikonal Feynman rules for off-shell gluons:

Divide amplitude by Λ (each auxiliary quark spinor gives factor $\sqrt{\Lambda}$) and take $\Lambda \rightarrow \infty$.
This can also be done with complete(ly summed) matrix elements at tree-level:

$$
\frac{1}{\Lambda^{2}} M\left(q, g_{2}, g_{3}, g_{4}, \bar{q}\right)\left[\begin{array}{c}
s_{q, \bar{q}} \rightarrow k_{\perp}^{2} \\
s_{q, i} \rightarrow 2 \Lambda p_{1} \cdot p_{i}, s_{\bar{q}, i} \rightarrow-2 \Lambda p_{1} \cdot p_{i}
\end{array}\right] \Longrightarrow M\left(g_{1}^{*}, g_{2}, g_{3}, g_{4}\right)
$$

Go back to derivation of eikonal Feynman rules for off-shell gluons:

Divide amplitude by Λ (each auxiliary quark spinor gives factor $\sqrt{\Lambda}$) and take $\Lambda \rightarrow \infty$.
This can also be done with complete(ly summed) matrix elements at tree-level:

$$
\frac{1}{\Lambda^{2}} M\left(q, g_{2}, g_{3}, g_{4}, \bar{q}\right)\left[\begin{array}{c}
s_{q, \bar{q}} \rightarrow k_{\perp}^{2} \\
s_{q, i} \rightarrow 2 \Lambda p_{1} \cdot p_{i}, s_{\bar{q}, i} \rightarrow-2 \Lambda p_{1} \cdot p_{i}
\end{array}\right] \Longrightarrow M\left(g_{1}^{*}, g_{2}, g_{3}, g_{4}\right)
$$

Trying the same with one-loop expressions (eg. from Ellis, Sexton 1986) leads to terms with $\log \Lambda$, which can be traced back to integrals with linear denominators

$$
\int \frac{d^{4-2 \epsilon} l}{\left[p_{1} \cdot l\right]\left[l^{2}\right]\left[\left(l+p_{2}\right)^{2}\right] \cdots}
$$

Go back to derivation of eikonal Feynman rules for off-shell gluons:

Divide amplitude by Λ (each auxiliary quark spinor gives factor $\sqrt{\Lambda}$) and take $\Lambda \rightarrow \infty$.
This can also be done with complete(ly summed) matrix elements at tree-level:

$$
\frac{1}{\Lambda^{2}} M\left(q, g_{2}, g_{3}, g_{4}, \bar{q}\right)\left[\begin{array}{c}
s_{q, \bar{q}} \rightarrow k_{\perp}^{2} \\
s_{q, i} \rightarrow 2 \Lambda p_{1} \cdot p_{i}, s_{\bar{q}, i} \rightarrow-2 \Lambda p_{1} \cdot p_{i}
\end{array}\right] \Longrightarrow M\left(g_{1}^{*}, g_{2}, g_{3}, g_{4}\right)
$$

Trying the same with one-loop expressions (eg. from Ellis, Sexton 1986) leads to terms with $\log \Lambda$, which can be traced back to integrals with linear denominators

$$
\int \frac{d^{4-2 \epsilon} l}{\left[p_{1} \cdot l\right]\left[l^{2}\right]\left[\left(l+p_{2}\right)^{2}\right] \cdots}
$$

Tree-level matrix elements have denominators $\propto p_{1} \cdot p_{i}$, i.e. there are singularities despite off-shellness. Corresponding splitting function is given by $(1-x)^{3} / x$.

Conclusions

- Double-parton scattering gives an important contribution to the cross section for the process $p p \rightarrow c \bar{c} c \bar{c}$.
- This is confirmed by comparing with single-parton scattering at tree-level both in collinear factorization and k_{T}-factorization.
- k_{T}-factorization allows for the description of kinematical situations inaccessible with LO collinear factorization with parton shower, eg. ΔS for four jets.
- Factorization prescriptions with explicit k_{T} dependence in the pdfs ask for hard matrix elements with off-shell initial-state partons.
- The necessary amplitudes can be defined in a manifestly gauge invariang manner that allows for Dyson-Schwinger recursion and BCFW recursion, both for off-shell gluons and off-shell quarks.
- Upgrade to NLO in progress.

Public programs

AVHLIB (A Very Handy LIBrary)

- complete Monte Carlo program for tree-level calculations
- any process within the Standard Model
- any initial-state partons on-shell or off-shell
- employs numerical Dyson-Schwinger recursion to calculate helicity amplitudes
- automatic phase space optimization
- flexibility at the cost of user-friendliness

AMP4HEF (AvH, M.Bury, K.Bilko, H.Milczarek, M.Serino)

- only provides tree-level matrix elements (or color-ordered helicity amplitudes)
- available processes (plus those with fewer on-shell gluons and fewer off-shell partons):

$$
\begin{array}{lll}
\emptyset \rightarrow \mathrm{g}^{*} \mathrm{~g}^{*}+5 \mathrm{~g} & \emptyset \rightarrow \overline{\mathrm{q}} \mathrm{q}^{*}+3 \mathrm{~g} & \\
& \emptyset \rightarrow \overline{\mathrm{q}}^{*} \mathrm{q}^{*}+2 \mathrm{~g} \\
& \emptyset \rightarrow \overline{\mathrm{q}}^{*} \mathrm{q}+3 \mathrm{~g} & \\
& \emptyset \rightarrow \mathrm{~g}^{*} \bar{q}^{*}+\mathrm{q} \mathrm{q} \mathrm{q}+2 \mathrm{~g} & \\
\emptyset \rightarrow \mathrm{q}^{*} \mathrm{~g}^{*}+\mathrm{g} \overline{\mathrm{q}}
\end{array}
$$

- employs BCFW recursion to calculate color-ordered helicity amplitudes
- easy to use, both in Fortran and C++

Amplitudes with off-shell gluons

n-parton amplitude is a function of n momenta $k_{1}, k_{2}, \ldots, k_{n}$ and n directions $p_{1}, p_{2}, \ldots, p_{n}$, satisfying the conditions

$$
\begin{aligned}
\mathrm{k}_{1}^{\mu}+\mathrm{k}_{2}^{\mu}+\cdots+\mathrm{k}_{n}^{\mu}=0 & \text { momentum conservation } \\
\mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2}=\cdots=\mathrm{p}_{n}^{2}=0 & \text { light-likeness } \\
\mathrm{p}_{1} \cdot \mathrm{k}_{1}=\mathrm{p}_{2} \cdot \mathrm{k}_{2}=\cdots=\mathrm{p}_{\mathrm{n}} \cdot \mathrm{k}_{\mathrm{n}}=0 & \text { eikonal condition }
\end{aligned}
$$

With the help of an auxiliary four-vector q^{μ} with $q^{2}=0$, we define

$$
k_{\mathrm{T}}^{\mu}(\mathrm{q})=\mathrm{k}^{\mu}-x(\mathrm{q}) \mathrm{p}^{\mu} \quad \text { with } \quad x(\mathrm{q}) \equiv \frac{\mathrm{q} \cdot \mathrm{k}}{\mathrm{q} \cdot \mathrm{p}}
$$

Construct k_{T}^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$
k_{T}^{\mu}(q)=-\frac{k}{2} \frac{\left.\langle p| \gamma^{\mu} \mid q\right]}{[p q]}-\frac{k^{*}}{2} \frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\langle q p\rangle} \quad \text { with } \quad \kappa=\frac{\langle q| k \mid p]}{\langle q p\rangle}, \quad \kappa^{*}=\frac{\langle p| k \mid q]}{[p q]}
$$

$k^{2}=-K k^{*}$ is independent of q^{μ}, but also individually k and k^{*} are independent of q^{μ}.

Amplitudes with off-shell gluons

n-parton amplitude is a function of n momenta $k_{1}, k_{2}, \ldots, k_{n}$ and n directions $p_{1}, p_{2}, \ldots, p_{n}$, satisfying the conditions

$$
\begin{aligned}
\mathrm{k}_{1}^{\mu}+\mathrm{k}_{2}^{\mu}+\cdots+\mathrm{k}_{n}^{\mu}=0 & \text { momentum conservation } \\
\mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2}=\cdots=\mathrm{p}_{n}^{2}=0 & \text { light-likeness } \\
\mathrm{p}_{1} \cdot \mathrm{k}_{1}=\mathrm{p}_{2} \cdot \mathrm{k}_{2}=\cdots=\mathrm{p}_{n} \cdot \mathrm{k}_{n}=0 & \text { eikonal condition }
\end{aligned}
$$

With the help of an auxiliary four-vector q^{μ} with $q^{2}=0$, we define

$$
k_{T}^{\mu}(q)=k^{\mu}-x(q) p^{\mu} \quad \text { with } \quad x(q) \equiv \frac{q \cdot k}{q \cdot p}
$$

Construct k_{T}^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$
k_{T}^{\mu}(q)=-\frac{k}{2} \frac{\left.\langle p| \gamma^{\mu} \mid q\right]}{[p q]}-\frac{k^{*}}{2} \frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\langle q p\rangle} \quad \text { with } \quad \kappa=\frac{\langle q| k \mid p]}{\langle q p\rangle}, \quad \kappa^{*}=\frac{\langle p| k \mid q]}{[p q]}
$$

$k^{2}=-K \kappa^{*}$ is independent of q^{μ}, but also individually k and k^{*} are independent of q^{μ}.

$$
\frac{\langle q| k \mid p]}{\langle q p\rangle}=\frac{\langle q| k \mid p]\langle p r\rangle}{\langle q p\rangle\langle p r\rangle}=\frac{\langle q| k p|r\rangle}{\langle q p\rangle\langle p r\rangle}=\frac{\langle q| 2 k \cdot p-p p|r\rangle}{\langle q p\rangle\langle p r\rangle}=-\frac{\langle q p\rangle[p|k| r\rangle}{\langle q p\rangle\langle p r\rangle}=\frac{\langle r| k \mid p]}{\langle r p\rangle}
$$

Amplitudes with off-shell gluons

n-parton amplitude is a function of n momenta $k_{1}, k_{2}, \ldots, k_{n}$ and n directions $p_{1}, p_{2}, \ldots, p_{n}$, satisfying the conditions

$$
\begin{aligned}
\mathrm{k}_{1}^{\mu}+\mathrm{k}_{2}^{\mu}+\cdots+\mathrm{k}_{n}^{\mu}=0 & \text { momentum conservation } \\
\mathrm{p}_{1}^{2}=\mathrm{p}_{2}^{2}=\cdots=\mathrm{p}_{n}^{2}=0 & \text { light-likeness } \\
\mathrm{p}_{1} \cdot \mathrm{k}_{1}=\mathrm{p}_{2} \cdot \mathrm{k}_{2}=\cdots=\mathrm{p}_{\mathrm{n}} \cdot \mathrm{k}_{\mathrm{n}}=0 & \text { eikonal condition }
\end{aligned}
$$

With the help of an auxiliary four-vector q^{μ} with $q^{2}=0$, we define

$$
k_{T}^{\mu}(q)=k^{\mu}-x(q) p^{\mu} \quad \text { with } \quad x(q) \equiv \frac{q \cdot k}{q \cdot p}
$$

Construct k_{T}^{μ} explicitly in terms of p^{μ} and q^{μ} :

$$
k_{T}^{\mu}(q)=-\frac{k}{2} \frac{\left.\langle p| \gamma^{\mu} \mid q\right]}{[p q]}-\frac{k^{*}}{2} \frac{\left.\langle q| \gamma^{\mu} \mid p\right]}{\langle q p\rangle} \quad \text { with } \quad \kappa=\frac{\langle q| k \mid p]}{\langle q p\rangle}, \quad \kappa^{*}=\frac{\langle p| k \mid q]}{[p q]}
$$

$k^{2}=-K k^{*}$ is independent of q^{μ}, but also individually k and k^{*} are independent of q^{μ}.
Besides the spinors of directions and light-like momenta, κ and κ^{*} will show up in expressions for off-shell amplitudes.

Example of a 4-gluon amplitude

$$
\begin{aligned}
& \mathcal{A}\left(1^{*}, 2^{-}, 3^{*}, 4^{+}\right)=\frac{\langle 13\rangle^{3}[13]^{3}}{\left.\left.\langle 34\rangle\langle 41\rangle\langle 1| k_{3}+p_{4} \mid 3\right]\langle 3| k_{1}+p_{4} \mid 1\right][32][21]} \\
& \quad+\frac{1}{\kappa_{1}^{*} k_{3}} \frac{\langle 12\rangle^{3}[43]^{3}}{\left.\left.\langle 2| k_{3} \mid 4\right]\langle 1| k_{3}+p_{4} \mid 3\right]\left(k_{3}+p_{4}\right)^{2}}+\frac{1}{k_{1} k_{3}^{*}} \frac{\langle 23\rangle^{3}[14]^{3}}{\left.\left.\langle 2| k_{1} \mid 4\right]\langle 3| k_{1}+p_{4} \mid 1\right]\left(k_{1}+p_{4}\right)^{2}}
\end{aligned}
$$

- Eventual matrix element needs factor $k_{1}^{2} k_{3}^{2}=\left|\kappa_{1}\right|^{2}\left|\kappa_{3}\right|^{2}$.

This must not be included at the amplitude level not to spoil analytic structure.

- Last two terms dominate for $\left|k_{1}\right| \rightarrow 0$ and $\left|k_{3}\right| \rightarrow 0$, and give the on-shell helicity amplitudes in that limit.

$$
\mathcal{A}\left(1^{*}, 2^{-}, 3^{*}, 4^{+}\right) \xrightarrow{\left|k_{1}\right|,\left|k_{3}\right| \rightarrow 0} \frac{1}{\kappa_{1}^{*} \kappa_{3}} \mathcal{A}\left(1^{-}, 2^{-}, 3^{+}, 4^{+}\right)+\frac{1}{\kappa_{1} \kappa_{3}^{*}} \mathcal{A}\left(1^{+}, 2^{-}, 3^{-}, 4^{+}\right)
$$

- Coherent sum of amplitudes becomes incoherent sum of squared amplitudes via angular integrations for $\vec{k}_{1 T}$ and $\vec{k}_{3 T}$.

