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The averaging problem in cosmology

Jan Ostrowski

Nicolaus Copernicus University



General Relativity and homogeneous cosmology

2 / 13

• Homogeneity, isotropy → FLRW metric + linear density perturbations



General Relativity and homogeneous cosmology

2 / 13

• Homogeneity, isotropy → FLRW metric + linear density perturbations
• FLRW + Cosmological parameters: Ωm,Ωk,ΩΛ =ΛCDM



General Relativity and homogeneous cosmology

2 / 13

• Homogeneity, isotropy → FLRW metric + linear density perturbations
• FLRW + Cosmological parameters: Ωm,Ωk,ΩΛ =ΛCDM
• Dynamics are governed by the Friedmann equations



General Relativity and homogeneous cosmology

2 / 13

• Homogeneity, isotropy → FLRW metric + linear density perturbations
• FLRW + Cosmological parameters: Ωm,Ωk,ΩΛ =ΛCDM
• Dynamics are governed by the Friedmann equations



Concordance model: problems

3 / 13

• the Universe is highly inhomogeneous at smaller scales and during the late epochs



Concordance model: problems

3 / 13

• the Universe is highly inhomogeneous at smaller scales and during the late epochs

• there exist no unique answer on how to construct ’background’ spacetime



Concordance model: problems

3 / 13

• the Universe is highly inhomogeneous at smaller scales and during the late epochs

• there exist no unique answer on how to construct ’background’ spacetime

• dark sector of the energy budget remains unexplained



Concordance model: problems

3 / 13

• the Universe is highly inhomogeneous at smaller scales and during the late epochs

• there exist no unique answer on how to construct ’background’ spacetime

• dark sector of the energy budget remains unexplained

• coincidence problem



Concordance model: problems

3 / 13

• the Universe is highly inhomogeneous at smaller scales and during the late epochs

• there exist no unique answer on how to construct ’background’ spacetime

• dark sector of the energy budget remains unexplained

• coincidence problem

• several observational ’tensions’ e.g. lithium abundance, BAO peak shift, CMB
large-angle anomalies
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Inhomogeneous Universe: sheets, filaments, clusters, voids

Millennium simulation, Springel et al.
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• Averaging/backreaction: coarse-graining of structures in a well-defined manner so
that the effective geometry and fluid dynamics match each other at given scale.

• Fitting problem: what is the best fit of the FLRW metric to the real inhomogeneous
Universe? How can we construct such background based on the observations made
from the specific location in the lumpy Universe?

• Observations in inhomogeneous Universe: how do we interpret e.g. supernovae
observations in the lumpy Universe? Photons in the narrow beams travel mostly
through voids and, thus, are more affected by the Weyl curvature rather than Ricci
curvature.

• Each of these problems may require different approach
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Modelling the inhomogeneous Universe:

• exact solutions: LTB, Szekeres, Stephani etc

• perturbation theory

• metric-based solutions: e.g. Zalaletdinov formalism

• averaging, non-metric solutions: Buchert equations, averaging Cartan scalars,
timescape cosmology

• effective metrics: virialisation approximation

• modelling the light propagation: Dyer-Roeder approximation

• proper N -body simulations: work in progress
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Millennium simulation, Springel et al.
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In the 3 + 1 setting, averaging and time derivatives do not commute: ∂t〈A〉 6= 〈∂tA〉

Wiegand, Buchert; Journal of Cosmology 2011
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• Kinematical decomposition of the expansion tensor:

→ expansion rate: Θ := Kk
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→ shear: σi
j := −Ki
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1
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σi
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• Spatial averaging: 〈 〉D = 1
V

∫

D
dµg



Averaged equations

11 / 13

• We define the domain dependent scale factor

aD(t) :=

(

VD(t)

VDi

)1/3

where the volume of the domain is given by:

VD(t) :=

∫

D

dµg



Averaged equations

11 / 13

• We define the domain dependent scale factor

aD(t) :=

(

VD(t)

VDi

)1/3

where the volume of the domain is given by:
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• We apply the following commutation rule to the Raychaudhuri and Hamilton
equations

∂t〈Ψ(t,Xk)〉D − 〈∂tΨ(t,Xk)〉D = 〈ΘΨ〉D − 〈Θ〉D〈Ψ〉D
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where the kinematical backreaction term is given by (for irrotational dust):

QD =
2

3
〈(Θ− 〈Θ〉D)

2〉D − 2〈σ2〉D
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• skeptics: the backreaction is negligible or zero since the ‘real’ metric is close to
FLRW and the gravitational potential is small almost everywhere. All of the
formalisms attempting to address the backreaction problems are either gauge
dependent or do not use the full information present in the Einstein equation and,
thus, the conclusions they reach are inconclusive.

• enthusiasts: the backreaction can explain the apparent acceleration of the scale
factor without invoking the dark energy component, or even the dark matter
component. Both the averaged curvature and the kinematical backreaction can act as
additional effective sources, that in principle could mimic the dark energy; or can even
explain the dark matter, depending on the sign and magnitude.

• fence-sitters: the backreaction is small, but as we obtain the more and more
accurate observations it can not be ignored when interpreting the data, especially on
the small scales i.e. in the local Universe.


	General Relativity and homogeneous cosmology
	Concordance model: problems
	Universe is inhomogeneous
	Inhomogeneous cosmology: challenges
	Inhomogeneous cosmology
	Universe at 150 Mpc scales (black boxes)
	Backreaction
	Averaging in 3+1 foliation
	Kinematical decomposition, averaging
	Averaged equations
	
	Summary

	pdstartclock: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 
	pdclock.time: 


