Dark matter near a resonance

Mateusz Duch Institute of Theoretical Physics, University of Warsaw

"Collider Physics" 2nd Symposium of the Division for Physics of Fundamental Interactions of the Polish Physical Society 14.05.2016

in collaboration with: Bohdan Grzadkowski

- thermally averaged annihilation cross-section strongly depend on temperature
- modified limits from indirect searches
- applications to the self-interacting dark matter

Boltzmann equation

$$\frac{dY}{dx} = -\alpha \frac{\langle \sigma v \rangle}{x^2} (Y^2 - Y_{\rm EQ}), \quad \text{DM yield } Y = n/s, \quad \alpha = \frac{s(m)}{H(m)}$$

• entropy s in coming volume is conserved, dimensionless parameter x = m/T

Decoupling $\Gamma = n_{EQ} \langle \sigma v \rangle \lesssim H(x)$ $\begin{array}{c|c} & - & 10^{-27} \\ & - & 10^{-26} \\ & - & 10^{-25} \end{array}$ 10⁻⁵ $x_d \approx 25$ (log dependence on $\langle \sigma v \rangle$) **Approximate solutions** 10^{-7} $\frac{1}{Y_{\infty}} - \frac{1}{Y(x_d)} = \alpha \int_{x_{\perp}}^{\infty} \frac{\langle \sigma v \rangle}{x^2}$ 10-9 $\langle \sigma \mathbf{v} \rangle = \mathbf{const}, \quad Y(x_d) \gg Y_{\infty}$ 10-11 $Y_{\infty} \approx \frac{x_d}{\alpha \langle \sigma v \rangle_0}$ Xf 10⁻¹³ 10 100 1000 10⁴ generalizations $\langle \sigma v \rangle \sim x^{-m} (1 + a x^{-n})$ x=m/T

WIMP miracle $m_{\rm DM} \sim 100 \text{ GeV}, \ \langle \sigma v \rangle \approx 2 \times 10^{-26} \text{ cm}^3 \text{s}^{-1} \rightarrow \Omega_{DM} h^2 \approx 0.1$

Annihilation near the resonance

$$\sigma v_{\rm rel} \sim \frac{1}{(s - M^2)^2 + \Gamma^2 M^2} \approx \frac{1}{(\delta + v_{\rm rel}^2/4)^2 + \gamma^2}$$

$$\delta = 4m_{DM}^2/M_R^2 - 1, \quad \gamma = \Gamma/M_R$$
Thermal average with
Maxwell-Boltzmann distribution

$$\delta > 0 \qquad \delta < 0, \gamma < |\delta|$$

$$\int_{-M-B}^{-M-B} x = 20$$

$$\int_{-M-B}^{0} x = 20$$

0.01

10

100

1000

10⁴

x=m/T

- strong temperature dependence,
- $\langle \sigma v \rangle$ grows with decreasing T annihilation can last long after decoupling
- reaches maximum when $x \approx (\max[|\delta|, \gamma])^{-1}$

107

10⁵

10⁶

$$\frac{1}{Y_{\infty}} - \underbrace{1}_{\mathcal{Y}(x_d)} = -\alpha \int_{x_d}^{\infty} \frac{\langle \sigma v \rangle}{x^2} = -\alpha \int_{x_d}^{\infty} dx \frac{1}{2\sqrt{\pi x}} \int_0^{\infty} dv_{\rm rel} v_{\rm rel}^2 e^{-xv_{\rm rel}^2/4} \sigma v_{\rm rel}$$

Change the order - integral over x

$$\frac{\operatorname{erfc}(v_{\mathrm{rel}}\sqrt{x_d}/2)}{v_{\mathrm{rel}}} \approx \frac{1}{v_{\mathrm{rel}}} - \sqrt{\frac{x_d}{\pi}}$$

Approximate solution

$$Y_{\infty} = \frac{x_f}{\alpha \langle \sigma v \rangle_{T=0}}$$

"Freeze-out" temperature

$$x_f^{-1} = \begin{cases} \gamma(\pi - 2\sqrt{2\pi x_d \gamma}), & \text{if } \gamma \gg |\delta|, \\ \delta(2 - 2\sqrt{\pi x_d \delta}), & \text{if } \delta \gg \gamma > 0, \\ \delta^2 \gamma^{-1}(2\pi - 4\sqrt{\pi x_d |\delta|}), & \text{if } -\delta \gg \gamma > 0 \end{cases}$$

- effective annihilation after decoupling
- at "freeze-out" temperature $\langle \sigma v \rangle$ reaches its maximal value

Application - self interacting dark matter

Properties of dark matter:

- electrically neutral (non luminous)
- non-baryonic (BBN)
- non-relativistic (cold) (structure formation)
- weakly interacting with ordinary matter (direct detection)
- collisionless or self-interacting ?

Self-interaction strength

- **no effects** on large scale structures
- **modifications** on the scales of clusters and galactic halos

CDM

SIDM

Rocha+ 2013

DM self-interaction cross section

Mean free path $l = (n\sigma)^{-1} \sim m/\sigma_{self}$

Limit on self-interaction cross section

$$\frac{\tau_{\text{self}}}{m} < \begin{cases} 1.25 \frac{\text{cm}^2}{\text{g}} (\text{long} - \text{range}) \\ 0.7 \frac{\text{cm}^2}{\text{g}} (\text{short} - \text{range}) \\ Randall + 2008 \end{cases}$$

Core DM distribution in galactic halos

Abelian vector dark matter

- extra complex scalar S charged under $U(1)_X$, VEV $\langle S \rangle = v_X$
- scalar mixing angle α , two mass eigenstates h_1, h_2
- dark matter candidate $U(1)_X$ vector boson, $M_{Z'} = g_x v_x \leftarrow$ Higgs mechanism

Resonance $2M_{DM} \approx M_{h_1} = 125 \text{ GeV}$ • decay width $\gamma = \Gamma_{h_1}/M_{h_1} = 3.2 \times 10^{-5}$ • no invisible Higgs decays $2M_{Z'} > M_{h_1}$, • fine-tuning $\delta = 4M_{Z'}^2/M_{h_1} - 1 \ll \gamma$ $\frac{\sigma_{\rm self}}{M_{Z'}} < 1.1 \ {\rm cm}^2 {\rm g}^{-1}$ $q_x < 4\pi$ (petrubativity) $|\sin \alpha| < 0.36 \text{ (ATLAS+CMS)}$ **DM abundance** $\Omega_{DM}h^2 \sim x_f/\langle \sigma v \rangle_0$ $\begin{array}{ll} \mbox{non-resonant case} & \langle \sigma v \rangle_0 \approx 2 \times 10^{-26} \ \mbox{cm}^3 \mbox{s}^{-1}, \, x_f = 20 \\ \mbox{Higgs resonance} & \langle \sigma v \rangle_0 \approx 10^{-19} \ \mbox{cm}^3 \mbox{s}^{-1}, \, x_f = 1/(\pi \gamma) = 10^4 \end{array}$ $\sigma_{\rm self}/M_{Z'} \sim (q_x \sin \alpha)^4$ $\sigma_{\rm self}/M_{Z'} \lesssim 10^{-8}~{\rm cm}^2 {\rm g}^{-1}$ $\langle \sigma v \rangle_0 \sim (q_x \sin \alpha)^2$

Lower bound on annihilation rate $\langle \sigma v \rangle$

$$\begin{split} \langle \sigma v \rangle_0 \gtrsim & \frac{2.2 \cdot 10^2}{\epsilon \eta} \left(\frac{M_{DM}}{100 \text{ GeV}} \right)^{3/2} \left(\frac{\sigma_{\text{self}}/M_{DM}}{1 \text{ cm}^2/\text{g}} \right)^{1/2} \left(\frac{100}{g_*} \right)^{1/2} \left(\frac{0.12}{\Omega_{DM} h^2} \right) 2 \times 10^{-26} \text{ cm}^3 \text{s}^{-1} \\ \epsilon \in \{2, \pi\} - \text{depends on the parameters of the resonance } \delta, \gamma \\ \eta < \eta_{\text{max}} - \text{depends on the couplings, limited by perturbativity (VDM } \eta_{\text{max}} = 1/48) \end{split}$$

- Thermally averaged **cross-sections** for dark matter annihilation near the resonance **strongly depend on temperature**.
- There exist **approximate formulas for relic density** in terms of annihilation cross-section at low tempretures and parameters of the resonance
- Self-interaction rates are limited by the indirect searches.

BACKUP SLIDES

$$\sigma v_{\rm rel} = \frac{\omega}{s} \beta_f \frac{4M^2 \bar{\Gamma}^2 B_i B_f}{\bar{\beta}_f \bar{\beta}_i} \frac{1}{(s - M^2)^2 + \Gamma^2 M^2} \approx \frac{4\omega}{M^2 \bar{\beta}_i} \frac{\bar{\gamma}^2 B_i B_f}{(\delta + v_{\rm rel}^2/4)^2 + \gamma^2}$$

- initial states m_i , final states m_f , resonance M
- statistical factor $\omega = (2S_R + 1)/(2S_i + 1)^2$
- resonance decay branching ratios B_i , B_f
- phase space $\beta = \frac{1}{8\pi} \sqrt{1 4m^2/s}, \ \bar{\beta} = \beta|_{s=m}$
- small parameters $\delta = 4m_i^2/M^2 1$, $\gamma = \Gamma/M$

Resonance peak in physical region

 $\begin{array}{ll} 2m_i < M, & \delta < 0,\\ \bar{\Gamma} = \Gamma \text{ - physical width}\\ \text{peak is kinematically accesible} \end{array}$

Resonance peak in unphysical region

 $\begin{array}{ll} 2m_i > M, & \delta > 0, \\ \bar{\Gamma}B_i/\bar{\beta} \sim g_i \text{ - coupling constant} \end{array}$

Thermally-averaged cross-sections - another case

$$\frac{4\omega}{M^2\bar{\beta}_i}\frac{\bar{\gamma}^2 B_i B_f}{(\delta+v_{\rm rel}^2/4)^2+\gamma^2}$$

 $\langle v_{\rm rel}^2 \rangle = 6/x$

Narrow resonance in physical region $\delta < 0, \gamma \ll |\delta|$

• maximum of $\langle \sigma v \rangle$ at $x \approx |\delta|^{-1}$,

•
$$\langle \sigma v \rangle_{\max} = \delta / \gamma \langle \sigma v \rangle_0$$

$$\frac{dY}{dx} = -\alpha \frac{\langle \sigma v \rangle}{x^2} (Y^2 - \sum_{EQ}^2)$$

$$x > x_d \Rightarrow Y \gg Y_{EQ}$$

$$\frac{1}{Y_{\infty}} - \underbrace{\frac{1}{Y(\infty)}}_{V(\infty)} = -\alpha \int_x^\infty \frac{\langle \sigma v \rangle}{x^2}$$
• $x > x_f = (\epsilon \max[|\delta|m\gamma])^{-1},$
 $\epsilon \sim 1$
 $\langle \sigma v \rangle \approx \langle \sigma v \rangle_0 = const$
• $Y_{\infty} = x_f / (\alpha \langle \sigma v \rangle_0)$
 $Y_{\infty}^{(0)} = \frac{1}{\alpha \epsilon \max[|\delta|, \gamma] \langle \sigma v \rangle_0}$
No dependence on x_d and
 $\langle \sigma v \rangle$ for $x < x_f$
How to find ϵ^2

$$\frac{1}{Y_{\infty}} - \underbrace{1}_{Y(x_d)} = -\alpha \int_{x_d}^{\infty} \frac{\langle \sigma v \rangle}{x^2} = -\alpha \int_{x_d}^{\infty} dx \frac{1}{2\sqrt{\pi x}} \int_0^{\infty} dv_{\rm rel} v_{\rm rel}^2 e^{-xv_{\rm rel}^2/4} \sigma v_{\rm rel}$$

Change of the integration order

$$\int_{x_d}^{\infty} \frac{\exp(-xv_{\rm rel}^2/4)}{2\sqrt{\pi x}} dx = \frac{\operatorname{erfc}(v_{\rm rel}\sqrt{x_d}/2)}{v_{\rm rel}} \approx \frac{1}{\mathbf{v}_{\rm rel}} - \sqrt{\frac{x_d}{\pi}}$$

First approximation - how to find ϵ ?

$$\begin{split} &\frac{1}{Y_{\infty}^{(0)}} = \int_{0}^{\infty} \alpha \langle \sigma v \rangle_{0} v_{\mathrm{rel}} \frac{\delta^{2} + \gamma^{2}}{(\delta + v_{\mathrm{rel}}^{2}/4)^{2} + \gamma^{2}} = \\ &= \alpha \langle \sigma v \rangle_{0} (\delta^{2} + \gamma^{2}) \frac{\pi - 2 \arctan(\delta/\gamma)}{\gamma} \approx \\ &\approx \alpha \langle \sigma v \rangle_{0} \times \begin{cases} \pi \gamma, & \text{if } \gamma \gg |\delta|, \\ 2\delta, & \text{if } \delta \gg \gamma > 0, \\ 2\pi \delta^{2}/\gamma, & \text{if } -\delta \gg \gamma > 0. \end{cases} \end{split}$$

No dependence on x_d Non-resonant $1/Y_{\infty} = \alpha \langle \sigma v \rangle_0 / x_f$

$$\int_{x_d}^{\infty} \frac{\exp(-xv_{\rm rel}^2/4)}{2\sqrt{\pi x}} dx = \frac{\operatorname{erfc}(v_{\rm rel}\sqrt{x_d}/2)}{v_{\rm rel}} \approx \frac{1}{v_{\rm rel}} - \sqrt{\frac{\mathbf{x_d}}{\pi}}$$

Second approximation - dependence on x_d

$$\frac{1}{Y_{\infty}^{(1)}} = \alpha \langle \sigma v \rangle_0 \times \begin{cases} \gamma (\pi - 2\sqrt{2\pi x_d}\gamma), & \text{if } \gamma \gg |\delta|, \\ \delta (2 - 2\sqrt{\pi x_d}\delta), & \text{if } \delta \gg \gamma > 0,, \\ \delta^2 \gamma^{-1} (2\pi - 4\sqrt{\pi x_d}|\delta|), & \text{if } -\delta \gg \gamma > 0. \end{cases}$$

 $Y_{\infty} \sim x_f / \langle \sigma v \rangle_0 \qquad \langle \sigma v \rangle_0$ can be many times larger than $2 \times 10^{-26} \ {
m cm}^3 {
m g}^{-1}$

16/10

Abelian vector dark matter

Additional complex scalar field S

- singlet of $U(1)_Y \times SU(2)_L \times SU(3)_c$
- charged under $U(1)_X$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{4} V_{\mu\nu} V^{\mu\nu} + (D_{\mu}S)^* D^{\mu}S + \tilde{V}(H,S)$$
(1)

$$V(H,S) = -\mu_H^2 |H|^2 + \lambda_H |H|^4 - \mu_S^2 |S|^2 + \lambda_S |S|^4 + \kappa |S|^2 |H|^2$$
(2)

Vacuum expectation values:

$$\langle H \rangle = \frac{v_{SM}}{\sqrt{2}}, \qquad \langle S \rangle = \frac{v_x}{\sqrt{2}}$$
(3)

$U(1)_X$ vector gauge boson V_{μ}

- $D_{\mu} = \partial_{\mu} + ig_x V_{\mu}$
- Stability condition no mixing of $U(1)_X$ with $U(1)_Y$
 - $\mathcal{Z}_2: V_\mu \to -V_\mu, \qquad S \to S^*, \qquad S = \phi e^{i\sigma}: \phi \to \phi, \ \sigma \to -\sigma$

• V_{μ} acquires mass due to the Higgs mechanism in the hidden sector

$$M_{Z'} = g_x v_x$$

Scalar mixing

$$S = \frac{1}{\sqrt{2}}(v_x + \phi_S + i\sigma_S) \quad , \quad H^0 = \frac{1}{\sqrt{2}}(v + \phi_H + i\sigma_H), \quad \text{where} \quad H = \begin{pmatrix} H^+ \\ H^0 \end{pmatrix}$$
(5)

$$\mathcal{M}^2 = \begin{pmatrix} 2\lambda_H v^2 & \kappa v v_x \\ \kappa v v_x & 2\lambda_S v_x^2 \end{pmatrix}, \quad \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_H \\ \phi_S \end{pmatrix}$$
(6)

 $M_{h_1}=125~{\rm GeV}$ - observed Higgs particle

Higgs couplings

$$\mathcal{L} \supset \frac{h_1 \cos \alpha + h_2 \sin \alpha}{v} \left(2M_W W^+_\mu W^{\mu-} + M_Z^2 Z_\mu Z^\mu - \sum_f m_f \bar{f} f \right)$$
(7)

$$(\sigma v)_0 = \frac{x_f}{25} \left(\frac{100}{g_*}\right)^{1/2} \left(\frac{0.12}{\Omega_{DM}h^2}\right) 2 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$$

$$\langle \sigma v \rangle_0 \gtrsim \frac{1.1 \cdot 10^4}{\epsilon} \left(\frac{M_{DM}}{100 \text{ GeV}}\right)^{3/2} \left(\frac{\sigma_{\text{self}}/M_{DM}}{1 \text{ cm}^2/\text{g}}\right)^{1/2} \left(\frac{100}{g_*}\right)^{1/2} \left(\frac{0.12}{\Omega_{DM} h^2}\right) 2 \times 10^{-26} \text{ cm}^3 \text{s}^{-1}$$