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In this presentation we consider the problem of directional transmission of population and correlations in a system
composed of two coupled bosonic modes with the linear beam-splitter type interaction between the modes. Using
the input-output formalism to describe the Heisenberg equations of motion for the bosonic operators we find
that in the case of unequally damped modes the exceptional point emerge and analyse its effect on transfer of
population and creation and transfer of correlations inside and between the modes. The exceptional point is the
special parameter regime at which the parameters space divides into distinct regions, each characterised by purely
imaginary or purely real eigenvalue spectra, where the populations and correlations change their exponential to
oscillatory behaviours [1-4]. The exceptional points are characteristic of non-Hermitian systems and our analysis
demonstrate that in the Hermitian quantum system composed of linearly coupled and unequally damped modes one
can construct non-Hermitian dynamics which can lead to nonreciprocal (one directional) influences of the modes
on each other.

We consider two frequency degenerate radiation modes described by bosonic creation (annihilation) operators,
a†(a) and b†(b), respectively. The modes are damped with rates respectively κa and κb, and are coupled to each
other through the optical photon exchange processes determined by the interaction Hamiltonian ga†b+g∗b†a. The
modes are simultaneously coupled to their surrounding environments which are in squeezed vacuum states. Using
the input output formalism we derive analytical expressions for the populations

⟨a†a⟩ = na +∆n(λ− 1)
[
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]
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the internal two-photon correlations

⟨aa⟩ = m
{
1 + (λ− 1)

[
λ2 + (λ2 − 1) sinh2 ψ

]}
, ⟨bb⟩ = m

{
1− (λ+ 1)

[
λ2 + (λ2 − 1) sinh2 ψ

]}
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and mutual correlations

⟨a†b⟩ = i∆n
g

κ
(λ2 − 1) cosh2 ψ , ⟨ab⟩ = im

g

κ
(λ2 − 1) cosh2 ψ (3)

where ni (i = a, b) is the initial population of the ith mode, m is the degree of the initial internal two-photon
correlation in the modes, ∆n = (na − nb)/2, ψ = arctanh(

√
γ2 − g2/κ), γ = (κa − κb)/2, κ = (κa + κb)/2,

and λ = γ/κ. It is seen from the above equations that the populations and correlations behave differently. Setting
g = γ and κa ≫ κb (λ → 1) we see that the mutual correlations vanish that the modes become uncorrelated. The
population and the internal correlations of the mode a remain unchanged whereas the population of the mode b is
turned to na and its internal correlations to −m. Inversely, for κb ≫ κa (λ→ −1) the population and the internal
correlations of the mode b remain unchanged while the population of the mode a is turned from na to nb and the
internal correlation is turned from m to −m. If one of the modes is in vacuum state and the other in the thermal
state then the interaction will turn the occupied mode into the vacuum state. Thus, both mode will be found in the
vacuum state despite the fact that one of them is in continuous contact with a thermal reservoir.

References
[1] M. A. Miri and A. Alu, Science 363, 42 (2019).
[2] A. Li et all, Nature Nanotech. 18, 706 (2023).
[3] W. Chen et. all, Phys. Rev. Lett. 128, 110402 (2022).
[4] J. Perina Jr., A. Miranowicz, J. K. Kalaga, and W. Leoński, Phys. Rev. A. 108, 033512 (2023).
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