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Introduction

1S Semi-inclusive DIS

I(k) + H(P) — I(K}) + X I(ki) + H(P) = I(kj) + H'(Pu) + X’

@ [n addition to the scattered lepton one
of the final-state hadron is also
detected, by applying an extra
constraint on the phase space of

@ Only the scattered lepton is detected,
while the remnants of the shattered
nucleon are summed over.

@ Depends on parton distribution tagged hadron.

functi PDF) of the i i

unction ( ) of the incoming @ Depends on parton distribution

hadron. . . .
dunction (PDF) of the incoming

e e hadron and parton fragmentation

function (FF) of the final state
hadron.
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@ QCD Analysis of Unpolarized and Polarized Lambda - Baryon Production in Leading and Next-to-Leading Order
de Florian, Stratmann and Vogelsang, arxiv:9711387

@ Soft-Gluon Resummation for the Fragmentation of Light and Heavy Quarks at Large x
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@ Next to leading order evolution of SIDIS processes in the forward region
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Threshold resummation for polarized (semi-)inclusive deep inelastic scattering
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Motivation

Semi-inclusive Deep Inelastic Scattering (SIDIS) helps to study

hadron structure and hadron fragmentation phenomena.

@ With increase in experimental precision, one demands precise
calculation from theoretical side as well.

o Fixed order results are sensitive to theoretical uncertainty which are

coming from renormalisation scale dependence and factorisation scale

dependence.

We calculated NNLO corrections in QCD as well as QED for polarized

and unpolarized scattering using the Feynman diagrammatic

approach.

Better constraints on FFs and (pol)PDFs with full flavour
decomposition and precise mesurements at upcoming EIC.

Saurav Goyal (IMSc) MTTD 2025 September 18, 2025 5/33



Hadronic Cross section

Differential Hadronic cross section for
e~ (ki) + H(P) — e (k) + H'(Py) + X" is written as,

d30.-y 27Tyae
LM (kg ki, q) W, P,P
dXdde Q4 ( 1, K, q ) ,u,l/(q7 ) H)

where, Leptonic Tensor is
L = 2kl k" + 2k kY — Q%M — 20t A qys)

Hadronic tensor can be parametrized in terms of structure functions,

] oelile )l - 500)

l/

Wﬂl/ — F1|: guu +

i i
+F / g, Pyl + &1 i g, S\ + & d "7 (SA_LP>
Pq 7 Pq 7 Pq 7 P
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Hadronic Cross section

Cross section is parametrized through structure functions,

. /s
® Unpolarized SIDIS: do = %ZS/,S,SI/,SH da:,SH,
d30' _ 47T04§ F. ( Q2) + MF ( 02) (1)
dXdde B Q2 yrilx, z, Y 5(x, z,
o Longitudinally polarized SIDIS:
/,S /75
dAo = %ZS/,SH (da;’:;ﬁ:% — da;’:%’isz_%),
d*Ac 47701%
= 2 _ 2 2
dxdydz Q2 ( Y)gl(XJ,Q ) (2)
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Structure functions

Fi(g1) are Lorentz invariants which cannot be calculated in perturbation
theory. We'll use Parton model to calculate them.
In parton model, we express F; and g7 as,

1 1
i dx dz
(g)Fi=x"" E / X*ll(A)fa(Xl,lﬁf)/ ZTIDb(Zl,M%)
ab U x z

< (B)Ciss (o 2 @), 3)

—, =
X1 Z

e (A)fydxy: The probability of finding a parton of type ‘a’" which carries
a momentum fraction x; of the parent hadron H.

@ Dpdzi: The probability that a parton of type ‘b’ will fragment into
hadron H" which carries a momentum fraction z; of the parton.

@ (A)Cj ap are the finite coefficient functions (CFs) that can be
computed perturbatively, it is related to partonic cross section.
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Coefficient functions, QCDXRQED

We are interested in series expansion of the CFs in strong coupling
constant (as) and electromagnetic coupling (ae),

(B)Ciap = (A)C)
+ as (A)C, \ab ‘|’ Qe (A) :ab
+a2 (B)CED + a2 (A)CED + asae (A)CT,)
+0 (aat |,.+k23) . (4)
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Coefficient functions

Computation of CFs starts from the parton level cross section denoted by
(A)6i 2, Which is defined as,

d3(A)6',' ab (A)'P-}W 2 z Pa* Pb
20— L PSx/.p X|(A)M - - ==
dxdydz 4 /d SX'+b }( ) 3b|/w 5(21 Pa-q )

here, (A)P!"” are the projectors to project out CFs and |[(A)M,p|? is the
squared amplitude for the process a(p,) +v*(q) — “b"(pp) + X'.

v 1 v v
P :(D—2)(T{A +2xT2“)
P = (T oD - 1)T4Y)
2 (D— 2)X1 1 2
o APHY ! “yg)\qcr A
P =A== 50 -3)° Pg ()
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Kinematics

Hadronic Kinematics :

P : Initial hadron momenta

k; - Initial e~ momenta

g : Virtual photon momenta
g’ —Q%*<0

Py : Momenta of hadron H’

y: ,’,’—';’,, Fractional energy loss by e~
P.Py

. Q2 : .
X1 apg Bjorken-x, z : Pq

Partonic Kinematics :
pa . parton ‘a’ momenta
pp . Tagged parton momenta ‘b’

. Pa . Py
X1 - P V4 b
r.ox Q@2 /. z _ PaPp
X X1 2p,5.q’ < Z1 Pa-q

ki - Momentum of real radiations

Saurav Goyal (IMSc) MTTD 2025 September 18, 2025 10/33



SIDIS subprocesses: QCD (QED)

LO Y'q—q

1 Loop: (V) v'q —q
NLO g — q+g(7)
7'g(v) > q+79

2 Loop: (VV) v*q = g
1 Loop: (RV) v*q = q+g(v)
NNLO v'q—q+gy)+g)
Y'q—qg+qi+79;
1 Loop: (RV) v'g(y) > q+7q
v'g(y) = a+7q+g(v)

Saurav Goyal (IMSc) MTTD 2025 September 18, 2025

11/33



SIDIS subprocesses: Sample diagrams

Quark initiated:
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Partonic Cross section

Beyond leading order, PCS gets contribution from loop diagrams as well as
real emission diagrams which gives divergent integrals.

@ In the high momentum region, the loop integral gives divergences,
which are removed by renormalization procedure.

@ Due to the presence of massless particles, further two types- soft and

collinear divergences.

o Infrared divergences cancel among virtual and real emission
processes®, except for the collinear divergences related to the a and b
partons in the initial state and the final fragmentation state. These
divergences can be factored out into Altarelli-Parisi (AP) kernels

(mass factorisation) at ug scale,

@ We used Dimension regularization i.e. working in D =4 + € to
regulate the divergences and used MS renormalization scheme.

1 KLN theorem
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Polarized case

In spin-dependent case, 5 and the Levi-Civita tensor appear, which are
intrinsically four dimensinal objects, one need a presciption to define them
in D=4 + ¢. We chose Larin prescription [Larin 93]

@ Replace 75 by

i
Fsa'YS = a Euua/\Pg’YVVUY\ ) (6)

with 9123 = —g0123 — 1,

@ Compute all matrix elements in D dimensions.

@ Evaluate all Feynman loop integrals and phase-space integrals in D
dimensions.

@ Contract the Levi-Civita tensors in D dimensions using:

grarpoe = 41312 67

Emvipror T Vo]

@ To transform to MS scheme, we need to multiply an over all finite
renormalisation constant [Matiounine, Smith, van Neerven '98].
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Computation Details
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Computation Steps:

@ Generation of set of Feynman diagrams using ‘QGRAF’, which gives
partonic level diagrams in symbolic form.

@ Convert the output of QGRAF in ‘FORM’ form to get amplitude for
individual diagrams using in-house codes.

@ Used FORM extensively to do symbolic calculation like Lorentz
contractions, Dirac algebra, handling Gell-Mann matrices.

@ Used FORM for calculation of the (A)C(j k),

To get the cross section we have to perform loop integrations and phase
space integrations (done in D=4 + ¢, dimensional regularisation).

L Qgraf: Nogueira '91 2 FORM: Vermaseren '00; Kuipers, Ueda, Vermaseren, Vollinga '12
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Loop Integrals

Using the fact that the integral of a total derivative vanishes within DR

and the property of scaleless integral, one gets linear Integration-by-parts
(IBP) identities to write Loop integrals in terms of the basis of integrals

called Master Integrals (Mls).

0 I*, pt
[ | oAt <o )
oIt | Di*Dy?...Dg"
Following steps are performed,
@ Choose integral families,

@ Map the loop integrals (large set) onto these integral families by
momentum shifts (‘Reduze?).

@ Reduce these integrals into the Mls, used ‘LiteRed’, which
generates IBP reduction rules.

o SOlVe MIS [Matsuura, Marck, Neerven '89], [Gehrmann, Huber, Maitre '05] .

! Reduze: Manteuffel, Studerus '12 2 LiteRed: Lee '13
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Phase Space Integrals

3-Body Phase Space, p, + g — “pp" + ki + ko,

/Z/ [dPS]3 =

1 - a.
o [ dPki [ dPky [ dPpud(k3)S(K3)S(PE)SP (Pa + a — b — k1 — ka)d(2' — PP
(2m)2b=3 pa-q

To solve the phase space integrals, we'll use Reverse Unitarity method?,
for converting phase space integral into loop integral and performing
reduction to get set of Mls.

1 1

2ri) & (p? — :
(m)é(p)—)pz—i—is p? —ic

(8)

We get total ‘20" Mls in phase space calculation. Results of these Ml's are
not there in literature, so we solved them using different methods.

! Anastasiou, Melnikov, Petriello '03
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Solving RR Mls

We used two approches to solve these Mls:
1) Using brute force method: choosing an appropriate frame (we chose
the k; — ko COM frame)*.
2) Using Differential equation method: setting up a system of DEs by
taking derivative with respect to external parameters, here
{x',Z', Q?}, (“Feynman Trick"). Given a boundry condition, this
system can be solved.

! See talk by A. Rapakoulias
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Differential equation demonstration

Example: 1. We want to solve,

1t _
F(t) = /O log(X;dx (13)

Taking derivative wrt to t, % = fol xtdx = ﬁ Using, F(0) =0, we get
F(t) = log(1 + t).

Example: 2. Family of Integrals:

I(a) = / e X" dx (14)
0

Note we can now take derivative wrt «, we get, —%/n = Ip4+2 we get two
basic integrals (Mls), n = {0,1}.
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Differential equation method

The differential eq. system of 20 MIs is obtain using LiteRed,

g: =Ai(X, 2, e)f
gj = Ay(X, 2, e)f (15)

Since the system is integrable this puts constraint on A;,
Integrability condition:

0A;  0A,

5o B + [A1, As] =0 (16)

Note, by construction /2\1 and Ag are lower triangle matrices.

Saurav Goyal (IMSc) MTTD 2025 September 18, 2025 20/33



Canonical Bases

We change the bases from f — J= T-'f, such that the DEq system

becomes [Henn 13],

%i = Ay(x, 2, e)f . g—){z =e (X, 2)T
Ax(X', 2, e)f 99— e Ay(xX',2')d

Here, A; = (A1T ) Similar of A,. T is found using Libra [Lee 0.

The solution of the system is as follows:

x',z'

JIX', 7€) = Pexp {e/

0:%0

(Ardx] + flgdz{)} J_(x(’,, z,€) (18)
Now, this path ordered exponential can be solved order-by-order in e.

September 18, 2025 20/33
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Path In-Dependence

@ Note, since the left hand side J_(x’,z’,e) is path independent, we can
exploit this fact, eg. if we know boundry of the integral, let say, at
(x},2}) other than (x}, z;), we can fix the constant in J(x}, 2}, €).

e We choose (x{, z5) to be (0,0) and calculated the boundary of Mls in
the k; — ko frame at X’ — 1 and Z/ — 1, keeping terms of the form
(1 — x")(@+D) and (1 — 2')(c<+9) explicitly.

(. 2")

(0,0 ', 0)
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Alphabet

While solving the integrals we encounter following denominators:
X2 (1=X),(1+x),(1-2),(2 —X), (7 +X),
(14+x2),(1-2)+4x'2,(1+x) —4x'2,

Vx' N7, \/(1 —Z')2 +4x'2, \/(l + x')2 — 4x'Z.

We defined! the iterated integrals using these letters, example:

!

z d22 22 d21
G(r,n,7 :/ / 19
(r2,1,2) 0 22\/(1—22)2+4x/22 0 \/(1—21)2—|—4x’21 (19)

After solving the Mls, the results are expressed in iterated integrals, we
cross-checked our results numerically against different methods.

! Bonciani, Degrassi, Vicini '10
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To obtain the finite partonic cross-section
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Cross section Calculation

@ Expanding the results of master integrals up to sufficient order in e.

@ Then substituted them into partonic cross section calculation to
obtain the divergent cross section (in € — 0).

@ To separate the singularities at x’ — 1 or z/ — 1, we use Plus
distribution. For example,

2 i kf; [I"kl(l, 1) x)}+ Double distribution:
- _ flxz)
[ee] dx
:%6(1_x)+Z%Dk(X) / / T T
k=0 / dx/ dz f(x,z) — f((ll_ziilf(_XZ;) +f(1,1)

/01 dx F(x)[g(x)], = /01 ax(F(x) — F(1))8(x)

here, [g(x)]Jr = g(x) for x #1
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Cross section Calculation

@ Pole structure of the cross section is 6% at 1 loop.

@ Collect all the results of subprocesses and do the coupling constant
renormalization at ,uf? scale to get UV finite result.

@ And after adding all the renormalized subprocesses, we observed the
cancellation of %4 }3 at NNLO and 6% at NLO.

@ The left-over pole terms due to initial state and final state collinear
singularities are factorised after mass factorisation procedure at ,u%
scale and absorbed in bare PDFs and FFs.

d(A)6i,a6(x', 2, €)

x/i—1

= (A)cea(xX, uE, €) ® (A)Ci,ca(X', 2, ux, e)@libed(z', ux, €).

here, (A)l ¢, and [ pe g are AP kernels (divergent) corresponding to
initial and final leg respectively.

!

AX) @ C(x', 2)6B(Z) / dxl/ dzlA( 1)c(f Z—I)B(zl)
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Cross section Calculation: Polarized case

@ For the polarized case, since we used Larin's scheme to compute the
partonic cross sections, to cancel the initial-state collinear divergences,
spin-dependent AP kernels in the same scheme were used.

o After getting the finite PCS, transformed the result to MS scheme by
overall renormalization constant.

g =Aft @ Act ,&DYS
:AfCL ® an ® Z;il ® ACledb(i)D};/Ts
=N @ ACYS &DYS (22)

o Z,c is known upto NNLO in QCD?, we also extracted for QED case.

L Matiounine, Smith, Neerven '98 2 Moch, Vermaseren, Vogt '14
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Results: NNLO

(a)e) = Z Crh(x', 2+ 3 ((B)CF, () Za(Z) + (B)C, (2)Xs(x)) + (A)Ri(x', 2)
B
sV
Distributions Constants/Functions
h(x",2") (1 =261 —X)
(q’y)k — q) 5(1_Xl)Df(Z/)r IZO’ ) , §27C37C4
5(1 - Z')Di(x")
D;(x)Di(z), j=0,---,
Zs5(2)) 5(1 -2 m, (2, 3, log(f),
D;(z') Li(£2), Lis(f)
XE(X/) 6(1 _X/) T, C27<37|0g(fz/)7
D;(x") Lis(£2), Lin(£or)
R’(XI,Z) ™, |Og(f’,z') €2, G35 Gay
Li2(f;<’,z’)7
Lis(f), Lis(£r)
MTTD 2025 September 18, 2025
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Results and Checks

@ We calculated NNLO QCD®QED corrections to SIDIS process, which
requires evaluation of new master integrals.

@ We agreed SV Limit of CFs i.e. terms containing double distributions
against known results?.

o Integrating z’ for specific subprocess, we got inclusive results and are
crosschecked against known in the literature?.

@ Independent calculation for CFs by another group, found numerical
aggreement for (un)polarized QCD corrections.

o Verified abelianization, QCD— QCD®QED3*.

o New QED Time-like splitting functions using SIDIS and using those,

extracted polarized space-like splitting functions and cross check with
[de Florian, Conte '25].

! Abele, de Florian, Vogelsang '21 2 Neerven, Zijlstra '91
3 de Florian, Der, Fabre '18
4Hameed, Banerjee, Chakraborty, Dhani, Mukherjee, Rana, Ravindran '19
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QCD ® QED Splitting functions

Time-Like Splitting functions (Preliminary):

501 50.1) $0.1) (0.1
Lo : BM, BN pY pOY |

~(00,2) (0,2),NS 7(0,2),S (0,2) 5(1,1) (1,1
NLO ngq )ngq : ’qu : »Pga )aPéq )vP(vq : (23)
Space-like polarized Splitting functions?:
0,1 0,1 0,1 7
LO : APGM, aPYY APGY APQY
0,2 0,2),NS 0,2),S 0,2 1,1 11
NLO : APLD APGANS APO2DS Ap02) ApLD AP (22)

qq

1 de Florian, Conte '25 2 de Florian, Sborlini, Rodrigo '15
3 de Florian, Sborlini, Rodrigo '16
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Figure: Contributions from all partonic channels to the SFs F; (left panel) and g;
(right panel) as a function of x for the EIC at /s = 140 GeV.

o PDF sets: NNPDF31(F;) and BDSSV24NLO, BDSSV24NNLO(g;)
o FF set: NNFF10PIp

@ u — u channel dominates, corrections are negative.
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o PDF sets: NNPDF31(F;) and BDSSV24NL0O, BDSSV24NNLO(g1)

o FF set: NNFF10PIp

@ u — u channel dominates.
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Plots
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Figure: Scale variation of F; as a function z for six different values of Q? at EIC.

@ Scale variation, p%, u# €

@ PDF sets: NNPDF31, FF set: NNFF10PIp,
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Plots
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Comparison Plot
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Figure: Ratio of F; as a function z at EIC.

@ PDF sets: LUXqed, FF set: NNFF10PIp
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Comparison Plot
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Figure: Ratio of g as a function z at EIC.

@ PDF sets: BDSSV24, FF set: NNFF10PIp
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Conclusion and Future Plans

@ EIC will unravel the mysteries of strong force. Theoretical precision
studies are extremely necessary to fully exploit the EIC data.

We calculated NNLO QCD®QED corrections to SIDIS process.
We calculated 20 new master integrals using different approaches.

Extracted Time-like splitting functions.

The NNLO predictions will be important to put more constraints on
(pol)PDFs and FFs very precisely.

Noticed significant reduction in the dependence of unphysical scales.

@ We have resummed SV and NSV logarithms for diagonal channels in
N-space till NNLL accuracy?.

@ Work in progress: Numerical implementation of neutral and charged
current interactions in SIDIS.

lsee talk by V. Pathak
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Thank you for listening )
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Reference slides:
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Mass Factorization

After coupling constant renormalization at scale ugr = pF, we can write
mass factorisation, for eg. at NLO for a, b = g process:

1\%
(o3) dolh, =001 = x) @l &1 - 2)
I

+3(1-x) e &F W + 1l ol &5(1 - 2),

1,q9

at NNLO for a, b = g process:

1\ @2 | 2B 5 s e o(2)
() oo+ 22 () ol o) o

1 qq®6(1 — z')

+6(1-x) o) &) + 61— x) 0 oFE)
+r0) e ot + 10 o clasa - 2)
+15% @ @o(1 - 2.
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Transformation Matrix T
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IBP-Tadpole

Lets Consider One Loop massive Integral (Tadpole diagram),

| _/ dPk
v (k2_m2)1/

0 kH
D _
/" ¥ ok [(kz—mzrf] =0

(D —2v)l, — 2vm?l,. 1 =0
(D—2v+2),
2(v —1)m? vt

Using IBP identity,i.e.

we get,

I, =

So any integral with v > 1 can be expressed recursively in terms of one
integral 1 (MI)
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