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Introduction
• Galaxies have observable magnetic fields of Bgalaxy ∼ O(1− 10) µG [Unger et al., 2024]

. Amplification of weak “seed magnetic fields” by the rotating galactic plasma

. But what is the origin of this seed field?

• Evidence for weak galactic fields outside of galaxies (in voids)
. Observed in TeV Blazar data [Neronov et al., 2010]

. Diffuse image caused by magnetic fields between the blazar and observer

. Result: Bvoid ∼ O(10−16) G field with λvoid ∼ 1 Mpc correlation length

. Compare: λvoid ∼ 1021 m −→ Weak field but enormous distances
• Weak and homogeneous fields → Possibly early Universe origin

. A possible explanation is through topological effects [Vachaspati, 1991]

. Despite the absence of stable defects in the SM, unstable structures–called Nambu
dumbbells–may exist [Nambu, 1977]
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Primordial Magnetic Fields
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Correlation functions
• To describe the statistical features of the B(r) field we use correlation functions

. Assuming isotropy and ∇ · B = 0 (defects have decayed)

. Spatial correlation function:

〈Bi(x + r)Bj(r)〉 = MN(r)Pij +ML(r)r̂ir̂j + εijkr̂kMH(r)

. Fourier transform convention:

b(k) =
∫

d3rB(r) exp
(
ik · r

)
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〈Bi(x + r)Bj(r)〉 = MN(r)Pij +ML(r)r̂ir̂j + εijkr̂kMH(r)

. Fourier-space correlation function:

〈bi(k)bj(k′)〉 = (2π)6δ(3)(k− k′)
[EM(k)

4πk2
P(k)
ij + iεijlkl

HM(k)

8πk2

]

. Trace of these → correlation function and power spectrum
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Energy spectrum

. Using the ergodic principle we define the correlation function:

ξ(r) ≡ 〈B(r) · B(x + r)〉 = 1

V

∫
V

d3xB(x) · B(x + r)

. Using V = (2π)3δ(3)(k = 0) we extract the energy spectrum:

EM(k) =
k2〈|b(k)|2〉
(2π)2V

. Relationship between the correlation function and the energy spectrum:

ξ(r) = 1

2

∫ ∞

0
dk EM(k)j0(kr) ←→ EM(k) =

k2

π

∫ ∞

0
dr r2ξ(r)j0(kr)
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Magnetic fields from
EWPT
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EWPT and the Scalar Field
• After EWPT the scalar field Φ(r) ≡ vΦ̃(r) is on its vacuum manifold:

|Φ̃|2 = φ̃2
1 + φ̃2

2 + φ̃2
3 + φ̃2

4
!
= 1 −→ Φ̃ ∼ S3

• Side note: topological defects require non-trivial homotopy classes, however

π0(S3) = π1(S3) = π2(S3) = 0 −→ No topological defects!

• Hopf-parametrization of the scalar field on S3:

Φ̃ =

(
cosα exp(iβ)
sinα exp(iγ)

)
, where β, γ ∈ [0, 2π] and 2u ≡ cos(2α) ∈ [−1, 1]

• Hopf-parameters u, β, γ distributed uniformly at random
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Lattice Setup I.
• Idea based on [Vachaspati et al., 2025]
• Cubic lattice of size N3 with lattice spacing δx and L = Nδx = V 1/3

• Choose random Hopf-angles α, β, γ at each lattice site:

Random realization of the scalar field: Φ̃(xijk), where xijk = ix̂ + jŷ + kẑ

• Let 2 sin θw/g → 1 so that A = −iΦ̃†∇Φ̃

• Define the vector potential through the link variable:

Ta(x) ≡ A(x) · (δx â) ' Im
[
Φ̃†(x) · Φ̃(x + δx â)

]
≡ x x+ aδx

• Important step: Periodic boundary condition when defining link variables!
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Lattice Setup II.
• Magnetic field defined via the loop integral:

B(xp)δx2 = p̂
∮
∂p

dl ·A(x)

• On the lattice this reduces to a sum of 4 link variables, e.g.:

Bx(xp
i,j,k)δx

2 =

(i,j,k) (i,j+1,k)

(i,j+1,k+1)(i,j,k+1)

xpi,j,k

= Ty(xi,j,k) + Tz(xi,j+1,k) + T−y(xi,j+1,k+1) + T−z(xi,j,k+1)
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Visualizing the Lattice

Φ(xi,j,k)
T-x(xi+1,j,k)

x
y

z

Bx

Bz

By
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Basic Simulation Approach

x-space x-space

P
B
C

k-space k-space

0
k1
2k1
5k1
2k12

k/k1

EM(k)
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An analytic approach for
the spectra
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“Simulation on Paper”
• Basic simulation approach: Slow for large lattice size N and very noisy for small k

(large distances)
. Personal problem: cannot run on a laptop due to limited RAM for N & 256

• We can do much better!

. We can exploit the randomness of Φ(xijk) and the law of large numbers
(nr. of lattice points ≫ 1)

. We can also use general results in the mathematics of Fourier transform

• Approach:
1. Find the spatial correlation function → ξ(r)
2. Average over polar angles to get the isotropic correlation function → ξiso(r)
3. Use relationship between power spectrum and correlation function → EM(k)
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Analytic Approach for the Spectrum
• Approach:

. Evaluate the correlation function ξ(r) for the lattice:

ξ(r) = 1

N3

3∑
i=1

∑
x

Bi(x)Bi(x + r) '
3∑

i=1

〈Bi(x)Bi(x + r)〉x

. Using 〈Ta(x)Tb(y)〉 = 0 unless Ta(x) and Tb(y) are the “same” link:
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Analytic Approach – The Correlation Function
• Approach:

. Evaluate the correlation function ξ(r) for the lattice:

ξ(r) = 1

N3

3∑
i=1

∑
x

Bi(x)Bi(x + r) '
3∑

i=1

〈Bi(x)Bi(x + r)〉x

. Using 〈Ta(x)Tb(y)〉 = 0 unless Ta(x) and Tb(y) are the same link, e.g.:

〈Bx(xp
i,j−1,k)Bx(xp

i,j,k)〉 = −〈[Tz(xi,j,k)]
2〉 = −1

4

. Obviously, correlations vanish for r > δx as there will be no shared links:

ξ(r) = 1

δx4

3∑
i=1

(
δr,0 −

1

4

3∑
j=1

δr,±δxêj (1− δij)
)
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Discrete approach I.
• Isotropic limit on the lattice:

. Introduce the set of lattice points that are at a given distance:

P(r) =
{

r
∣∣ |r| = r; r ∈ lattice

}
→ |P(0)| = 1 , |P(δx)| = 6

. We average over the direction-dependence of ξ(r):

ξiso(r) =
3

δx4|P(r)|
(
δr,0 − δr,δx

)
=

3

δx4

(
δr,0 −

1

6
δr,δx

)
. The power spectrum is the DFT of the correlation function:

〈|b(k)|2〉 = V δx3
∑

r
ξ(r) exp(ik · r) = δx2N3

3∑
i=1

[
1− cos

(
kiδx

)]
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Discrete approach I.
• Isotropic limit on the lattice:

. Introduce the set of lattice points that are at a given distance:

P(r) =
{

r
∣∣ |r| = r; r ∈ lattice

}
→ |P(0)| = 1 , |P(δx)| = 6

. We neglect the direction-dependence of the 2nd term in ξ(r):

ξiso(r) =
3

δx4|P(r)|
(
δr,0 − δr,δx

)
=

3

δx4

(
δr,0 −

1

6
δr,δx

)
. The power spectrum is the DFT of the correlation function:

〈|b(k)|2〉 = δx2N3
3∑

i=1

[
1−

(
1− k2iL

2

2N2
+O(k4iL4)

)]
=

N

2
δx2(kL)2

[
1 +O

(
(kL)2

)]
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Discrete Approach II.
• The energy spectrum is obtained from the power spectrum:

8π2EM(k)

k4
= δx

[
1 +O

(
(kL)2

)]
→ EM(k) ∝ k4

• More detailed spectrum → generalized coarse-grain algorithms
. Effectively: averaging over n× n sized plaquettes
. Correlations will exist up to larger distances for n2-plaquette averaged fields, e.g.:
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Discrete Approach II.
• The energy spectrum is obtained from the power spectrum:

8π2EM(k)

k4
= δx

[
1 +O

(
(kL)2

)]
→ EM(k) ∝ k4

• More detailed spectrum → generalized coarse-grain algorithms
. Effectively: averaging over n× n sized plaquettes
. Correlations will exist up to larger distances for n2-plaquette averaged fields
. More complicated correlation function and power spectrum...

ξ
(4PA)
iso (r) =

2 · 3
(2δx)4|P(r)|

[
δr,0 + δr,δx − δr,2δx − δr,

√
5δx

]
. Scaling of EM(k) remains the same for small k
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Continuous Approach
• Starting point is the same ξ(r) lattice correlation function:

ξiso(r) =
3

δx4|P(r)|
(
δr,0 − δr,δx

)
. Lattice: |P(r)| counts nr. of neighbors
. Lattice: δr,a Kronecker-delta
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Continuous Approach
• Starting point is the same ξ(r) lattice correlation function:

ξiso(r) =
3

δx4|P(r)|
(
δr,0 − δr,δx

)
→ ξ

(c)
iso (r) =

3

4πr2δx

(
δ(r)− δ(r − δx)

)
. Lattice: |P(r)| counts nr. of neighbors → Continuum: |P(r)| → 4πr2/δx2

. Lattice: δr,a Kronecker-delta → Continuum: δr,a → δx δ(r − a)

• The energy spectrum is the Hänkel transform of ξ(c)iso (r):

EM(k) =
k2

π

∫ ∞

0
dr r2ξ(c)iso (r)j0(kr)

8π2EM(k)

k4
=

6

k2δx

(
1− j0(kδx)

)
→ EM(k) ∝ k4
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Simulation vs Analytic solution
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Continuous fields and
spectra
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Going further: Interpolated Fields
• There remain some issues with the above lattice approach:

. Crudeness of derivatives (link variables)

. Insensitivity for scales below the lattice spacing

. Regularity of the cubic lattice

• We attempt to solve all of these with the following changes:
. Irregular lattice setup
. Continuous interpolation of the lattice field
→ Using “radial basis function (RBF)” interpolation due to irregularity

. Sampling of the continuous field on a dense grid → DFT as before...
→ Technically, direct FT is possible but very slow
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Example Slice of the Continuous Magnetic Field
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Causal correlation functions
• Due to the interpolation −→ nearby lattice sites are not independent
• Need “reasonable” analytic formulae to fit for the correlation function and the

power spectrum

• Important detail: Causal correlation functions [Durrer et al., 2003]

. Mathematics: Provided that ξ(r) = 0 for r > ` then EM(k) ∝ k4 for small k
(actually, exponentially vanishing is enough)

. Our above analytic calculation confirmed this explicitly

. If ξ(r) is exponentially small for large r then so is EM(k) for large k

. Empirical formula for the k4 energy spectrum with an exponential cutoff:

E(k; {ba}, σ) ∝ k4
(
1 +

∑n/2
a=1 bak

2a
)

exp
(
− 2k2

σ2

)
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Admissible Correlation Functions
• What specific form should a causal correlation function take to give E(k) ∝ k4?

C(r) =
nmax∑
n=0

pnr
n exp(−ar2) , with podd = 0

• Energy spectrum → Hänkel transform of C(r): [Fubini’s theorem]

E(k) = 1

π

nmax∑
n=0

pnk
−(n+1)

∫ ∞

0
dq qn+2 exp(−aq2/k2)j0(q)
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n=0

pnk
−(n+1)

∫ ∞

0
dq qn+2 exp(−aq2/k2)j0(q)

U H H U n i v e r s i t ä t H a m b u r g MTTD2025 © Károly Seller 30



Admissible Correlation Functions
• What specific form should a causal correlation function take to give E(k) ∝ k4?

C(r) =
nmax∑
n=0

pnr
n exp(−ar2) , with podd = 0

• Energy spectrum → Hänkel transform of C(r):

E(k) = 1

2π

nmax∑
n=0

pn
k2

amn
Γ(mn) 1F1

(
mn;m0;−

k2

4a

)
, where mn =

3 + n

2
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Admissible Correlation Functions
• What specific form should a causal correlation function take to give E(k) ∝ k4?

C(r) =
nmax∑
n=0

pnr
n exp(−ar2) , with podd = 0

• Energy spectrum → Hänkel transform of C(r) with mn = (3 + n)/2:

E(k) = 1

2π

nmax∑
n=0

pn
Γ(mn)

amn

n/2∑
j=0

(−1)j

(2j + 1)!!

k2(j+1)

(2a)j

(
n/2

j

)
exp

(
− k2

4a

)

• Compare with the empirical formula:

E(k) ∝ k4
(
1 +

n/2∑
a=1

bak
2a
)

exp
(
− 2k2

σ2

)
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Admissible Correlation Functions
• What specific form should a causal correlation function take to give E(k) ∝ k4?

C(r) =
nmax∑
n=0

pnr
n exp(−ar2) , with podd = 0

• Energy spectrum → Hänkel transform of C(r) with mn = (3 + n)/2:

E(k) = 1

2π

nmax∑
n=0

pn
Γ(mn)

amn

n/2∑
j=0

(−1)j

(2j + 1)!!

k2(j+1)

(2a)j

(
n/2

j

)
exp

(
− k2

4a

)
• The k2 term ↔ the j = 0 part of the expression has to cancel:

nmax∑
n=0

pna
−n/2Γ

(3 + n

2

)
= 0
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Spectrum of the Primordial Magnetic Field
• The spatial correlation function and the energy spectrum (normalized to the

spectral peak at k∗):

0.0 0.5 1.0 1.5 2.0 2.5
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.5 1 5 10
10-4

10-3

10-2

10-1

1

10

U H H U n i v e r s i t ä t H a m b u r g MTTD2025 © Károly Seller 35U H H U n i v e r s i t ä t H a m b u r g MTTD2025 © Károly Seller 35



Conclusions and Outlook
• Conclusions:

. We investigated the spectrum of the magnetic field that could be produced around
the time of the EWPT

. We showed that the spectrum may be directly derived without the need of numerical
simulations

. We confirmed that the spectrum is “causal” and that it scales as EM ∝ k4

. We derived a general formula for the isotropic spectra

. We showed that the general formula fits the results of the “continuous” simulations
• Outlook:

. The spectrum is evolved using MHD equations to compare to the magnetic field
strength of O(10−16) G at λ = 1 Mpc scales

. This simulation does not generate helical fields thus the obtained fields today are too
weak

. Introduce parity violation initially and get a non-zero helicity spectrum
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