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The precision era of v oscillations

e In the next 5-10 years new ot B '3
experiments will collect ~100 o\ S%rNogmlm

@g—q—_q

times more data

e Results will not be dominated by

Statistical uncertainties

IO Hyper-Kamiokande
e Challenge of theory efforts is to pace
up, reduce systematic uncertainty

e Major source of systematic error

is modeling of nuclear effects Current systematic uncertainties

e [ will discuss improved implementation of Sretvite | T2K |
nuclear effects in NuWro MC generator
using spectral function framework Cross-sec A ‘ ~3.5%
total syst. ~5% ~3.5%

S Dolan, NuFact 2024

https://github.com/NuWro



https://indico.fnal.gov/event/63406/contributions/297162/
https://github.com/NuWro
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Accelerator neutrino experiments
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Accelerator neutrino experiments

Particle Accelerator

e Neutrinos are usually NOT produced at fixed energies
e Various complex interaction mechanisms happen

e Precise determination of o(E) 1s crucial to extract v
oscillation parameters




Nuclear mechanisms

CCQE CCRES CCDIS

(Quasi-elastic Scattering) (Resonant Meson Production) (Deep Inelastic Scattering)
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Increasing Energy Transfer

e Various nuclear effects need to be modelled accurately to correctly predict the final state

Free nucleon Initial state Multinucleon Final state
cross-section modeling interaction interaction

Charge Exchange
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Impulse approximation

e Inthe 1 GeV region nuclear effects are typically
treated in the impulse approximation (IA)

e Neutrinos interact with individual bound nucleons
e Valid when momentum transfer is high enough

e Within IA one needs a joint probability
distribution of momenta and removal energies of
target nucleons

e In A any neutrino-nucleus interaction is viewed in
factorization scheme as a two-step process: a
primary interaction is followed by final state
interactions (FSI) - before leaving nucleus hadrons
undergo re-interactions




Fermi gas model : results of electron-Carbon scattering

e All nucleons move freely inside the nucleus up to a common momentum cutoff (the Fermi
momentum), with a uniform distribution in momentum space and a fixed average binding

energy.
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Nuclear shell model

Leuschner et al., PRC 49. 955 (1994)

e In a spherically symmetric potential,
the eigenstates can be labeled using
the total angular momentum

1p1/2 -1 -12.1 MeV
Ips3/2 T -18.4 MeV
Ls1/2 . -42.5 MeV

Example : Oxygen nucleus


https://journals.aps.org/prc/abstract/10.1103/PhysRevC.49.955

Nuclear shell model is not enough!

Nucl. Phys. A553 (1993) 297¢
e In a spherically symmetric potential, NIKHEF
the eigenstates can be labeled using
the total angular momentum .
Mean Field Theory
e ~ 20-30% depletion of the shell-model
states observed. Main source of depletion
of the deeply bound shell-model states are #@ + #
short-range NN correlations (SRC) '
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Benhar&Pandharipande, RMP 65. 817 (1993)



https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.65.817

Spectral function framework

e Nucleon spectral function P(p, E) describes the probability distribution of removing a nucleon
of momentum p from the target nucleus, leaving the residual system with excitation energy £ — E,,

e Fundamental property of nucleus, independent of interaction
P(p, E) = P\irp(®: E) + Peorrelation (? E)

e Mean field part describes shell structure. Can be
determined from experimental data. 70-80% contribution

e (orrelated part describes correlated high energetic
nucleons. Easier to determine from theoretical calculation




JLab Spectral function of Argon and Titanium

Extracted for
e Beam energy 2.222 GeV

o (0<p<300MeV for Ar

o [2<E<80MeV

(b)

Fermi gas
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Phys. Rev. D105, 112002
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Understanding neutrino-Argon interactions is of
particular interest

DUNE, MicroBooNE, SBND, ICARUS use
liquid Argon as neutrino detector

Argon : easy 1onisation, high electron lifetime,
dense and very cheap - $2/L ($3000/L for Xe,

$500/L for Ne) &


https://journals.aps.org/prd/abstract/10.1103/PhysRevD.105.112002

Short range NN correlations

e (Correlated spectral function is expressed as
a convolution integral

Peorr(p, E) = /d3h5(E S S
XTgm ([P + A (I75—1)

rel

e (orrelated nucleon added to the primary vertex,
if struck nucleon belongs to corr. contribution
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e We assume correlated pair’s dynamics to be largely 04

decoupled from residual system

e Relative and centre-of-mass motion of the pair generates complex dynamics
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Coulomb distortion

Alter momenta of charged particles
Introduce focusing of wave functions

E—EY =E+V
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v-Ar, Ey = 0.2 GeV

w/ distortion

R Dharmapal Banerjee et. al. - Phys. Rev. D 109, 073004



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.109.073004

Final state interactions

e FSI is implemented using convolution scheme

dngSI d2UPWIA
= P st I Yl N
dewd$) // W falw =) =g

e FSI modifies struck nucleon’s energy spectrum using
real part of the optical potential

folw—=w") = fylw—uw —Uy)
e Folding function describes broadening of cross-section
fa(w) = 0(w) /T + Fq(w)(1 = /Ty

e Smears inclusive cross sections, affects energy
conservation and kinematics of lepton

Garino et al. #

Dutta et al. <

O’Neill et al. =

Rohe et al. =

Garrow et al. o

Bhetuwal et al. -
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Final state interactions

e Events are categorised into two parts

fa(@) = 8(W)V/Ta + Fo(w)(1 — v/Ta)

Passes through Initiates at least
nuclear medium one intranuclear
undisturbed collision

Pion production

e Intranuclear cascade modifies strength and opens new interaction channels

Credit : T Golan
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Monte Carlo event generators
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e Monte Carlo generators connect experiment (what we see) and theory (what we think we should see)
e Any neutrino analysis relies on MC generators
e Integrations of cross sections, and event generation using acceptance and rejection techniques

e Accurate MC simulations required to better understand neutrino interactions



NuWro blackbox

Local
Fermi gas

Global
Fermi gas

Spectral

function

SR Ty
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Developed by ~ 15 people since
2004

Written in C++, output is a ROOT
file with easy to analyse event

Covers energy from ~100 MeV to
~100 GeV

Used in various experiments
worldwide

https://github.com/NuWro/nuwro

Latest released version :
NuWro 25.03.2



https://github.com/NuWro/nuwro
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Results from electron scattering : What NuWro predicts

e [t is good practice to test models with electron scattering data first. Electron beam is mono-energetic
with less systematic uncertainties and larger cross-sections

e NuWro provides prediction only for Quasielastic channel (eWro)

620 MeV, 36.0° 7 961 MeV, 37.5° 1299 MeV, 37.5°
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MicroBooNE exclusive cross-sections

CC2pin

e Exactly 2 protons with momentum
(0.3, 1.0) GeV/c

e | muon with momentum (0.1, 1.2) GeV/c
e No neutral pions. Any number of neutrons

e No charged pion over 70 MeV/c momentum
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CClpOn

Exactly 1 proton with momentum
(0.3, 1.0) GeV/c

1 muon with momentum (0.1, 1.2) GeV/c
No neutral pions. Any number of neutrons

No charged pion over 70 MeV/c momentum
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MicroBooNE CC2p0n cross-sections : What NuWro predicts
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- [ Single pion production
3 - [l Meson exchange currents
— [ Quasielastic, nontransparent
- [ Quasielastic, transparent
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MicroBooNE CClp0n cross-sections : What NuWro predicts

—w/FSI  y*/d.o.f.=1.69
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I am at the end of my talk!

e Recently in the SF approach in NuWro, we implement (work in progress) a consistent treatment of
multinucleon final states in QE scattering and other low energy corrections

e For Argon, we implement improved description of short range NN correlations

e Accurate description of nuclear effects is crucial for extracting neutrino oscillation parameters
® Plenty of new experimental data coming soon from existing program

® Exciting time to ‘strongly’ interact with neutrinos!


https://arxiv.org/abs/2508.10101

Thank you for your attention
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Short range NN correlations

e C(Correlated spectral function is expressed as a convolution integral

Pcorr(p, E) = /d3h(5<E x EthI' TA 1 npn (‘p ‘|— h’) rel(‘ )
2-nucleon
threshold e v Relative momentum

CNCiEhi energy of CoM momentum

AT p and h are initial ~ distribution of pair
(A-1) system distribution of pair

momenta of the
struck and
correlated nucleon



Short range NN correlations

e C(Correlated spectral function is expressed as a convolution integral

Feorr(p, E) :/d3h5<E_Ethr Ta-1) npn<‘p+h’) rel(‘ )

e center-of-mass momentum distribution of the pair is

N (DS —== /1 (a;m>3/2 exp(—Oécmp2>

e relative momentum distribution of the pair is
CA

(D= e (A1 exp(—a1p?) + Ay exp(—azp?)]



Missing energy and missing momentum

E.+My=E+E +E;

AT

known

S VR

— —

ke +0=F + 9 + Pa_s

In general, Without final state interactions,

—

B = \/(MA ~M+E?+py, —Pai1=p

is the initial proton momentum



Missing energy and missing momentum

BV e .

P

known

e

ke +F= K.+ p

For negligible recoil energy, Without final state interactions,

—

EY% ,=My—M+E —PA-1 =P

is the initial proton momentum



