Leptogenesis Assisted by Bubbles

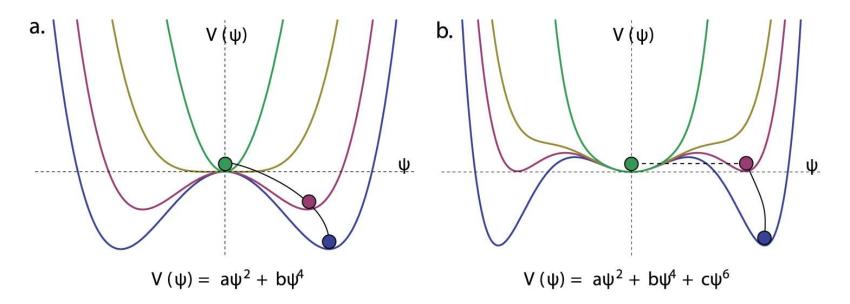
Matter to the Deepest - Sept. 19

Tomasz P. Dutka

Phase Transition Basics

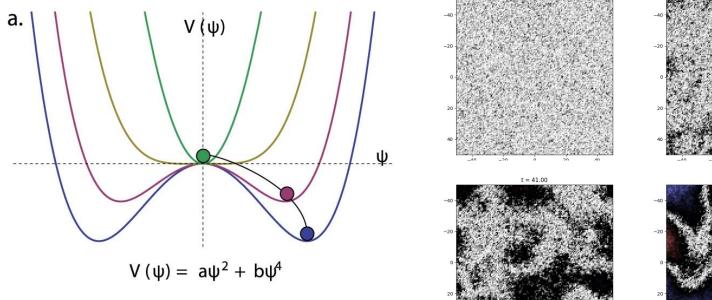
Scalar Potentials depend on temperature/density

- Field coupled to a hot bath -> real thermal excitations in the plasma contribute to the free energy.
- Generate **temperature dependent** corrections to quantities like the scalar potential.

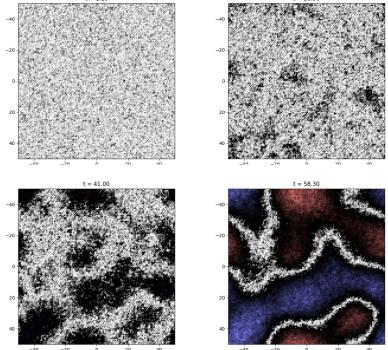

$$V(\phi, T) = V_0(\phi) + \sum_{i} V_{CW}(m_i^2(\phi) + \Pi_i) + \sum_{i} V_T(m_i^2(\phi) + \Pi_i)$$

• At very high temperatures this is dominated by a piece quadratic in temperature -> *generally* leads to symmetry **restoration** at high T.

$$\mathcal{O}(T^2\phi^2)$$
, $\mathcal{O}(T\phi^3)$, $\mathcal{O}(\phi^4\log(\phi^2/T^2))$, $(\phi/T)^{2n}$

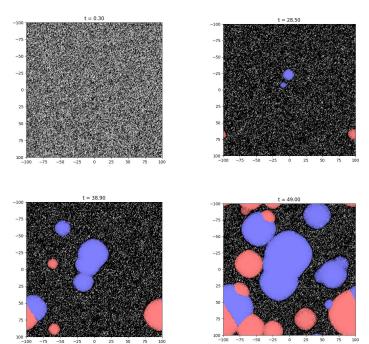

Potential vs Temperature

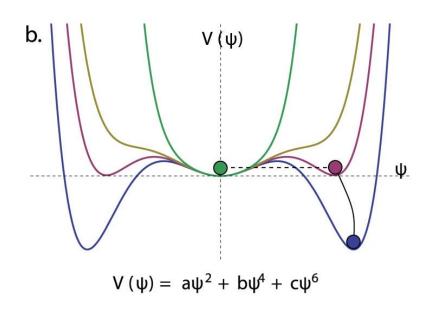
What can happen to the shape as the temperature is decreasing?



2nd Order Transitions

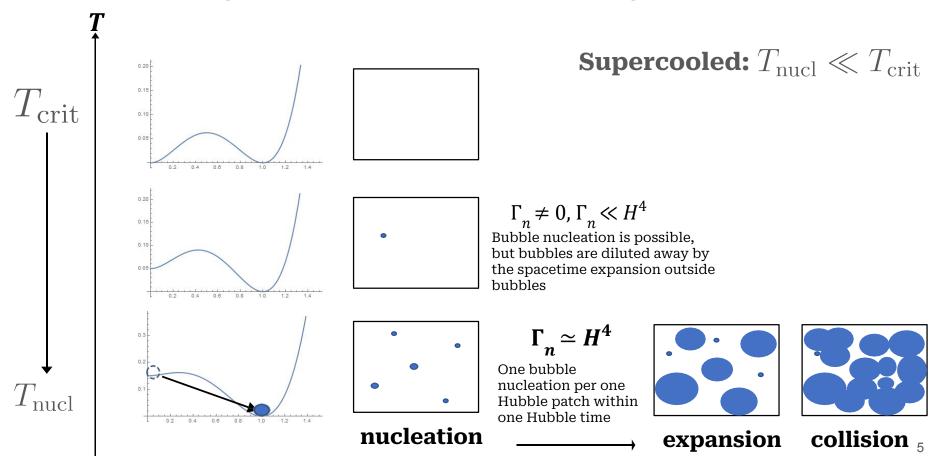
What can happen to the shape as the temperature is decreasing?


Minimum itself moves, scalar stays at minimum. (Near) homogeneous transition.



Animations available on YT at: @tdutka_phys

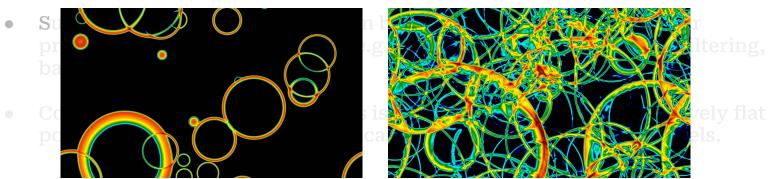
1st Order Transitions


What can happen to the shape as the temperature is decreasing?

There is a barrier, scalar is trapped. Can escape via fluctuations - inhomogeneous transition.

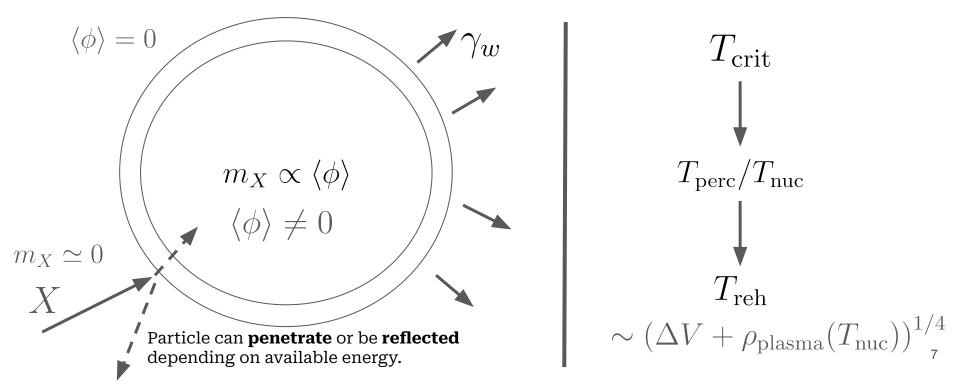
General features of FOPTs

Supercooled First Order Phase Transitions

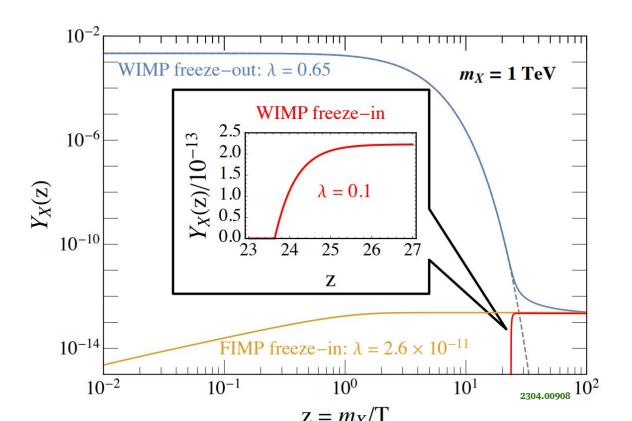

(Recent) popularity in studying (supercooled) phase transitions in cosmological contexts.

- Can produce a secondary, smaller period of 'thermal inflation' which can help dilute the abundances of some long-lived BSM particles which could spoil the predictions of BBN, e.g. gravitino, moduli... hep-ph/9510204, hep-ph/9602263, 0801.4197, 1412.7814....
- Can produce sizeable gravitational wave signals, through collision and motion of true-vacuum bubbles within the thermal plasma.
- Supercooled phase transitions can be used as explanations for other problems in particle cosmology, e.g. PBH production, dark matter filtering, baryogenesis catalysts.. 1912.04238, 2110.04271, 2206.04691, 2206.09923, 2304.00908, 2305.10759....
- Constructing supercooled models is not difficult, just require relatively flat potentials, most commonly classically scale invariant or SUSY models.

Supercooled First Order Phase Transitions


(Recent) popularity in studying (supercooled) phase transitions in cosmological contexts.

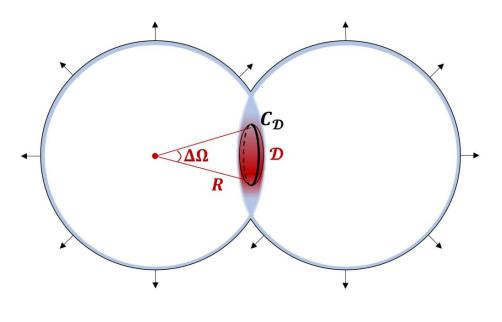
- Can produce a secondary, smaller period of 'thermal inflation' which can help dilute the abundances of some long-lived BSM particles which could spoil the predictions of BBN, e.g. gravitino, moduli...
- Can produce sizeable gravitational wave signals, through collision and motion of true-vacuum bubbles within the thermal plasma. 1809.08242, 1811.11169, 2007.15586, 2208.11697, 2303.02450....



Particle Cosmology during Supercooling

Define a number of relevant parameters involved in cases where FOPT bubbles interact with plasma particles:

Dilution scenario (beyond the usual e-folding situation)



Freeze-in DM model with strong couplings:

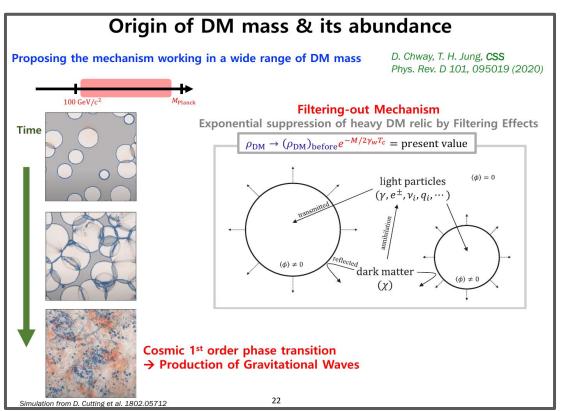
Strong FOPT removes any pre-existing thermal DM density

reheating:
$$Y_X \propto \left(\frac{T_{\rm nuc}}{T_{\rm reh}}\right)^3$$

PBH formation: a number of proposals

Collapse of overdense regions related to inhomogeneous vacuum decay

DM candidate with a motivated production mechanism

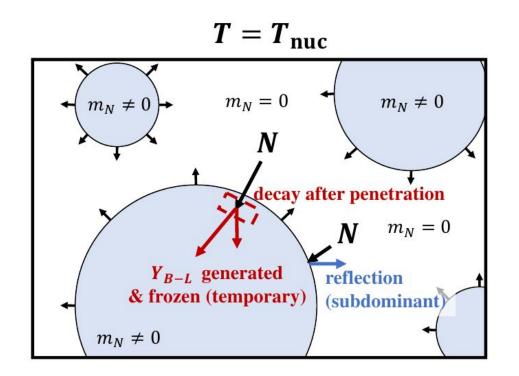

2106.05637, 2210.14094, 2212.14037

"Squeezing" scenario

$$T_{\rm nuc} < \gamma_w T_{\rm nuc} \ll m_X$$

Only a few DM particles can penetrate the bubble, from the Boltzmann tail.

The remaining one are reflected (squeezed) into false vacuum pockets and eventually disappear.



"Mass-gain" scenario

$$T_{\rm perc} < m_X < \gamma_w T_{\rm perc}$$

Naively mass-gaining particle cannot penetrate the wall.

Large velocity of bubble wall leads to large boost factor and particles are 'swept' away by expanding bubble.

Chun, TPD, Jung, Nagels, Vanvlasselaer

'Typical' Leptogenesis

$$\mathcal{L} \supset \frac{1}{2} (M_N)_{ij} \overline{N_i^c} N_j + (Y_D)_{\alpha i} \overline{\ell}_{\alpha} H N_i + h.c.$$

Fukugita, Yanagida, 1986

Sakharov Conditions:

• B violation

$$Y_D \sim \mathcal{O}(1) \implies M_N \sim 10^{14} \text{ GeV}$$

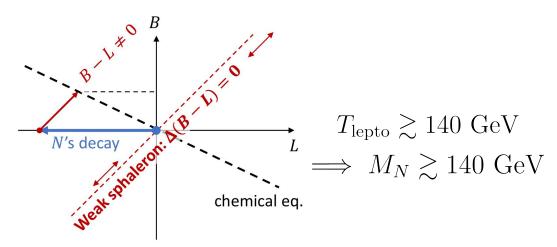
• C & CP violation

$$Y_D \sim \mathcal{O}(10^{-5}) \implies M_N \sim 10^4 \text{ GeV}$$

• Departure from thermal equilibrium

$$m_{
u} \simeq rac{Y_D^2 v_{
m EW}^2}{M_N}$$

$$\mathcal{L} \supset \frac{1}{2} (M_N)_{ij} \overline{N_i^c} N_j + (Y_D)_{\alpha i} \overline{\ell}_{\alpha} H N_i + h.c.$$


Fukugita, Yanagida, 1986

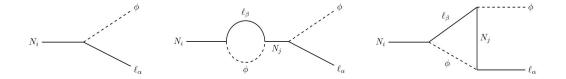
Sakharov Conditions:

• B violation

$$L(N, \ell) = 1$$

$$L(H) = 0$$

C & CP violation


Departure from thermal equilibrium

$$\mathcal{L}\supset rac{1}{2}(M_N)_{ij}\overline{N_i^c}N_j+(Y_D)_{lpha i}\,\overline{\ell}_lpha HN_i+h.c.$$
 Fukugita, Yanagida, 1986

Sakharov Conditions:

B violation

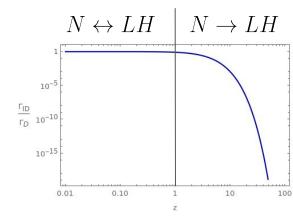
• C & CP violation

Can be easily included, need at least 2 RHNs (also for $m_{
u}$)

Departure from thermal equilibrium

$$\mathcal{L} \supset \frac{1}{2} (M_N)_{ij} \overline{N_i^c} N_j + (Y_D)_{\alpha i} \overline{\ell}_{\alpha} H N_i + h.c.$$

Fukugita, Yanagida, 1986


Sakharov Conditions:

B violation

C & CP violation

Departure from thermal equilibrium

Induced by universe expansion **but** 'smooth' departure from equil.

$$T \to 0 \implies \frac{\Gamma_{\mathrm{ID}}(T)}{\Gamma_{\mathrm{D}}(T)} \to 0 \qquad \frac{\Gamma_{\mathrm{ID}}(z)}{\Gamma_{\mathrm{D}}(z)} = \frac{1}{2}z^2 K_2(z)$$

Parameterising Thermal Leptogenesis

$$Y_B \simeq Y_{N_1} \, \epsilon_{ ext{CP}}^1 \, \kappa_{ ext{sph}} \, \kappa_{ ext{wash}}$$

$$Y_B \simeq 8.75 \times 10^{-11} \implies M_1 \simeq \frac{10^9 \text{ GeV}}{\kappa_{\text{wash}}}$$
 hep-ph/0202239

hep-ph/0401240

$$\kappa_{\rm wash} \simeq 5 \times 10^{-3} \implies$$

Scale is typically much higher, 'strong-washout leptogenesis', need assumptions to saturate bound. (Unless $m_{\nu_1} \lesssim 10^{-3} \ {\rm eV}$ and quite specific couplings.)

$$\implies M_1 \gtrsim (\text{a few}) \times 10^{10} - 10^{11} \text{ GeV}$$

Bubble-assisted Leptogenesis

How can bubbles modify the dynamics of the vanilla leptogenesis scenario?

Shuve, Tamarit: 1704.01979

Huang, Xie: 2206.04691 Dasgupta, et al: 2206.07032

Baldes, et al: 2106.15602

Chun, <u>TPD</u>, Jung, Nagels, Vanvlasselaer Cataldi, Shakya: 2407.16747

Zhao, Zhang, Wu: 2403.18630

Dichtl, Nava, Pascoli, Sala: 2312.09282

Huang, Xu: 2312.06380

Arakawa, Lu, Takhistov: 2409.12228

Setup

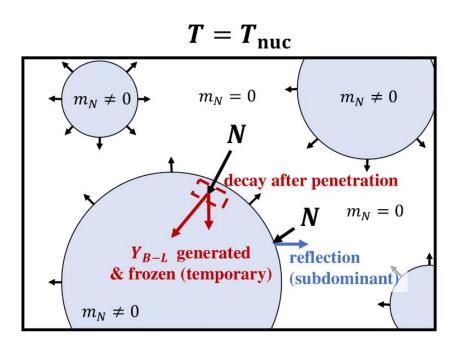
$$\mathcal{L} \supset \frac{1}{2} (Y_N)_{ij} \overline{N_i^c} \Phi N_j + (Y_D)_{\alpha i} \overline{\ell}_{\alpha} H N_i + h.c.$$

$$\downarrow M_N = Y_N \langle \Phi \rangle$$

New scalar is assumed to undergo a first-order phase transition

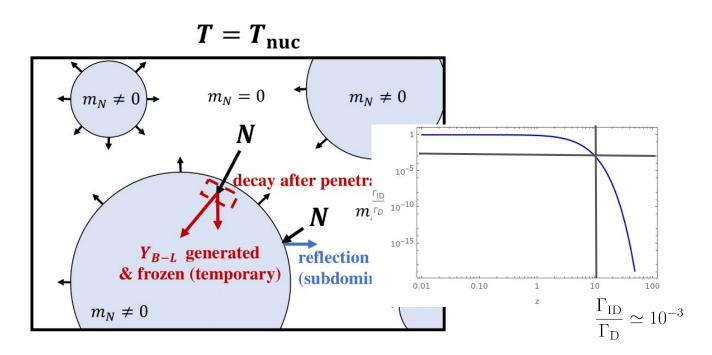

Much stronger departure from thermal equilibrium compared to usual thermal leptogenesis

$$\langle \Phi \rangle \neq 0 \qquad \langle \Phi \rangle = 0$$


$$M_N \neq 0 \qquad M_N = 0$$

$$n_N^{\text{eq}} \propto e^{-M_N/T} \qquad n_N^{\text{eq}} \propto T^3$$

Larger population of RHNs available to decay if they can penetrate the bubbles - $\gamma_w > 1$



As bubbles expand

If $M_N \gg T_{\rm nuc}$ is satisfied (and RHNs penetrate) inverse decays could freeze out immediately after penetration $\kappa_{\rm wash} = 1$?

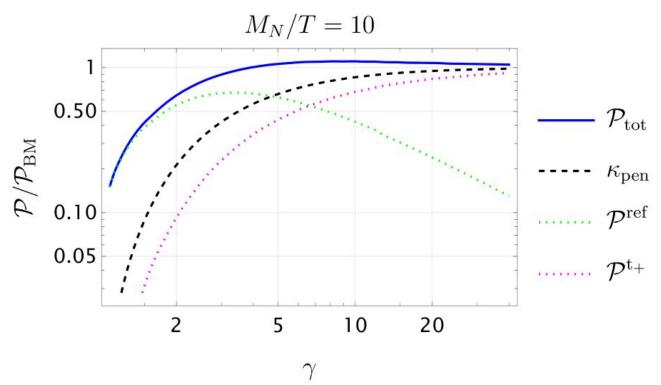
As bubbles expand

If $M_N \gg T_{\rm nuc}$ is satisfied (and RHNs penetrate) inverse decays could freeze out immediately after penetration $\kappa_{\rm wash}=1$? - fast bubbles req.

$$(\gamma_w T_{\rm nuc} > M_N > T_{\rm nuc})$$

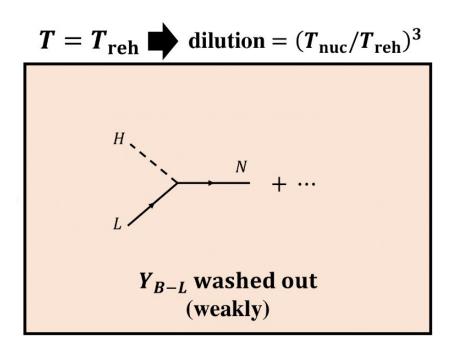
Steps to evaluate final asymmetry

(i) For given Lagrangian parameters evaluate phase transition dynamics

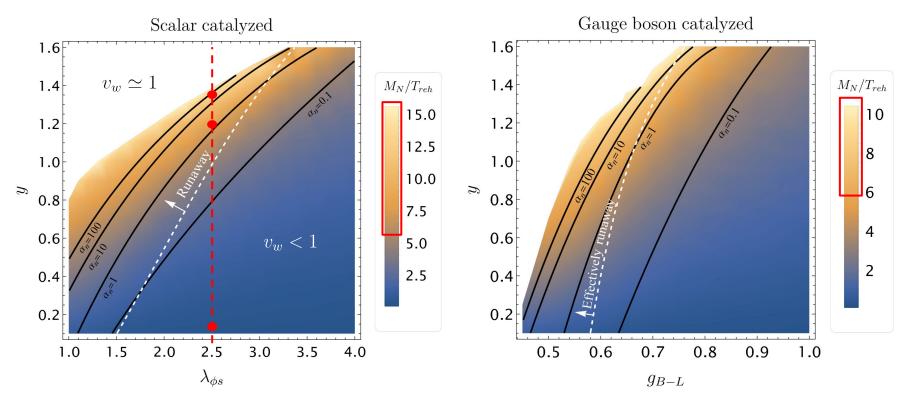

Bubble-wall velocity, penetration rate of RHNs, FOPT properties

$$\gamma_w\gg 1$$
 $\kappa_{
m pen}\simeq 1$ $T_{
m nuc},\,T_{
m reh},\,\alpha_n,\,eta_{
m PT}$ (ideally)

$$\gamma_w T_{\rm nuc} > M_N > T_{\rm nuc}$$


We don't want reflections along the bubble wall ideally.

Step (i) - RHN Penetration


Penetration potential of RHNs much more positive compared to initial estimates

After bubbles collide

Universe reheats and the final asymmetry is diluted. $M_N \gg T_{\rm reh}$ also required to avoid washout

Step (i) - Mass/Temp. Hierarchies

Numerically find $M_N/T_{\rm reh} \gtrsim \mathcal{O}(5)$ required to avoid *conventional* washout

Steps to evaluate final asymmetry

(i) For given Lagrangian parameters evaluate phase transition dynamics

Bubble-wall velocity, penetration rate of RHNs, FOPT properties

$$\gamma_w \gg 1$$

$$\kappa_{\rm pen} \simeq 1$$

$$\kappa_{
m pen} \simeq 1 \qquad T_{
m nuc}, T_{
m reh}, \, \alpha_n, \, \beta_{
m PT}$$

(ii) Within the bubbles, RHNs decay and generate an asymmetry

Solve the Boltzmann equations including any unavoidable washout channels

$$\mathcal{L} \supset Y_N NN\phi + g_{B-L} (NN + ff) A_{\mu}$$

$$NN \to \phi \phi, ff \qquad \begin{pmatrix} \frac{T_{\text{reh}}}{M_N} \propto \frac{\Delta V}{v_{\phi}^4} < 1 \\ \implies m_{\phi} \ll M_N? \end{pmatrix}$$

Interactions which remove RHNs without generating asymmetry: depletions

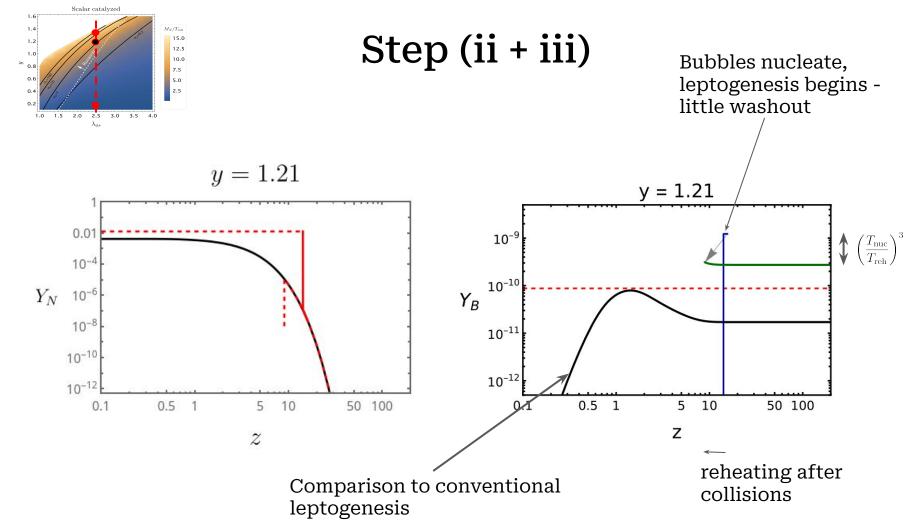
Steps to evaluate final asymmetry

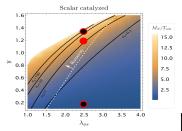
(i) For given Lagrangian parameters evaluate phase transition dynamics

Bubble-wall velocity, penetration rate of RHNs, FOPT properties

$$\gamma_w \gg 1$$

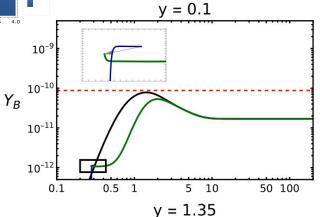
$$\kappa_{\rm pen} \simeq 1$$


$$\kappa_{\mathrm{pen}} \simeq 1 \qquad T_{\mathrm{nuc}}, T_{\mathrm{reh}}, \alpha_n, \beta_{\mathrm{PT}}$$


(ii) Within the bubbles, RHNs decay and generate an asymmetry

Solve the Boltzmann equations including any unavoidable washout channels

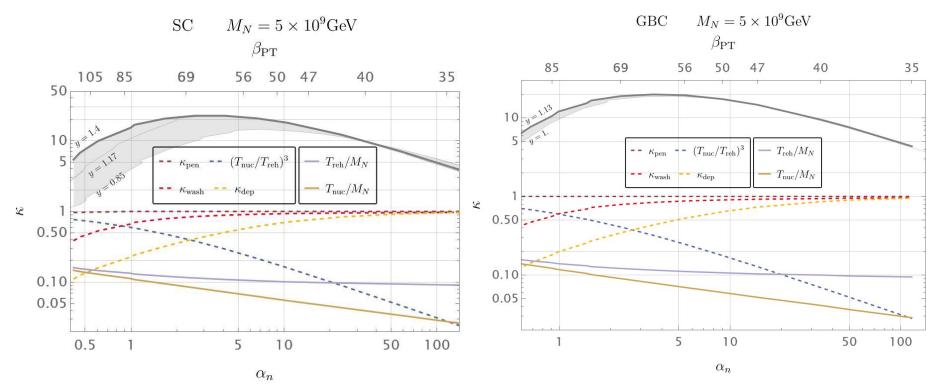
(iii) After bubbles collide the universe reheats, dilution + washout may occur


$$T_{\rm reh} \simeq T_{\rm nuc} \left(1 + \alpha\right)^{1/4}$$

 $\alpha < 1$

Step (ii + iii)

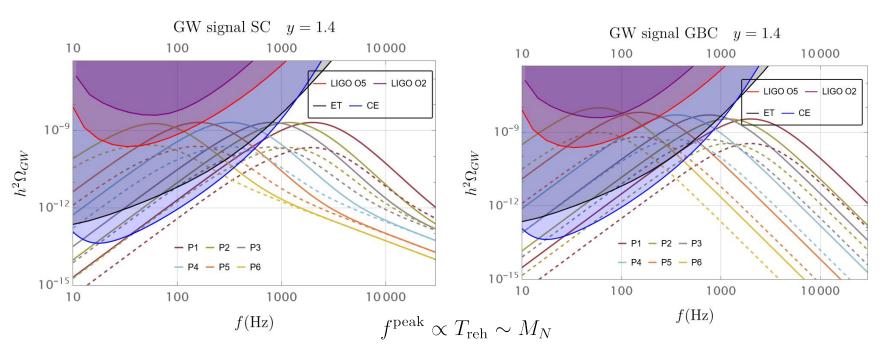
Phase transition too weak, no dilution from reheating but RHNs remain in equilibrium:


$$M_N < T_{\rm nuc}, T_{\rm reh}$$

 $\alpha \gg 1 \qquad Y_B \qquad \begin{array}{c} 10^{-9} \\ 10^{-10} \\ 10^{-11} \\ \\ 0.1 \qquad 0.5 \quad 1 \qquad 5 \quad 10 \qquad 50 \quad 100 \\ \\ Z \end{array}$

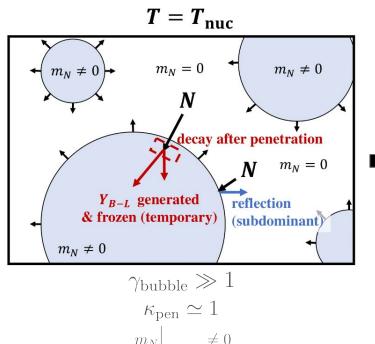
Phase transition too strong, extremely large reheating - final asymmetry is strongly diluted from bubble collisions

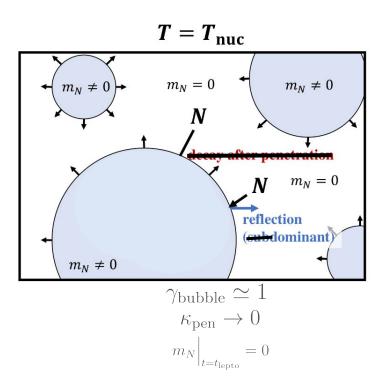
$$\left(\frac{T_{
m nuc}}{T_{
m reh}}\right)^3$$


Results

Significant enhancement in generated asymmetry compared to conventional scenario.

Strong-washout leptogenesis close to the Davidson-Ibarra bound


Gravitational waves


Considered production of GWs *during* the FOPT, e.g. bubble wall collision and sound waves for future GW detectors.

Peak frequency shifts with RHN mass: $P1: M_N = 6 \times 10^9 \text{ GeV} \rightarrow P6: M_N = 10^8 \text{ GeV}_{28}$

Future Explorations - Slow Transitions

Leptogenesis through sudden mass-gain decay.

Squeezed leptogenesis via CPV scatterings?

Conclusions

- Bubble-assisted leptogenesis can allow for a strong departure from thermal equilibrium
 - Conventional washout can be fully suppressed
 - \circ New channels ($NN o \phi\phi$) become relevant
 - Dilution from reheating
 - Can enhance the final asymmetry sizeably (~20) for masses close to DI bound, but not maximally
- Enhancement cannot be arbitrary applied to other (low-scale) leptogenesis models
 - Strong annihilation for smaller masses
 - \circ Enhancement disappears below $M_N \simeq 10^7 \; {
 m GeV}$
- Are there different potentials beyond this toy model which can sizeably change these results?
- Works currently in progress: Is the kinematically inverse regime where RHNs are unable to penetrate barrier -> get squeezed into false-vacuum pockets a viable source of CP asymmetry?

Backup

Setup details

$$\mathcal{L} \supset \frac{1}{2} (Y_N)_{ij} \overline{N_i^c} \Phi N_j + (Y_D)_{\alpha i} \overline{\ell}_{\alpha} H N_i + h.c.$$

Assume a classically scale-invariant potential

$$V^{\mathrm{tree}}(\Phi, \dots) \supset \lambda |\Phi|^4$$

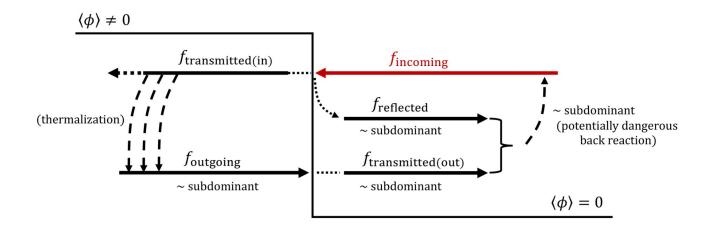
which develops a flat direction at some scale $\,\lambda(\mu_*)=0\,\,\,\,(\langle\Phi\rangle\sim\mu_*)\,$

Scale-invariance radiatively broken, naturally can generate a strong phase transition. Importantly, this predicts a light scalar.

Setup details

RHNs (fermions) destabilise the CW potential and are necessary for leptogenesis Required to introduce new bosons for stability:

Consider two cases:


• Gauged $U(1)_{B-L}$ (GC, Coleman-Weinberg):

$$m_A(\phi) = 2g_{B-L}\phi$$

• Introduce additional singlet scalar (SC, Gildener-Weinberg):

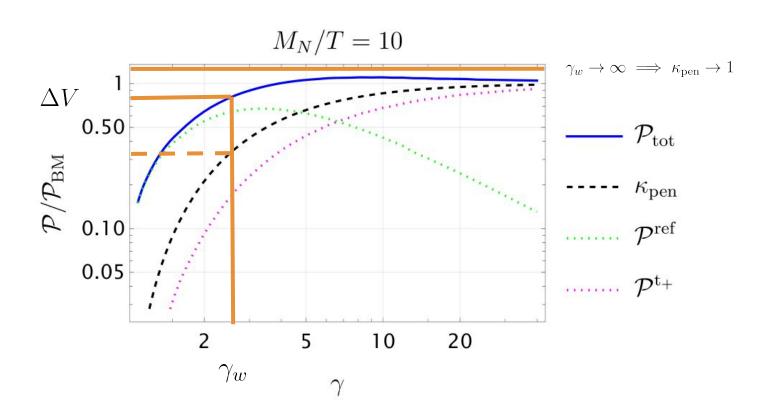
$$\mathcal{L} \supset \frac{1}{2} \lambda_{s\phi} s^2 |\Phi|^2 \qquad m_s^2(\phi) = \lambda_{s\phi} \phi^2$$

RHN Penetration

$$\kappa_{\rm pen} = \frac{\int_{p_z < -M_N} d^3 p \, f_{\rm incoming}}{\int_{p_z < 0} d^3 p \, f_{\rm incoming}} \qquad f_{\rm incoming, bubble frame} \simeq \frac{1}{e^{\gamma (E + v p_z) / T_{\rm nuc}} \pm 1}$$

RHN Penetration

$$\mathcal{P}^{i} = \int \frac{d^{3}p}{(2\pi)^{3}} (\Delta p) f = \int \frac{dp_{z} dp_{\perp} 2\pi p_{\perp}}{(2\pi)^{3}} (\Delta p) f$$


$$(\Delta p)_{\text{reflection}} = 2p_z$$

$$(\Delta p)_{\text{trans,incoming}} = p_z + \sqrt{p_z^2 - M_X^2}$$

$$(\Delta p)_{\rm trans, outgoing} = p_z - \sqrt{p_z^2 - M_X^2}$$

$$\Delta V + \mathcal{P}(v_w) \ge 0$$

RHN Penetration

Washout

$$Y_D = i \frac{\sqrt{2}}{v_{\rm EW}} U^* m_n^{1/2} R^T M^{1/2}$$

$$RR^T = 1$$

$$\kappa_{\text{wash}} \left(K \equiv \frac{\Gamma_{N_1}}{H(M_1)} \right)$$

$$\Gamma_{N_I} = \frac{1}{8\pi} (Y_D^{\dagger} Y_D)_{II} M_{N_I} = \frac{1}{4\pi v_{\text{EW}}^2} M_{N_I}^2 \left(m_{\nu_1} |R_{I1}|^2 + m_{\nu_2} |R_{I2}|^2 + m_{\nu_3} |R_{I3}|^2 \right)$$

Washout

$$Y_D = i \frac{\sqrt{2}}{v_{\rm EW}} U^* m_n^{1/2} R^T M^{1/2}$$

$$RR^T = 1$$

$$\kappa_{\text{wash}}\left(K \equiv \frac{\Gamma_{N_1}}{H(M_1)}\right)$$

$$\Gamma_{N_I} = \frac{1}{8\pi} (Y_D^{\dagger} Y_D)_{II} M_{N_I} = \frac{1}{4\pi v_{\text{EW}}^2} M_{N_I}^2 \left(m_{\nu_1} |R_{I1}|^2 + m_{\nu_2} |R_{I2}|^2 + m_{\nu_3} |R_{I3}|^2 \right)$$

$$\Gamma_{N_1} \sim \frac{2M_1 m_{\nu}}{8\pi v_{\rm EW}^2} \simeq 65 \left(\frac{M_1}{10^9 \text{ GeV}}\right)^2 \text{ GeV}$$

$$(m_{\nu} = m_{\rm atm})$$

Strong/Weak Washout

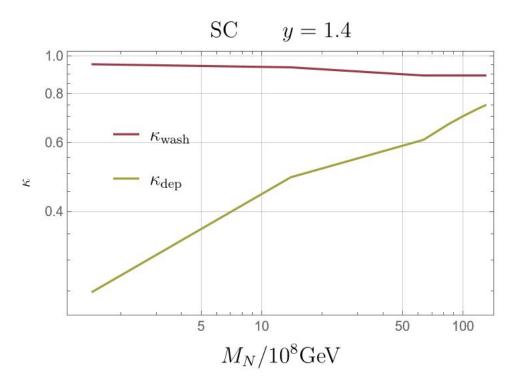
$$Y_D = i \frac{\sqrt{2}}{v_{\text{EW}}} U^* m_n^{1/2} R^T M^{1/2}$$

$$RR^T = 1$$

$$((Y_D)^{\dagger} Y_D)_{IJ} = \frac{2}{v_{\text{EW}}^2} \sqrt{M_{N_I}} \sqrt{M_{N_J}} \sum_k m_{\nu_k} R_{jk} R_{ik}^*$$

$$\Gamma_{N_I} = \frac{1}{8\pi} (Y_D^{\dagger} Y_D)_{II} M_{N_I} = \frac{1}{4\pi v_{\text{EW}}^2} M_{N_I}^2 \left(m_{\nu_1} |R_{I1}|^2 + m_{\nu_2} |R_{I2}|^2 + m_{\nu_3} |R_{I3}|^2 \right)$$

To achieve weak washout in Type-I:

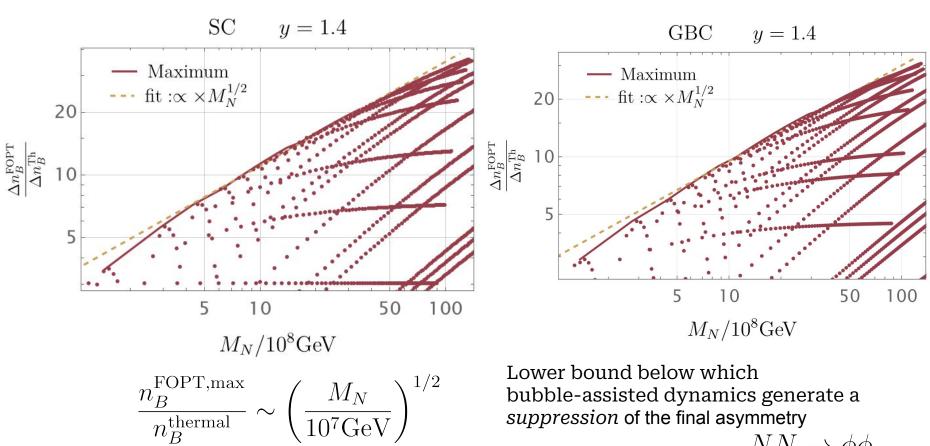

$$R_{I2}, R_{I3} \ll R_{I1}$$
 $m_{\nu_1} \lesssim 10^{-3} \text{ eV}$

GW Benchmarks

	SC			GBC		
	$M_N/10^8 { m GeV}$	$\frac{n_B^{FOPT}}{n_B^{\text{thermal}}}$	α_n	$M_N/10^8 { m GeV}$	$\frac{n_B^{FOPT}}{n_B^{ ext{thermal}}}$	α_n
P1	62	26	4.4	60	22	4.8
P2	34	21	6	37	17	5
P3	26	18	6.	25	15	9
P4	10	12	10	10	10	9.6
P5	4.2	8	25	4	5.6	15
P6	1.4	3.5	25	1.4	2.9	33

$$\Omega_{
m GW}^0 \sim 0.1-0.01$$
 simulation of energy transmission during sound waves

Lower-bound for bubble enhancement



 $M_N/T_{\rm nuc}=5$

$$\Gamma_D \sim y_D^2 M_N \propto M_N^2$$

$$\Gamma_D \sim y_D^2 M_N \propto M_N^2$$
 $\Gamma_{NN \to \phi\phi} = \langle \sigma_{NN \to \phi\phi} v \rangle n_N \sim y^4 \left(\frac{T}{M_N}\right)^4 M_N \propto M_N$

Bounded from below?

bubble-assisted dynamics generate a suppression of the final asymmetry

BE details

$$zHs Y_N'(z) = -\bar{\gamma}_D \left(\frac{Y_N}{Y_N^{(eq)}} - 1\right) - 2\gamma_{NN \to \phi\phi} \left(Y_N^2 - \left(Y_N^{(eq)}\right)^2\right) + [NN \to ff]$$

$$zHs Y_{B-L}'(z) = -\epsilon_{\mathrm{CP}}\bar{\gamma}_D \left(\frac{Y_N}{Y_N^{(eq)}} - 1\right) - \frac{1}{2}(c_L + c_H)\gamma_D \frac{Y_{B-L}}{Y^{(eq)}}$$

$$\bar{\gamma}_D \equiv \sum_I \gamma_D(N_I) = \sum_I n_{N_I}^{\text{(eq)}} \frac{K_I(z)}{K_2(z)} \Gamma_D(N_I)$$

$$\epsilon_{\text{CP}} \, \bar{\gamma}_D \equiv \sum_I \epsilon_I \gamma_D(N_I)$$

$$\gamma_{NN \to \phi\phi} \equiv \frac{1}{9} s^2 \sum_I \langle \sigma v \rangle_{N_I N_I \to \phi\phi}$$

Temperature (GeV)
$$c_l$$
 c_H $c_H + c_L$

$$10^{11-12}$$
 $\frac{6}{35}$ $\frac{95}{460}$ ~ 0.38

$$10^{8-11}$$
 $\frac{5}{53}$ $\frac{47}{358}$ ~ 0.22
 $\ll 10^8$ $\frac{7}{79}$ $\frac{8}{79}$ ~ 0.19

BE details

$$n_{N_I}^{(0)}=\kappa_{
m pen}\,rac{2\cdotrac{3}{4}\cdot\zeta(3)}{\pi^2}T_{
m nuc}^3$$
 $z_{
m col}\sim e^{H\Delta t_{
m PT}}z_{
m nuc}\sim 1.1z_{
m nuc}$ Step (ii)

$$Y_N(z_{
m nuc}) = rac{3n_{N_I}^{(0)}}{s(T_{
m nuc})}, \quad Y_{B-L}(z_{
m nuc}) = 0, \quad z_{
m nuc} = rac{M_N}{T_{
m nuc}}$$
 $\tilde{Y}_N \equiv Y_N(z_{
m col}), \quad \tilde{Y}_{B-L} \equiv Y_{B-L}(z_{
m col})$

Step (iii)

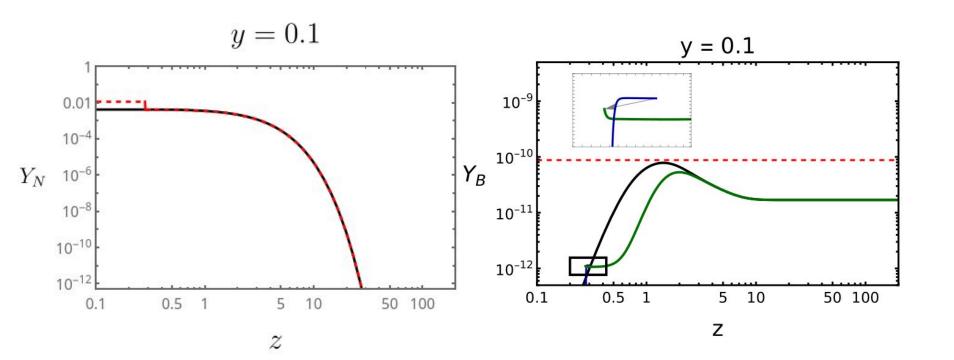
$$Y_N\left(z_{\mathrm{reh}}\right) = \tilde{Y}_N\left(\frac{T_{\mathrm{nuc}}}{T_{\mathrm{reh}}}\right)^3, \quad Y_{B-L}\left(z_{\mathrm{reh}}\right) = \tilde{Y}_{B-L}\left(\frac{T_{\mathrm{nuc}}}{T_{\mathrm{reh}}}\right)^3, \quad z_{\mathrm{reh}} = \frac{M_N}{T_{\mathrm{reh}}}$$

Thermal Potential

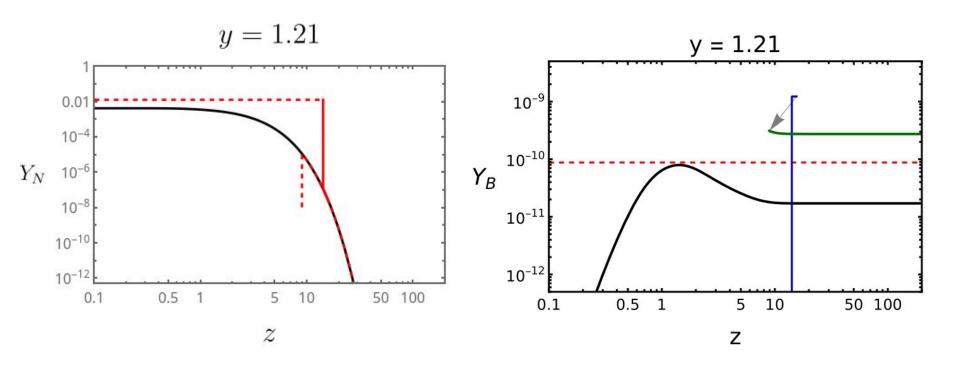
$$V(\phi, T) = V_0(\phi) + \sum_{i} V_{CW}(m_i^2(\phi) + \Pi_i) + \sum_{i} V_T(m_i^2(\phi) + \Pi_i)$$

$$V_{CW}(m_i^2(\phi)) = (-1)^{2s_i} g_i \frac{m_i^4(\phi)}{64\pi^2} \left[\log\left(\frac{m_i^2(\phi)}{\mu^2}\right) - c_i \right]$$

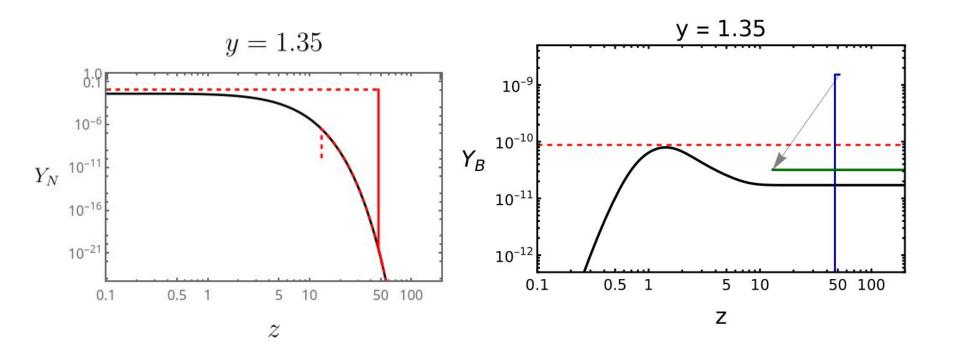
$$V_T(m_i^2(\phi)) = \pm \frac{g_i}{2\pi^2} T^4 J_{\text{B,F}} \left(\frac{m_i^2(\phi)}{T^2} \right), \qquad J_{\text{B,F}}(y^2) = \int_0^\infty dx \ x^2 \log \left[1 \mp \exp\left(-\sqrt{x^2 + y^2} \right) \right],$$


$$(\Delta t)_{\rm PT}^{-1} \sim -\frac{d(S_3/T)}{dt}\bigg|_{T=T^{\rm nuc}} \equiv H_{\rm reh}\beta_{\rm PT}$$
 $\rho(T_{\rm reh}) \simeq \rho(T_{\rm nuc}) + \Delta V$

$$\alpha_n \equiv \frac{\Delta V}{\rho(T_{\rm nuc})}$$


$$\left(\frac{T_{\text{nuc}}}{T_{-1}}\right)^3 \simeq (1+\alpha_n)^{-3/4}$$

$$\Gamma_{\text{nuc.-rate}}(T = T_{\text{nuc}}) = H(T_{\text{nuc}})^4$$


BEs

BEs

BEs

