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...but the larger the
separation of scales,
the more unnaturally
fine-tuned the
underlying theory is!

The Higgs’ naturalness
problem is even more
perplexing in the absence
of new physics atthe LHC.

Our Michelson-Morley
moment?

Tevong You



Whynd [naturalnessl? Tevong You

* Until now, there had been a clear roadmap
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The Higgs’ naturalness
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of new physics atthe LHC.
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Why EFT and naturalness?

SM EFT is the framework for a separation of scales decoupling heavy new physics and the SM:

SMEXIT
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Effective Field Theory
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[ 1960s point of view: renormalisability of a finite number of parameters is essential }

Modern point of view: our QFTs are really EFTs - include all operators allowed by symmetries

Symmetries dictate EFT structure and natural expectations for sizes of coefficients
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Modern point of view: our QFTs are really EFTs - include all operators allowed by symmetries

Symmetries dictate EFT structure and natural expectations for sizes of coefficients
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Effective Field Theory
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1960s point of view: renormalisability of a finite number of parameters is essential

L Modern point of view: our QFTs are really EFTs - include all operators allowed by symmetries }

Symmetries dictate EFT structure and natural expectations for sizes of coefficients
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SM EFT coefficients are a
map of the uncharted
BSM territory to explore!
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Effective Field Theory
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1960s point of view: renormalisability of a finite number of parameters is essential

Modern point of view: our QFTs are really EFTs - include all operators allowed by symmetries

Symmetries dictate EFT structure and natural expectations for sizes of coefficients
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Naturalness violation?
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Naturalness is still a fundamental problem

* Why is unnatural fine-tuning such a big deal? An intuitive picture:

Larger distances

Physical theories govern a
huge range of phenomena
across vast scales

Smaller
distances
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Naturalness is still a fundamental problem

* Why is unnatural fine-tuning such a big deal? An intuitive picture:

Everything does not depend Larger distances

on everything else equally.

(Otherwise, we would need a

Theory of Everything to
calculate anything) Smaller ’

distances
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Naturalness is still a fundamental problem

* Why is unnatural fine-tuning such a big deal? An intuitive picture:

Effective theory at each
energy scale E is predictive
as a self-contained theory at

that scale

Strong / weak
interactions,
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£
Planetary
dynamics,
thermodynamics,
fluid dynamics, ...
Chemistry,

atomic physics,
nuclear physics,

In all theories so far, no
contributions from smaller
scales compete with
similar magnitude to
effects on larger scales



Naturalness is still a fundamental problem

* Why is unnatural fine-tuning such a big deal? An intuitive picture:

Effective theory at each
energy scale E is predictive
as a self-contained theory at

that scale
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Unnatural Higgs means the next
layer is no longer predictive
without including contributions
from much smaller scales
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* Why is unnatural fine-tuning such a big deal? An intuitive picture:

[- Indicates an unprecedented breakdown of the effective theory structure of nature J
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Naturalness is still a fundamental problem

* Why is unnatural fine-tuning such a big deal? An intuitive picture:

* Indicates an unprecedented breakdown of the effective theory structure of nature

'3

Effective theory at each
energy scale E is predictive
as a self-contained theory at

that scale

Unnatural Higgs means the next
layer is no longer predictive
without including contributions
from much smaller scales

[- Future colliders are essential for finding out experimentally what nature actually does at higher energies ]




FCC-ee

There is a misconception that FCC-hh is the really exciting frontier of high energy exploration while FCC-ee
is relatively boring.

Nothing could be further from the truth — even if indirect, FCC-ee is exquisitely sensitive to an extremely
wide variety of generic new physics at high energy scales far beyond the LHC.

Tera-Z statistics on the Z pole is a vital part of this programme of quantum exploration.

Tevong You
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Why Tera-2?

Quantum exploration of the O(10) TeV scale.

Even for TeV-scale new physics coupling only to third generation!

Figure 1. Next-to-leading log running of four-quark operators into Crp.

Naturalness a major motivation for fully exploring 3 gen @ TeV.

See also0 2407.09593 Stefanek
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Why Tera-2?

Quantum loops probe physics not typically thought to be constrained at Z pole, now accessible by ultra-high
electroweak precision.
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o) e > 28 (W Rough NLO/LO improvement factor:
wv-gl W ANLO/LO _ | Nz > 1
a) hV'V couplings (b) Z-pole oblique params. Z/ZH - 1671_2 EZH NZH ~J

:: Ny ~ 1012 Nzyg ~ 108 €z~ 1071  ezpg ~ 1,

(b) aTGC (¢) NLO Z-pole oblique params.

aSNacS

Accuracy complements energy: On-Z-pole precision at NLO has comparable and complementary sensitivity
to LO above-pole measurements!

2412.14241 Maura, Stefanek, TY
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Why Tera-2?

Quantum loops probe physics not typically thought to be constrained at Z pole, now accessible by ultra-high
electroweak precision.
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Why Tera-2?

Quantum loops probe physics not typically thought to be constrained at Z pole, now accessible by ultra-high
electroweak precision.
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Why Tera-2?

Quantum loops probe physics not typically thought to be constrained at Z pole, now accessible by ultra-high
electroweak precision.
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(b) ete™ — ZH (e) Z-pole oblique params.
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h,VV couplings (b) Z-pole oblique params. Z/ZH 1671-2 EZH NZH

:: Ny ~ 1012 Nzyg ~ 108 €z~ 1071  ezpg ~ 1,

(b) aTGC (¢) NLO Z-pole oblique params.

aSNacS

Accuracy complements energy: On-Z-pole precision at NLO has comparable and complementary sensitivity
to LO above-pole measurements!

2412.14241 Maura, Stefanek, TY
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Why Tera-2?

Tera-Z statistics probes physics not typically thought to best be constrained at Z pole

006,,,], 10F ”I""l"""'l"””l””d
L [] Off-pole - ]
I On-pole r
004 _ Combined _ I
: o
0.02F / R :
= [ s O;
& 0.00f ) 1S Y
—0.02_- G _5'_
._ _ ) [ ] Off—pole
-0.04 L L On-pole
-10+ Combined
—0.06'l““l""l““l“"l' -lllIJ_LIII'IIlllllllllllllllll.
-0.10 -0.05 0.00 0.05 0.10 -03 -02 -0.1 00 01 0.2 0.3
2412.14241 Maura, Stefanek, TY
SHw Cuo

Accuracy complements energy: On-Z-pole precision at NLO has comparable and complementary sensitivity
to LO above-pole measurements!
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2412.14241 Maura, Stefanek, TY

4f operator projections from

2411.02485 Greljo, Tiblom, Valenti



mw‘r‘f Tevong You

Tm Why Tera-Z?

(a) Higgs self-coupling (b) ete” — ZH

Indirect sensitivity to the Higgs self-coupling at NLO benefits from Tera-Z, marginalised over other effects:

2503.13719 Maura, Stefanek, TY
FCC-ee Projected Sensitivity
(See also 2502.20453 Hoeve et al)

) — Single Operator

: —— Bosonic Only

2)gaa x UQL);

e, T

2)° (3rd-gen dom.)

-06 -04 -02 00 02 04 0.6

5!43)\

Note: self-coupling modification correlated with coupling modification; natural upper bound on their ratio,
6,3 /0y < 600. implies electroweak precision generically a better probe than Higgs self-coupling

2209.00666 Durieux, McCullough, Salvioni
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Linear SM extensions at Tera-Z

Simplified models are another way of quantifying the sensitivity of a Tera-Z factory.

e.g. BSM that couple linearly (tree level) to the SM form a finite set:

1711.10391 de Blas, Criado, Perez-Victoria, Santiago
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Tree-level SMEFT structure and current LEP+LHC constraints:

Linear SM extensions at Tera-Z

Model ” CHD‘ Ch ‘

1
CrH L

Mass limits (in TeV)

Cho | Cru | Cin | Conr |
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2012.02779 Ellis, Madigan, Mimasu, Sanz, TY
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Linear SM extensions at Tera-Z

One-loop SMEFT structure and Tera-Z constraints: 2412.01759 Gargalionis, Vuong, Quevillon, TY
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Linear SM extensions at Tera-Z

Linear SM extensions extensively probed by Z-pole at Tera-Z — a quantum leap in sensitivity.

“Tera-Z is argued to provide an almost inescapable probe of heavy new physics”
2408.03992 Allwicher, McCullough, Renner

M Universal couplings M Third-gen. only M Flavourless couplings m Universal couplings W Third-gen. only W Flavourless couplings
“tree-level | one-loop (LL RGE) rone-loop 100 Lree-level cone-loop (LL RGE)

95 _ | rmatching L e = :
] 1 | 3 zz 1

| Scalars : 0T ; Vectors
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15 - 1 | 10
| | 8- |
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. | | 2
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Radically new BSM?

Direct exploration by hadron / muon collider

Lir =AM+ A20® +mo® + oW 4 %o + % o) m@( + % 0® 4

E<A

Indirect exploration by e+e-




Radically new BSM?

E<A

— A A20®@ B L oW 806 L B n6) L T | Boe |
Lir + A0 +mOY + O + AO +A2O +A%0 A40

Indirect exploration by e+e- collider

Tevong You

Direct exploration by hadron / muon collider

e.g. Consider future
indirect sensitivity to
UV theory in
dimension-8 SMEFT
operators

Seee.g.

2009.02212 Fuks, Liu, Zhang, Zhou
2009.14298 Ellis, He, Xiao;
2011.03055 Gu, Wang, Zhang;
2308.06226 Davighi, Melville,
Mimasu, TY;

2404.15937 Liu et al.
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Radically new BSM?

b1 b «~  Direct exploration by hadron / muon collider
Zl
LQ
fff_;'v =7 B . >w< )

5 E 1

Matching explicit UV
models populates a
subspace of SMEFT
coefficient space

E<A

— At AZO® B L oW L 506 L B o) L Tom | Boe)|
Lir + A0 +mOY + O + AO +A2O +A.%0 A40

Indirect exploration by e+e- collider




Radically new BSM?

Tevong You

Direct exploration by hadron / muon collider

Liv =7 | Unitarity || Locality Causality

E<A

— At AZO® B L oW L 506 L B o) L Tom | Boe)|
Lir + A0 +mOY + O + AO +A2O +A30 A4O

Indirect exploration by e+e- collider

Positivity bounds forbid
negative signs of dim-8
SMEFT coefficients
assuming only general
fundamental principles
in the UV

/I\/Ieasuring the “wrong” N
sign experimentally would
have truly revolutionary
consequences for the

Kunderlying theory! Y,
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Radically new BSM?

Energy Maynoteven have a

Lagrangian/QFT description Direct exploration by hadron / muon collider

A EUV:?J Unitarity || Locality Causality

Positivity bounds forbid
negative signs of dim-8
SMEFT coefficients
assuming only general
fundamental principles

in the UV
E < A L = A 4 A20@ &k mo® £ oW 4 So6) L 606 L Tom | Bo® | /I\/Ieasuring the “wrong” )
A A2 A3 Al : ;
sign experimentally would
have truly revolutionary
Indirect exploration by e+e- collider consequences for the
Kunderlying theory! Y,

Could potentially be related to hierarchy problem
2308.06226 Davighi, Melville, Mimasu, TY



Conclusion

Sometimes an anomaly in indirect precision measurement = something missing:

Tevong You

Anomaly in orbit of Uranus

Discovery of Neptune

Explained by General
Relativity

(Could have been anticipated by Effective Theory and naturalness!) 1106.1568.0. Wels


https://www.google.co.uk/imgres?imgurl=https%3A%2F%2Fs2.r29static.com%2Fbin%2Fentry%2Fa69%2F720x864%2C85%2F2204602%2Fimage.webp&imgrefurl=https%3A%2F%2Fwww.refinery29.com%2Fen-gb%2F2019%2F06%2F235926%2Fneptune-retrograde-2019-pisces-astrology-meaning-2019&docid=XjlTvNbByi0QaM&tbnid=ZzT6h5tUjaWKQM%3A&vet=10ahUKEwiGvqr47vzmAhXKgVwKHfU8AB8QMwh-KAMwAw..i&w=720&h=864&bih=1278&biw=1530&q=Neptune&ved=0ahUKEwiGvqr47vzmAhXKgVwKHfU8AB8QMwh-KAMwAw&iact=mrc&uact=8
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Conclusion

An unnaturally small cosmological constant and Higgs mass may be indicating that something fundamentally
different is going on at shorter distances that we don‘t understand yet.

FCC-ee can indirectly probe a wide variety of generic new physics at higher energy scales far beyond the
reach of the LHC: quantum exploration of the TeV scale.

Almost all SM particles first appeared indirectly before being discovered directly; same may be true of BSM!
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Concluding Remarks

Future colliders are not just a wild punt for BSM, any more than JWST or LISA is only about breaking ACDM.
Particle physics must be reframed in same way as astro/cosmo: about doing good science.

They are scientific laboratories for doing all kinds of fundamental experiments on small scales - a general-
purpose “particle observatory” for the zeptoscopic world.

The wealth of information they provide about the most fundamental quantum processes we can directly access
experimentally make colliders a unique, irreplaceable, and crucial instrument for the job of fundamental physics:

to better understand our universe.

https://cerncourier.com/a/future-colliders-are-particle-observatories/
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Concluding Remarks

* “What would be the use of such extreme refinement in the science of
measurement? [...] The more important fundamental laws and facts of physical
science have all been discovered, and these are so firmly established that the
possibility of their ever being supplanted in consequence of new discoveries is
exceedingly remote. [...]”

—A. Michelson 1903
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Concluding Remarks

* “What would be the use of such extreme refinement in the science of
measurement? Very briefly and in general terms the answer would be that in
this direction the greater part of all future discovery must lie. The more
important fundamental laws and facts of physical science have all been
discovered, and these are so firmly established that the possibility of their ever
being supplanted in consequence of new discoveries is exceedingly remote.
Nevertheless, it has been found that there are apparent exceptions to most of
these laws, and this is particularly true when the observations are pushed to a
limit, i.e., whenever the circumstances of experiment are such that extreme
cases can be examined.”

—A. Michelson 1903




Effective Field Theory

e.g. QED as an EFT includes Fermi theory (at operator mass dimension 6) and Euler-
Heisenberg (at dimension 8)

TFr — — .
162&?:‘;823"]) L -y "‘Jr R A

e 2 S (T (B TY)

Heisenberg +
(1936)

Euler- é‘g (;‘ __F')"'V)l . giL'FV*FVfF‘ “:7‘1“ L
A N ”
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Effective Field Theory

e.g. QED as an EFT includes Fermi theory (at operator mass dimension 6) and Euler-
Heisenberg (at dimension 8)

TFr — — .
16‘6,:‘_—2'}3"]) L -y "‘Jr LT A

e i(g N N s
veisenberg. + (X—;,F’”}l ' 1: FYFE™

(1936) N+ JA P >

-

[Wilson coefficients generated by UV physics ]
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The Standard Model as an Effective Field Theory

Given particle content, write down all terms allowed by symmetries.

SUB). [ SU@). [ UMy
Q.| 3 2 %
dr | 3 1 3
0 | 3 1 3
L| 1 2 —1
lr | 1 1 —1
6 | 1 2 I

Loy =L+ Lo+ Ln+L,

L. = Qrin*D QL + qriv*Dfqr + Liiv*D5Ly, + lgiv* Dily
1 L 1 @ apins 1 a ajLv

Lo=—BuB” - JWaW™ — G2, G

Ly = (Dy;¢)'(D*¢) — V(¢)

Ly = yaQrdqy + 1Qré°qh + yrLrglp + he.

Up to mass dimension 4, this is what we typically call “The Standard Model”.
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The Standard Model as an Effective Field Theory

Given particle content, write down all terms allowed by symmetries.

SU@3). | SUQ@)L [ Uy
QL 3 2 %
dr | 3 1 3
0 | 3 1 3
Ly | 1 2 —1
IR 1 1 -1
6| 1 2 I

Loy =L+ Lo+ Ln+L,

L. = Qrin*D QL + qriv*Dfqr + Liiv*D5Ly, + lgiv* Dily
1 1 1 o ~
_ = pry = a aury T ra apL _S a apv
Lo=—3BuB" — JWLW™ —(GLG* —0 GG P
Ly = (Dy;¢)'(D*¢) — V(¢)
Ly = deLﬁbe}: + yuQLf,f’CCIE -+ yLEqulR + h.c. ,

“Everything not forbidden is compulsory”

Up to mass dimension 4, this is what we typically call “The Standard Model”.

Tevong You

Strong-CP
problem



The Standard Model as an Effective Field Theory

Given particle content, write down all terms allowed by symmetries - including operators of
mass dimension > 4.

Lot = Lo+ L, +f,h+£[+ RO+ 500 4 00+ F0W J

L., = Qriv*D;Qr + qriv*Dyiqr + Liiv* DL Ly + lgiv* D1y
]' e ]‘ L apLLs a ajv a ajv

Lo =~ BuB"™ = JWLW™ — 1Go,G" 9% a0

Ly = (D) (D*¢) — V(¢)

Ly = yiQrdqy + vuQrod°ay + yrLrdle +he.

“Everything not forbidden is compulsory”

This is the “Standard Model Effective Field Theory” (SMEFT). See e.g. 1706.08945, 2303.16922 for reviews
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The Standard Model as an Effective Field Theory

Given particle content, write down all terms allowed by symmetries - including operators of
mass dimension > 4.

lﬂff Lo+ Lo+ Lp+L [—I— —00 (;20 O(T A O+ J
¥ —|— ELiTMDLLL -+ E_RiT“DRER
- 4
T R R S R

9
dim-6 Co "‘G G'M’ - "‘(( 3
L = /2 ”—“ v t\ T 'Qh)l [;LLQSER _I_ h-c- 1

ng

sk » § Y
Ui = S FT)

This is the “Standard Model Effective Field Theory” (SMEFT). See e.g. 1706.08945, 2303.16922 for reviews



Given particle content, write down all terms allowed by symmetries -
mass dimension > 4.

The Standard Model as an Effective Field Theory

including operators of

EFT

Losy=Lyn+Ly+Ly+L

Cq
[—FOXQ/(({

6.9.

ohim

g e . LE Yyyy
4. termion /\

L
1L

dim-

e %1;—1116,,6”“
)

diea-8 c Y prv
wy - (FF )

‘|‘ .ELE"}"
-G

4w

6 /

y Lrdlr A

o

'E’//,i.«mwﬂj
L G

\
— ~A !

This is the “Standard Model Effective Field Theory” (SMEFT).

See e.g. 1706.08945, 2303.16922 for reviews

Tevong You



The Standard Model as an Effective Field Theory

The SMEFT is the Fermi theory of the 21st century.

Lot = L+ L, +£h+£[+ 206) 4 %o O” \40(8% J

= Quiv*DLQr + qriv"D,lqr + Lriv* Dy Ly + lgiv* Dl
]' L ]‘ /) apers a apuy a ajLv
Lo =~ BuB"™ = JWLW™ — 1Go,G" 9% a0
Ly = (D;¢)'(D*¢) —V(9)
Ly = yaQroqs + yuQré°qr +yrLlrdlr +he.

This does not exclude the possibility of light new physics; just add
Explore heavy BSM physics in this framework those fields in as part of the EFT if desired or discovered.

Non-linear chiral electroweak lagrangian + singlet scalar is a more
general EFT framework (known as HEFT).

Tevong You
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The Standard Model as an Effective Field Theory

EFT is the framework for a separation of scales between heavy new physics and the SM.

- What are the experimental constraints on
the energy scale of new physics, A ?

ENERG Y
/\ - What are the experimental constraints on
their interaction strengths, c; ?
Lyy =7
Cx 5 Cg 6 Cr 7 Cg 8
Loy =L+ Ly+ Ly + L, +IOU+A_20( )+A—30”+A—40( S+
Ly, = Qrin*DiQy + qriv*Diiqr + Liin* Dy Ly + lgiv* Dflg
1 1
- _ = [T ¥ rd} apy
@ Lo=—BuB" — Wi,W
Ly = (Di¢) (D™ ¢) — V()
© @ Ly = yaQrdqn + yuQrd°dp +yrLiglp +he. |

Structure of UV determined through IR precision measurements.
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The Standard Model as an Effective Field Theory

EFT is the framework for a separation of scales between heavy new physics and the SM.

- What are the experimental constraints on

e.g. leptoquarks or Z the energy scale of new physics, A ?

ENRGY
A\ R R , “ - What are the experimental constraints on
L9 their interaction strengths, c; ?
Co ¢7 ~ —
L = Qriv*DiQr + qriv*Diqr + Liiv* DL Ly, + lpin* D[y
1 L ]' a apLLs

@ Lo =~ BuB" — Wi, W

Ly = (Di¢) (D™ ¢) — V()
© @ Ly = yaQréqn + wuQrd’dh + yrLrglr +he.

Structure of UV determined through IR precision measurements.
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Why Colliders?

The ultimate goal of fundamental physics is to go Beyond the Standard Model (BSM).

Particle

BSM combines our experimental, observational, and theoretical knowledge of the Universe.

We are getting closer to the ultimate truth, empirically, though many unanswered problems remain.
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Why Colliders?

Astrophysics and Cosmology probe indirectly some of the highest energies or weakest interactions.
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Why Colliders?

Theoretical consistency can be a fruitful guide for making progress.




Tevong You

Why Colliders?

Particle physics plays a unique role in enabling experimental access to small scales.

Particle

Exploring the fundamental nature of reality at the zeptoscale is a true frontier of the unknown.
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Concluding Remarks

There is value in pushing frontiers — definite questions are answered, and we learn something regardless of the
outcome.

A new generation of improved measurements, analysis techniques, theoretical calculations, data management,
hardware development, cutting-edge engineering, large international collaboration, and popular culture inspiration

can only benefit humanity regardless of our own short-sighted disappointment at lack of BSM.Doing good science
is its own reward.

Maintain a spirit of curiosity to explore the “final frontier”.

https://cerncourier.com/a/future-colliders-are-particle-observatories/
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Naturalness

. . . e.g. 2205.05708 N. Craig - Snowmass review,
Take fine-tuning problems seriously. g R

1307.7879 G. Giudice - Naturalness after LHC
Example 1

1 e?
AE Coulomb — —

471‘80 Te |

(mecz)obs — (mec2)bar6 + AECOulOmb'

Avoiding cancellation between “bare” mass and divergent self-energy in
classical electrodynamics requires new physics around

e?/(dmegmec?®) = 2.8 x 10713 cm
Indeed, the positron and quantum-mechanics appears just before!

)
AE = AEcouiomp + AEpar = —iame& log
Tr

MeCTe




Tevong You

Naturalness
. . . e.g. 2205.05708 N. Craig - Snowmass review,
Take fine-tun Ing prOblemS SerIOUSly' 1307.7879 G. Giudice - Naturalness after LHC
Example 2
: L 3o
Divergence in pion mass: m2i —m2, = 4—/&2
T

Experimentalvalue is m;+ —m7, ~ (35.5MeV)?,

Expect new physics at A~850 MeV to avoid fine-tuned cancellation.

p meson appears at 775 MeV!
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Naturalness

Take fi . bl . L e.g. 2205.05708 N. Craig - Snowmass review,
ake me'tunmg pro ems Serious y 1307.7879 G. Giudice - Naturalness after LHC

Example 3

Divergence in Kaons mass difference in a theory with only up, down, strange:

1
1672

Mg — My =0 my fo2 G4 sin” O cos® O x A2

Avoiding fine-tuned cancellation requires A < 3 GeV.

Gaillard & Lee in 1974 predicted the charm quark mass!
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Naturalness

Take fi t . bl . L e.g. 2205.05708 N. Craig - Snowmass review,
ake tTine- unlng pro ems Serious y 1307.7879 G. Giudice - Naturalness after LHC

Higgs?

Higgs also has a quadratically divergent contribution to its mass

A2
1672

9 3
(—6@;? +-¢°+ 9" + 6)\)

Am2, =
M 9 T4

Avoiding fine-tuned cancellation requires A < 0(100) GeV??

As A is pushed to the TeV scale by null results, tuning is around 10% - 1%.

Note: in the SM the Higgs mass is a parameter to be measured, not calculated. What the quadratic divergence
represents (independently of the choice of renormalisation scheme) is the fine-tuning in an underlying theory in
which we expect the Higgs mass to be calculable.
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Many more open questions

The Standard Model is arbitrary, unnatural, incomplete, and inconsistent.

* Arbitrary:

Higgs potential, yukawa couplings, flavour structure, quantized hypercharges, matter-
antimatter asymmetry — arbitrary parameters put in by hand.

e Unnatural:

Higgs mass, cosmological constant, strong-CP problem - fine-tuned cancellations
between independent contributions.
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Many more open questions

The Standard Model is arbitrary, unnatural, incomplete, and inconsistent.

* Incomplete:

Experimental & observational evidence: dark matter, neutrino mass.

* |nconsistent:

Theoretical evidence: quantum gravity, black hole information paradox.
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A Higgs factory can answer definitive questions

e.g. Nature of the electroweak phase transition: first order?

Real Scalar Singlet Model

B i ———
|
current

=
Rs 0.100
Sy HL-LHC
N
N
S
= 0.010
(@)}
£
a FCC-ee
3 0.001 e

n ‘'
& O O
N gy
N - iy
F o -4 . =3

I s oo S S o g w g ow o @ s e = ool FCC CDRVol. 1
0.5 1.0 1.5 2.0 2.5

hhh coupling: Az/Az sm

Potential gravitational wave signal in range accessible by LISA



A Higgs factory can answer definitive questions

e.g. Does the Higgs boson give any other particles most of their mass?

Singlet (Q =Y =1)

% (HL-LHC)
Ky (HL-LHC + FCC-ee)
Unitarity
200 400 600 800 1000 1200
M [GeV]

0.0

Neutral Singlet

‘d“ﬁ’]bjzf)r/r
250 500 750 1000
M [GeV]

1.0

0.8

f 0.6

0.4

0.2

0.0
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2110.02967 Banta, Cohen, Craig, Lu, Sutherland
2409.18177 Crawford, Sutherland

250

750

500
M [GeV]

1000

* Mass fraction f > 0.5 obtained from Higgs can be almost entirely excluded.

1.0

3
\ \
\
0.8 %
](' 0-6- “\:‘\\ .
’ \\ E:).‘ \d.‘
N e
0.4 N AT
o,
(.).2_ \‘h(j‘-"‘lq ::_I”Q‘v::::
0.0——: : - '
250 500 750 1000
M [GeV]
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A Higgs factory can answer definitive questions

e.g. What is the vacuum instability scale in the SM?

. ‘ ‘ ' ‘ ' ‘ ' ‘ ' ‘ ' Snowmass 2021
0.02 —' Amy, = 20 (Present) Dunsky, Harigaya, Hall
h Amy, Aag(myg) = 20 (Present)
- § ] See also e.g. 2203.17197
0 01 ..... Amh,Aas(mz), amg =20 (Prebent) i Franceschini, Strumia, Wulzer
el Amy,, Aag(my), Am, = 20 (Future) ~
A 0
—0.01 —
—0-02 ‘_ 1 I L1l 1 L 11 ||\| L L1l 1 1 \\\||.||‘.-~h\-.:.\-.\-|-|7---'|'| ll\|\|| | I 111l | T
10° 101° 102 101 10

Uncertainty can be reduced from 0(10°) down to a factor of ~2! Potential implications for BSM.


https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF8_TF5-EF3_EF5-NF3_NF0-RF4_RF0-CF1_CF3-012.pdf
https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF8_TF5-EF3_EF5-NF3_NF0-RF4_RF0-CF1_CF3-012.pdf
https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF8_TF5-EF3_EF5-NF3_NF0-RF4_RF0-CF1_CF3-012.pdf
https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF8_TF5-EF3_EF5-NF3_NF0-RF4_RF0-CF1_CF3-012.pdf
https://www.snowmass21.org/docs/files/summaries/TF/SNOWMASS21-TF8_TF5-EF3_EF5-NF3_NF0-RF4_RF0-CF1_CF3-012.pdf
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A Higgs factory can answer definitive questions

e.g. Is the Higgs mass due to cosmological self-organised criticality?  1907.07693Khouryetal,
2105.08617 Giudice, McCullough, TY

2108.09315 Khoury, Steingasser

Axion-Higgs criticality

0.20 e
= 10°
=l 10_1
0.15 |
— 10_3
& CD B
SD = 0.10 o
1105
| 11076
0.05 - _ o
- WSigaZ(sat) | 10-8
0,00 b ] g 2412.03542 Detering, TY
’ 10 20 n )

Ms in GeV

Vacuum instability scale sets Higgs mass upper bound, must be lowered by light BSM particles.

Finite parameter space comprehensively probed by Higgs factory and Tera-Z.
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Concluding Remarks

Sharpen our picture of the Universe, e.g. before and after Planck.

LE FIGARO-fr




Concluding Remarks

Sharpen our picture of the Universe, e.g. before and after LEP.

magnified by
a factor 65

Guy Wilkinson slide

-0.032
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Dmt= 178.0 + 4.3 GeV
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68% CL

0502 -0501 -05

Aai



Tevong You

Concluding Remarks

Sharpen our picture of the Universe, e.g. before and after FCC-ee / CEPC.

S - |
) - .
O) = e
‘E';8O.38 — 0
80.37+ .". :
80.36}+—
80.35— —— FCC-ee (Z pole)
= — FCC-ee (Direct)
- P < 0 o [T LT LHC (Future)
80.34 o2 A e = LHC (Now)
: Z pole (now)EPS + m,
= Standard Model
80.33 : ] 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1 | 1 1 1
170 172 174 176 178

Mo (GeV)
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